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Abstract: This paper introduces a fractional-order meminductor emulator (FOMI) with both 

grounded and floating configurations, showcasing its applications in a chaotic oscillator. It 

employs one voltage differencing inverted buffered amplifier, a current follower, a fractional-

capacitor, and a conventional capacitor. The transient analysis, pinched hysteresis loops, and 

non-volatile characteristics obtained for the suggested FOMI serve as clear indicators of the 

circuit's effective operation. The variations in pinched hysteresis loops with changes in the 

fractional-order (α) and frequency also support the theoretical concepts. The circuit's robust 

performance has been assessed by analyzing simulation results under varying conditions of 

temperature and supply voltage. The analysis also involves examining the impact of varying 

capacitor values on pinched hysteresis loops. Monte Carlo and corner analyses support the 

robust behaviour of the circuit. The suggested FOMI's potential use has been demonstrated 

using the chaotic oscillator circuit. 

Keywords: Pinched hysteresis loop, chaotic oscillator, memristor, meminductor, 

memcapacitor, fractional-order. 

1. Introduction 

The exploration of novel circuit components and architectures is a continuous pursuit in the 

field of electronic design, leading to advancements with applications across diverse 

disciplines. While traditional approaches focus on integer-order differentiation and 

integration, the potential of non-integer, or fractional-order, calculus has gained significant 

interest due to its ability to model real-world phenomena more accurately. This branch of 

mathematics, known as fractional calculus, offers greater flexibility by introducing the 

concept of fractional-order derivatives and integrals. Its impact has transcended boundaries, 

finding applications in various scientific and engineering fields, including material science, 

biology, and control theory [1].  



2 
 

 

To take the advantages offered by fractional calculus, in circuit theory, fractional-order 

capacitors (FOCs) have been realized. These elements, denoted as Cα where α lies between 0 

and 1, are also known as constant phase elements (CPEs). Their impedance characteristic, 

1/s
α
Cα, introduces a constant phase shift of -απ/2. However, due to the absence of readily 

available physical components exhibiting fractional-order behaviour, various techniques 

based on RC networks have been developed to approximate FOCs through continuous 

fraction expansion [2, 3]. Notably, Foster and Cauer networks utilize resistors and capacitors 

to achieve this approximation, with a trade-off between network complexity and accuracy. 

While higher-order networks provide better approximations, they also require more 

components. The foster form of fifth order is often realized with the help of six resistors and 

five capacitors. 

The potential of fractional-order elements extends beyond capacitors, finding application in 

the recently discovered memristor. Unlike traditional capacitors and inductors that store 

energy, memristors possess the unique ability to store information, making them highly 

attractive for low-power neuromorphic computing applications. Their capability to retain and 

process information within a compact footprint further enhances their appeal. While 

conventional circuit components lack the captivating features of memristors, these were first 

envisioned by Prof. Leon Chua in 1971 [4] and eventually physically realized using Titanium 

dioxide (TiO2) by HP labs after a 37-year gap [5]. Today, they are readily available as 

commercial components. However, memristors' counterparts, memcapacitors and 

meminductors, are not yet widely available, prompting researchers and engineers to develop 

emulator circuits that replicate their expected characteristics. While numerous integer-order 

memcapacitor and meminductor emulator designs exist, research on their fractional-order 

counterparts remains scarce.  

The motivation for this paper stems from this noticeable gap in research concerning 

fractional-order meminductors. In addition to the fact that fractional-order meminductors 

remain underexplored as compared to their integer-order counterpart, it has been analyzed 

that the existing fractional-order meminductor designs are often intricate, limiting their 

frequency responses to the kHz range. This paper addresses this critical gap by introducing a 

simplified circuit for a FOMI with a superior frequency response. Unlike existing fractional-

order meminductors, the proposed design directs for a more straightforward architecture, 

ensuring broader applicability across broad frequency ranges. Beyond overcoming the 
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limitations of existing designs, the untapped potential of fractional order meminductors has 

been explored compared to their integer-order counterparts. Specifically, in chaotic circuits, 

fractional-order meminductors hold immense promise for generating complex dynamics and 

offering greater flexibility in controlling chaotic behavior. To achieve these objectives, a new 

design of meminductor emulator has been realized that leverages two well-established active 

building blocks: a voltage differencing inverted buffered amplifier (VDIBA) and a current 

follower (CF). Additionally, the design incorporates both a fractional-order capacitor and a 

conventional capacitor. The resulting circuit demonstrates robust performance, as verified 

through simulations conducted under varying temperature and supply voltage conditions. 

Finally, to showcase the versatility of the proposed fractional-order meminductor emulator 

(FOMI), its potential application in chaotic oscillator has been demonstrated.  

A comparison summary of the suggested FOMI with existing ones are presented in Table 1. 

The observations of Table 1 are provided below: 

1. For fractional meminductor emulators described in the literature [6-13], the greatest 

frequency for PHLs is restricted up to kHz only. In comparison, the suggested FOMI 

operates till 7MHz. 

2. The suggested circuit is free from the requirement of memristors. This is in contrast to 

the known meminductor emulators [6], [7], and [12] that require memristors for their 

proper functioning.  

3. The meminductor emulators [6], [11], and [13]) involve multipliers, active building 

blocks, along with a lot of passive components, nonetheless, the proposed FOMI has a 

fairly simple architecture and only requires a few components.  

The content of the paper is arranged into seven sections which start from the first section of 

the introduction. The short review is given in Section 2 for the ease of readers. Section 3 

presents the traits of active building blocks (ABBs) and their CMOS realizations. Section 4 

discusses the operational concept and mathematical formulations of the proposed FOMI. 

Section 5 presents the simulation results. Applications of the proposed floating meminductor 

emulator namely chaotic oscillator is given in Section 6. Section 7 contains the paper's 

conclusion.   

2. Short review of FOMI 

Fractional meminductors extend the concept of traditional inductors and capacitors by 

incorporating fractional calculus principles. The application of fractional calculus principles 
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enables the analysis of time-domain behaviour and fractional-order dynamics, thereby 

enhancing modelling capabilities for these devices and offering potential solutions across a 

range of applications. In fractional calculus, the fractional derivative of a function is 

expressed in terms of the differentiation of non-integer order. Similarly, the fractional integral 

is an integration of non-integer order. FOMI is a device that exhibits memory effects in its 

current-flux relationship, similar to a traditional inductor, but with the inclusion of fractional-

order derivatives. The FOMI's fractional nature enables it to capture more intricate and non-

linear system behaviours. The FOMI can be tuned to have particular memory characteristics 

and frequency responses, allowing for more flexibility in system design and analysis. 

The fractional derivative of a function f(t) with respect to time t of order α, denoted by ,tD  is 

defined using the Caputo or Riemann-Liouville fractional derivative operators. The Caputo 

fractional derivative operator is commonly used and is defined as follows: 

 
 

   

 
10
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t

t n
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D f t d

n t
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


 
 


  

        (1) 

where,  .  is gamma function and n-1 ≤ α ≤ n is the fractional order.   

In the case of fractional meminductors, the fractional derivative term is incorporated into the 

constitutive relation between the current (I) and flux (φ) of the meminductor. The fractional-

order derivative of current (I) with respect to time (t) is related to the fractional-order 

derivative of voltage (V) by a constant fractional-order meminductance (L
α
) [14]: 

1( ) ( )I t L D V t             (2a) 

here, D
α-1 

represents fractional derivative. Considering the fact that flux is time integral of 

voltage, Equation (2a) can be re-written as: 

( ) ( )I t L D t            (2b) 

The fractional order α, which controls the memory characteristics, frequency response, and 

dynamic behaviour of the device, affects the distinct characteristics and behaviour of 

fractional-order meminductors. The desired characteristics of meminductors can be attained 

by choosing suitable values for α. 

 

3. Overview of ABBs 

VDIBA and CF have been used in the designing of the proposed FOMI. 



5 
 

3.1 VDIBA 

The VDIBA is a four-terminal amplifier, as illustrated in Fig. 1 (a). The positive and negative 

high-impedance input voltage terminals are denoted as V+ and V-, respectively. The output 

voltage terminal W- has a low impedance, while the intermediate terminal ‘Z’ exhibits high 

impedance. In terms of implementation, its input stage comprises an OTA with a differential 

input and a single output. This OTA converts the differential signal into a corresponding 

current at the ‘Z’ terminal. The voltage at the W- terminal of the output stage unity-gain 

inverting voltage buffer is the inverse of the voltage observed at the ‘Z’ terminal. An 

additional biasing terminal VB can be used to control the transconductance parameter (Gm). 

Applications requiring resistor-less and electronically regulated circuits encourage the use of 

VDIBA because its Gm may be electronically controlled by a biasing voltage. 

The equations defining the port characteristics of VDIBA are given as: 

0V VI I                                                 (3) 

 Z m V VI G V V                           (4) 

W ZV V              (5) 

 2
2 2

m B SS th

K
G V V V            (6) 

where K is a technological parameter and its value is given by μn‧Cox‧W/L, with μn 

representing the mobility of charge carriers, Cox is per unit area capacitance due to the oxide 

layer, W is the width and L is the channel length of the symmetric MOSFETs constituting 

differential pair of OTA. VSS is the negative supply voltage used for biasing of VDIBA and Vth 

is the threshold voltage of the MOSFETs that govern the gain of the amplifier. β denotes the 

gain of ‘W-’  terminal in the non-ideal case and is ideally unity. The CMOS circuit of VDIBA 

depicting all its port terminals is shown in Fig. 1 (b). 

 

3.2 CF Block 

The current at the output terminal follows the input current in a traditional CF, which has a 

low input impedance and a very high output impedance. The number of output terminals and 

their current polarity can be adjusted by using different combinations of current mirrors. The 

block diagram and CMOS circuit of a four-terminal CF are shown in Figs. 2 (a) and (b), 

respectively.   
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Here ‘X’ is a low-impedance input current port, Z1+ and Z2+ are two high-impedance output 

ports with positive current polarity, and Z- is a high-impedance output port with negative 

current polarity. The port equations describing the current at various ports of CF are given as:  

0XV                                                                   (7) 

1 2Z Z XI I I              (8) 

Z XI I                          (9) 

here, γ is the current gain of non-ideal CF and has a value equal to unity in case of the ideal 

output.  

 

4. Proposed FOMI 

Electronic components called fractional-order meminductors have fractional-order dynamics 

in terms of memory effects and nonlinearity. Fractional-order dynamics can offer greater 

flexibility and control for simulating memory effects in the context of meminductor 

emulators. The fractional meminductor emulator can simulate a variety of meminductive 

behaviours, including varied degrees of memory and nonlinearity, by varying the order of the 

fractional calculus operator. A few designs [6-13] are available for floating-order 

meminductors. It is well-known that fractional-order meminductor provides many advantages 

over integer-order meminductors such as better control over pinched hysteresis loops, 

complex chaos generation in chaotic oscillators for secure communication, and additional 

variable (α) available for controlling many circuit parameters, etc. Therefore, in this paper, a 

FOMI has been proposed. This meminductor is designed using VDIBA and CF as active 

blocks. Along with active blocks, the proposed emulator employs a fractional capacitor and a 

conventional capacitor. The fractional capacitor (Cα) is connected to VDIBA's ‘Z’ terminal to 

produce the fractional behaviour. The VDIBA is used in view of charging Cα and its internal 

buffer helps in copying the voltage generated at the ‘Z’ terminal to the ‘W-’ terminal. The 

proportional voltage produces a current IX for the CF that is utilized to charge the capacitor 

C2. The capacitor C2 is used to remember the state of the circuit. The voltage across C2 is 

further utilized to control the fractional meminductance of the proposed FOMI. 

4.1 Proposed grounded FOMI  

The complete circuit of the suggested grounded FOMI designed using VDIBA and CF has 

been presented in Fig. 3(a). The depiction of the Foster-I realization employed for the 
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implementation of Cα is illustrated in Fig. 3(b). The order of the RC network shows a 

significant compromise between the accuracy of the achieved fractional capacitor and the 

intricacy of the design. In the presented implementation, a 5
th

 order RC network has been 

selected for the realization of the fractional capacitor. This choice has been governed by the 

fact that a 5
th

 order Foster-I RC network offers a precise emulation of fractional capacitors 

across a broad frequency spectrum. 

In the proposed meminductor of Fig. 3(a), the incremental configuration is obtained by 

connecting the V- terminal to the input and the V+ terminal to the ground (ⓐ  ⓓ and ⓑ 

ⓒ). In order to obtain decremental configuration, the input is connected to V+ while V- 

terminal is grounded (ⓐ  ⓒ and ⓑ  ⓓ). The fractional capacitor Cα is charged by the 

voltage reflected at the ‘Z’ terminal. The ‘X’ terminal of the CF draws current from ‘W-’ and 

is reflected to ‘Z1+’, ‘Z2+’, and ‘Z-’ terminals.  The capacitor C2 is charged by the current 

drawn from ‘W-’ terminal. The voltage developed across C2 biases the VDIBA and controls 

the transconductance Gm as per Equation (6). The feedback mechanism created by the charge 

stored at C2 provides the basis for memory in this meminductor.  

To verify the working of the circuit, a detailed mathematical analysis of the incremental 

meminductor is carried out as follows:  

Using Equation (4) and analyzing from Fig. 3(a) that 
V inV V   and 0VV   , the expression 

obtained is: 

 Z m inI G V                              (10) 

Using Equation (5), the voltage across Cα can be written in s-domain as: 

 
1 m in

Z Z

G V
V s I

s C s C 

 

              (11)                  

where α is the fractional order of Cα. 

Since, the flux at the input is represented as: ( ) in
in

V
s

s
  , Equation (11) gets modified as: 

   1

m

Z in

G
V s s

s C







          (12) 

Direct analysis of Fig. 3(a) yields the current drawn by CF as:  

1

W

X

V
I

R

                                                      (13) 

where R1 is the parasitic resistance seen between ‘W-’ and ‘X’ terminals and is given as: 
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1 W X XR R R I           (14)                                                      

here, RW- and RX denote the parasitic resistances at ‘W-’ and ‘X’ terminals, respectively.  

The voltage across the capacitor C2 (VC2(s)) is given by: 

   2 2

2

1
C B ZV s V s I

s C
  


        (15)                                                       

Using Equation (8) and Equation (13), Equation (15) can be rewritten as: 

 
2 1

1
B WV s V

s C R


  


                (16)                            

Substituting VW- from port Equation (5) and VZ from Equation (12), Equation (16) can be 

expressed as:  

   
1 2

m

B in

G
V s s

s R C C



 


 
 

 
                 (17)                                             

Since, ( )in s
s


 , where ρ(s) is the time domain integral of flux, Equation (17) can be 

redefined as: 

   1

1 2

m

B

G
V s s

s R C C



 




 
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 
        (18)                               

The transconductance parameter (Gm) of VDIBA is dependent on biasing voltage VB, as seen 

in Equation (6). Substituting value of VB from Equation (18) in Equation (6) yields: 

   1

1 2

2
2 2

m
m SS th

GK
G s s V V

s R C C



 




  
      

                          (19) 

From Fig. 3(a), 
in ZI I   . Further combining Equations (5), (9), (12) and (13), we get: 

 
 

1

1

m in

in

G s
I s

s R C



  


  



        (20) 

Substituting the value of Gm from Equation (19) in Equation (20), yields: 

     1 1

1 1 2

2
2 2

m
in SS th in

GK
I s s V V s

s R C s R C C 

 

  
 

 

  
        

   (21) 

The relation between current and induced flux in meminductor in terms of meminductance 

(LM) is given as: 

   1

MI s L s           (22) 

Considering Equations (21) and (22), the inverse meminductance of the proposed 

meminductor is expressed as:  
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 1

1 1

1 1 2

  

2
2 2

                                         

m
M SS th

fixed part variable part

GK
L V V s

s R C s R C C 

 

  


 

  
       

 

    (23) 

where α is fractional order, β is the voltage gain of VDIBA and γ is the current gain of CF. 

Equation (23) shows that the meminductance of the proposed meminductor can be controlled 

by fixed parameters (supply voltage and threshold voltage) and variable parameters (input 

flux). The fractional power (α) helps in precise control of the meminductance. The circuit 

shown in Fig. 3 (a) can be used in decremental mode by connecting ⓐ  ⓒ and ⓑ  ⓓ. A 

similar mathematical analysis as carried out for incremental configuration, yields 

meminductance for decremental configuration as:  

 1

1 1

1 1 2

  

2
2 2

                                         

m
M SS th

fixed part variable part

GK
L V V s

s R C s R C C 

 

  


 

  
       

 

    (24) 

From Equation (24) it can be observed that both fixed and variable components are negative, 

leading to decremental behaviour of the proposed fractional meminductor.  

4.2 Proposed floating FOMI  

The suggested floating type FOMI is shown in Fig. 4. When the circuit of Fig. 4 is subjected 

to the same mathematical analysis that was done for the grounded type, the relationship 

obtained between flux and current for incremental configuration is provided below: 

 1

1 1

1 1 2

  

2
2 2

                                         

m
M SS th

fixed part variable part

GK
L V V s

s R C s R C C 

 
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

 

  
       

 

    (25) 

By flipping the switch as indicated in the figure, the proposed emulator shows decremental 

behaviour and its meminductance can be expressed as: 

 1

1 1

1 1 2

  

2
2 2

                                         

m
M SS th

fixed part variable part

GK
L V V s

s R C s R C C 

 
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

 

  
        

 

    (26) 

In the proposed FOMI, Equations (23) to (26) show that the fractional s-domain factor of s
α-1

 

offers greater flexibility in modelling complex systems. This aids in capturing a broader 

range of system behaviours that integer-order models are unable to faithfully capture. 

Additionally, it offers greater accuracy and increased adaptability in simulating real-world 
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systems, particularly those displaying non-linear and non-integer behaviours. However, 

fabricating such emulators with precise fractional-order characteristics is a complex task, 

leading to increase in manufacturing costs. Additionally, fractional-order circuits are 

generally more sensitive to variations in component values compared to their integer-order 

counterparts. Even minor discrepancies in resistance, capacitance, or other parameters can 

significantly affect the behaviour of the emulator, posing challenges in practical 

implementations. Furthermore, commercially available components specifically designed for 

fractional-order circuits are limited compared to those readily available for integer-order 

circuits. Furthermore, existing circuit design methodologies, simulation tools, and standard 

components are primarily tailored for integer-order circuits making the analysis of these 

circuits a challenging task. 

 

5. Simulation results 

Simulations using the LTspice tool have been performed to test the operation of the proposed 

fractional-order meminductor circuit. The blocks VDIBA, and CF have been simulated with 

supply rails of ±0.9V utilizing TSMC's 180nm technology parameters. Table 2 displays the 

size of the MOSFETs utilized in the active blocks. The capacitance value C2 is set to 10 pF in 

order to achieve pinched hysteresis lobes. A fifth-order Foster-I form is used to implement Cα 

linked to the ‘Z’ terminal of VDIBA, as displayed in Fig. 3(b). The values of R and C for the 

Foster-I form have been calculated using MATLAB [15]. These values for Cα = 10pF, for 

different values of α have been presented in Table 3. Unless otherwise stated, all the 

simulated results have been plotted with α = 0.5 for the sake of simplicity.  

5.1 Simulation results of proposed floating FOMI in incremental configuration 

The curves representing transient analysis of the proposed floating FOMI for α = 0.5, plotted 

with a 100kHz sinusoidal signal have been displayed in Fig. 5. This analysis reveals intricate 

details of the proposed floating FOMI's temporal behaviour showcasing the unique 

relationship between voltage, flux, and current waveforms. In this figure it can be observed 

that the voltage waveform leads the flux and current waveforms. This is a characteristic that 

is observed in inductive circuits. The non-sinusoidal nature of the current waveform is 

attributed to the dynamic fluctuations in the inductance value over time, providing a 

comprehensive understanding of the circuit's transient response. To check the non-volatile 

behaviour of the proposed emulator, a step signal with 15µs period and 1µs ON time is 
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applied at the input terminal and the observed response is shown in Fig. 6. The figure 

illustrates a key aspect of the emulator's behavior. Specifically, during the ON time of the step 

signal, the emulator's meminductance value increases. Meminductance is a property similar 

to inductance but with memory effects, implying that the device "remembers" its previous 

states. What is particularly noteworthy is that when the pulse train is turned OFF, the 

emulator retains its meminductance value from the previous ON state. This persistence of the 

meminductive property during the OFF state demonstrates the non-volatile behaviour of the 

proposed emulator. This ensures that the emulator has the ability to "remember" and maintain 

its meminductive state even after the input signal is no longer actively applied. This 

characteristic is a crucial element of non-volatile memory, where information or states persist 

even in the absence of power or input stimuli.  

To understand the behaviour of the circuit across different frequency ranges, sinusoidal 

signals with varying frequencies are applied. The corresponding hysteresis loops obtained are 

presented in Figs. 7(a) and 7(b). Fig. 7(a) displays the PHL curves obtained for frequencies 

ranging from 1kHz to 7kHz. In this figure, the curves are plotted with frequency varying in 

steps of 2kHz.  Fig. 7(b) demonstrates the curves for frequency varying from 1MHz to 7MHz 

in steps of 2MHz. The capacitance of C2 has been suitably modified to produce PHL curves 

with zero-crossing for the given range of frequencies. An additional crucial aspect of a 

meminductive device is the PHL lobes' area decreasing with frequency. This characteristic 

can be effectively visualized in the PHL curves shown in Fig. 7. 

Additionally, to explore the maximum operating frequency of the proposed FOMI, the circuit 

underwent testing with high-frequency sinusoidal signals. Fig. 8 displays the results analyzed 

for an input signal of 10MHz frequency for different values of the fractional order parameter 

(α = 0.2, 0.5, and 0.8). As evident from the figure, PHL curves for all tested α values exhibit 

the dumbbell hysteresis shape, confirming the FOMI's functional operation even at a high 

frequency of 10 MHz. However, these curves are observed with slight shift in pinched point. 

5.2 Simulation results of proposed floating FOMI in decremental configuration 

The proposed floating FOMI presented in Fig. 4 is simulated in decremental mode. The 

circuit behaved satisfactorily, as shown by the results of the non-volatility test and transient 

analysis.   The PHL curves observed for a sinusoidal signal with frequency varying from 

100kHz to 7MHz are depicted in Fig. 9. All these curves have been plotted for α = 0.5. From 

Fig. 9, it can be visualized that the size of the lobes reduces as frequency increases, this 
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confirms the satisfactory behaviour of the proposed emulator in the complete range of 

frequencies for the decremental mode of configuration.  

To analyze the effect of the variations in α on PHL curves, the circuit has been simulated for 

α varying from 0.2 to 0.8 under the stimulation of a sinusoidal voltage signal. The curves 

obtained are displayed in Fig. 10. The slight modifications in the shape of loop demonstrate 

the control of the fractional order in meminductance of the designed emulator. 

 

5.3 Simulation results of the proposed grounded FOMI  

In the presented grounded FOMI circuit illustrated in Fig. 3, a sinusoidal signal with a phase 

difference of 90
0
 has been applied at the input. This sinusoidal input serves as a dynamic 

stimulus to assess the performance of the grounded FOMI across a range of frequencies. The 

frequency of the applied signal has been systematically varied, spanning from 100kHz to 

7MHz. For the evaluation of the meminductive behaviour under these varying frequencies, 

the R and C values are configured according to the Foster-I form with a specific fractional 

order, in this case, α = 0.5. This choice of α is significant, as it represents a balanced 

fractional order that influences the circuit's meminductive characteristics. 

The resulting responses of the grounded FOMI are captured in curves presented in both Fig. 

11 and Fig. 12. Fig. 11 illustrates the behaviour in the incremental mode, where the 

meminductive response is observed during the increasing phase of the applied signal. On the 

other hand, Fig. 12 displays the response in the decremental mode, focusing on the 

meminductor's behaviour during the decreasing phase of the signal. These curves validate the 

proper functioning of the proposed grounded meminductor across the entire frequency range 

for both incremental and decremental configurations. The fact that the curves exhibit 

consistent and reliable behaviour throughout this frequency spectrum affirms the robustness 

and effectiveness of the grounded FOMI circuit.  

5.4 Analysis of the proposed meminductor subjected to environmental conditions 

In reality, a device will experience a variety of non-ideal environmental and manufacturing 

conditions, which will affect its behaviour.  It is necessary to analyze a device's 

characteristics, when subjected to practical conditions, to determine its tolerance in a real-

world environment. In this section, the impact of the variations of various parameters on the 

behaviour of the proposed FOMI has been investigated. 
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5.4.1 Temperature variation analysis 

The performance characteristics of the proposed meminductor have been thoroughly 

investigated by examining its behaviour across a temperature range spanning from -50°C to 

+50°C. The analysis involves the generation of PHL curves for the floating FOMI under both 

incremental and decremental configurations. The outcomes of this investigation are 

represented in Fig. 13(a) for incremental mode and Fig. 13(b) for decremental mode. 

In these figures, the meminductor's behaviour is assessed for α = 0.5, a choice that represents 

a balanced configuration for the meminductor. The PHL curves plotted in these figures depict 

the slight deviations in the meminductive response under varying temperatures.  

The observed slight deviations in the PHL curves do not compromise the overall operation of 

the proposed meminductor. Instead, they confirm the meminductor's ability to maintain 

functionality and stability across a defined temperature span. This resilience is indicative of 

the suggested meminductor's capability to withstand temperature variations without 

substantial impact on its performance, making it a reliable and robust component for 

applications that may be subjected to temperature fluctuations within the specified -50°C to 

+50°C range.                            

 

5.4.2 Supply voltage variations 

The impact of supply voltage variations on the performance of the proposed FOMI has been 

systematically examined by subjecting the circuit to an approximate 10% fluctuation in the 

supply voltage. The resulting PHL curves, obtained by simulating the suggested meminductor 

with a sinusoidal signal of 100 kHz frequency and α = 0.5, are presented in Fig. 14. The 

depicted waveforms in Fig. 14 illustrate the PHL curves in the φ vs. i plane, showcasing the 

meminductive response to variations in supply voltage. Specifically, the curves are generated 

for supply voltage fluctuations ranging from 0.81V to 0.99V for VDD and from -0.81V to -

0.99V for VSS.  

Despite the variations in supply voltage within the specified range, the suggested 

meminductor demonstrates satisfactory performance. The observed PHL curves reveal only 

slight modifications in lobe shape, indicating that the meminductive behavior remains stable 

even under supply voltage variations of 10%.  

 

5.4.3 Variations due to capacitance tolerance: 
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During the fabrication process, achieving exact component values is often an impossible task.  

In reality, component values are inherently prone to certain tolerances or variations, which 

can potentially lead to circuit failure or suboptimal performance. Recognizing this inherent 

variability, an examination of the suggested meminductor's behaviour in the φ vs. i plane has 

been conducted by varying capacitor values. This investigation aims to understand how 

fluctuations in capacitance values influence the meminductive response. 

Fig. 15 visually presents the PHL curves for the floating FOMI for both incremental and 

decremental configurations. These curves are generated for different values of capacitance, 

where C2 is set at 5pF, 10pF, and 20pF. This variation in capacitance values provides insight 

into how the meminductive behaviour adapts to different component tolerances. 

 

5.4.4 Monte-Carlo Analysis: 

In the practical development of a MOSFET-based circuit, factors such as the aspect ratio and 

threshold voltage of the MOSFET can undergo variations due to fabrication imperfections. To 

assess the impact of these variations on the properties of the proposed meminductor, Monte 

Carlo (MC) analysis has been employed. The Gaussian distribution function has been used to 

perform the MC analysis with 5% variations in the MOSFET’s aspect ratio and threshold 

voltage. Figs. 16 (a) and 16 (b) show the MC plots of PHL curves for a 100 kHz sinusoidal 

signal, considering threshold modifications for incremental and decremental meminductors, 

respectively. Each curve in these figures represents the outcome of the MC analysis for a 

specific run, with a total of 100 runs being conducted. These MC plots serve to demonstrate 

the robustness of the proposed circuit's meminductive behaviour across a range of mismatch 

scenarios.  

The observed PHL curves in the MC plots affirm the circuit's ability to maintain 

meminductive functionality over the entire range of mismatch induced by variations in 

MOSFET specifications. Despite the inherent variations in the aspect ratio and threshold 

voltage, the form of the PHL curves remains consistent, with only minor modifications. This 

resilience is crucial for real-world applications where fabrication-induced variations are 

inevitable, ensuring that the proposed meminductor reliably preserves its intended behaviour 

despite variations in MOSFET properties. 

 

5.5 Quantification of error in fractional-order capacitance using Foster-I form 
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As mentioned in Section 1, commercially available fractional capacitors are not readily 

accessible. Hence various continuous fraction expansions utilizing RC networks have been 

proposed in the literature to approximate their values. The s-domain equation that 

characterizes the impedance of a CPE is expressed as follows [15]:  

 

 
1

Z s
C s

           (27) 

here, Cα represents normalized capacitance expressed in Farad/sec
(1-α) 

(F/sec
(1-α)

). The value 

of this capacitor which depends both on frequency and order, is represented as: 

1

0C C 

             (28) 

where, C is the capacitance value for which the fractional capacitor is designed. The phase (θ) 

of the impedance Z(s) of CPE is expressed as: 

/ 2             (29) 

In this paper, a fifth-order Foster-I network has been employed to realize the fractional 

capacitor (Cα) required in the proposed design.  There exists a trade-off between the network 

order and the exact value of fractional impedance. The 5
th

 order network was chosen in this 

work, as it enables the attainment of a highly accurate value of fractional capacitor 

impedance across several decades centered around the central frequency.  

In this work, a capacitance C=10pF centred at f0 = 100 kHz (|Z| = 159.15kΩ) has been chosen 

for the realization of the fractional capacitor through 5
th

 order Foster-I form. The impedance 

of the fractional capacitor, implemented using the network illustrated in Fig. 3(b) with the 

component values specified in Table 3, have been examined. The resulting impedances for 

various values of alpha are plotted in Fig. 17(a). In this figure, the impedance corresponding 

for α = 0.2, 0.4, 0.6 and 0.8 have been plotted for a frequency range of 10
3
 Hz to 10

7
 Hz (4 

decades). The waveforms depicting % error as compared to the impedance obtained through 

Equation (27) have been plotted in Fig. 17(b). These waveforms show that near centre 

frequency, the 5
th

 order Foster-I form accurately realizes the fractional capacitance. The error 

in impedance magnitude is almost negligible in the frequency range of 20kHz to 500kHz and 

increases beyond this range. 

The waveforms showing phase response of fractional capacitance realized through Foster-I 

RC network and the corresponding error related to different values of α have been plotted in 

Fig. 18(a) and 18(b) respectively. These plots have also been drawn for a frequency range of 

4 decades (10
3
 Hz to 10

7
 Hz). Fig. 18(b) depicts that error in phase response is almost 

negligible for 2 decades of frequency variation (from 10kHz to 1MHz). 
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Figs. 17 and 18 confirm the validity of the 5
th

 order Foster-I RC network for implementing 

the desired fractional capacitor.  
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6 Applications of the suggested FOMI as a chaotic oscillator 

This section introduces a chaotic oscillator implemented using the proposed FOMI. The 

incorporation of FOMI in chaotic oscillator design introduces additional degrees of freedom, 

resulting in more intricate and diverse dynamical behavior. The fractional order, denoted by 

'α', offers precise control over the system's dynamics, facilitating customization of the 

oscillator's behavior to meet specific requirements [14, 16]. Despite the advantages of 

fractional-order chaotic oscillators, including richer dynamics and enhanced controllability, 

their implementation entails increased complexity and challenges. 

In the suggested implementation of Chua's oscillator, the fractional order model is exclusively 

applied to the meminductor flux characteristic, while the remaining states are maintained as 

integer order. Fig. 19 illustrates the basic configuration of Chua's oscillator, where the 

traditional nonlinear element (ML) is replaced with the proposed VDIBA and CF based 

meminductor. The oscillator includes one inductor (L), two capacitors (C1 & C2), a resistor 

(R1), an OPAMP-based negative impedance converter (-R2), and one meminductor (ML).  

The four state variables of this oscillator are: current through the inductor (IL), the capacitor 

node voltages (VX & VY), and flux (φMI) and integral of flux (ρMI) of meminductor. This 

meminductor-based oscillator's state space dynamics can be expressed with the help of 1
st
 

order differential equations as shown below: 

X X
A L

B

Y
B L ML

L
X Y L B

MI
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MI
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dt R
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


    



 





        (30) 

In above analysis, CA, CB, L, RA and RB represent the values of the respective elements 

(capacitance, inductance, or resistance) in the chaotic oscillator. To model the current through 

the meminductor, the equation ILM = (A+BρMI)φMI, as derived in Equation (21), can be 

employed. In this equation, α is considered to be equal to unity for the sake of simplicity (α = 

1 for an ideal capacitor). Under this assumption, the parameters A and B are characterized by 

Equation (31). 
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A set of equilibrium points can be derived by setting all derivatives of Equation (30) equal to 

zero. This set of equilibrium points considering, , , , , 0LX Y MI MI
V V I    , is defined as:  

  , , , , | 0,X Y L MI MI X Y L MI MIE V V I V V I m             (32) 

where, m is a constant real number. At equilibrium point given by Equation (32), the Jacobian 

matrix (J) is defined as:  
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     (33) 

The dynamics of the Chua’s oscillator (Fig. 19) can be analyzed by finding the characteristic 

equation associated with the Jacobian matrix expressed Equation (33). This equation which 

gives the eigenvalues of the matrix is defined as: 

  0Det J I           (34) 

here, λ represents the eigenvalues and are crucial for determining the stability of the Chua’s 

oscillator at the equilibrium point specified by Equation (32). Using MATLAB, the 

eigenvalues of the system are calculated as: 

5 4 3 2

1 2 3 4 0a a a a                (35) 

here, coefficients a1, a2, a3, and a4 are defined by Equation (36). 
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Using the characteristic equation given by Equation (34), the eigen values can be obtained for 

the chaotic circuit of Fig. 19. From Equation (35), it can be easily realized that Jacobian 

matrix ‘J’ has a zero value and four nonzero values. Since, the coefficients a1, a2, a3, and a4 

are all nonzero, if the real parts of all eigenvalues of Equation (35) (except λ = 0) are 

negative, the system is stable. As per Routh–Hurwitz criterion the system is stable only when, 

∆1 = a1, ∆2 = (a1a2 - a3)/a1, ∆3 = a3-(a1
2
a4)/(a1a2 - a3), and ∆4 = a4, all are positive. 

Otherwise, the system is unstable, and chaotic response can be generated.  Fractional-order 

systems exhibit significantly more complex behavior than their integer-order counterparts due 

to the challenging nature of fractional-order calculus. The previous analysis was conducted 

assuming an ideal capacitor with α = 1. Interestingly, when considering a fractional capacitor 

(0 < α < 1), the chaotic behavior remains at least as stable as the integer-order system [17]. 

However, maintaining chaos in the fractional system depicted in Fig. 19 requires the same 

number of eigenvalues to remain within the unstable region. The essential condition to 

achieve unstable eigenvalues is outlined below: 

 
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1

Im2
tan

Re




 


 

  
 

         (37) 

The behavior of the chaotic oscillator, as illustrated in Fig. 19 and implemented with the 

recommended fractional-order meminductor with α = 0.5, has been explored through LTspice 

simulations. The negative resistance (-R2) is achieved by the OPAMP-based negative 

impedance converter when Ra = Rb = 2k. The rest of the elements are set to have the 

following values: L=120mH, C1=65nF, C2=10nF, and R1=200. Fig. 20 shows the 2-D 

projection plots that are observed for the different state variables. These plots validate the 

chaotic dynamics exhibited by the system when utilizing fractional values of α. 

 

7 Conclusion  

In this paper, the feasibility of designing grounded/floating FOMI based on a few active 

blocks has been investigated. VDIBA and CF blocks have been selected for their 

straightforward construction, differential capabilities, and inherent tuning options. 

Verification tests, including meminductor fingerprints, PHL with zero-crossing, and non-

volatility tests, have all been employed to ensure the intended functionality of the proposed 

circuit. The circuit's ability to operate in both incremental and decremental modes was 

demonstrated using a simple switch connected to the input terminals. LTspice simulation 

results indicate the circuit's effectiveness up to 7MHz. Temperature variations (-50°C to 
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+50°C), capacitance changes (5pF to 20pF), and supply voltage fluctuations (10%) were 

considered in PHL curves, affirming the circuit's practicality in real-world scenarios. 

Additionally, the proposed fractional-order meminductor's realization was validated through a 

Monte Carlo study. The paper illustrates the successful implementation of a chaotic oscillator 

using the suggested fractional-order floating meminductor emulator. 
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(a) (b) 

Figure 2. VDIBA (a) Symbol (b) Circuit diagram 

 

 

 

 

(a) (b) 

Figure 2. CF (a) Symbol (b) Circuit diagram 
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Figure 3. Proposed Grounded FOMI (a) Circuit diagram (b) Foster-I realization of fractional 

capacitor for α = 0.5 

 

 

Figure 4. Proposed Floating Decremental/Incremental FOMI 
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Figure 5. Transient analysis for the floating FOMI incremental configuration for a sinusoidal 

frequency of 100kHz for α = 0.5 

*for color reproduction on the Web 

 

Figure 6. Non-volatile behavior of the proposed floating FOMI for α = 0.5 

*for color reproduction on the Web 
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               (a)                                                               (b) 

Figure 7. PHL curves observed for the floating incremental FOMI for α = 0.5 for a frequency range of 

(a) 1kHz to 7kHz (b) 1MHz to7MHz 

*for color reproduction on the Web 

 

 

Figure 8. PHL curves observed for 10MHz sinusoidal signal for α = 0.2, 0.5 and 0.8 

*for color reproduction on the Web 

 

                              

(a)                                            (b) 

Figure 9. PHL curves observed for the proposed floating decremental FOMI with α = 0.5 for a 

frequency range of (a) 100kHz to 700kHz (b) 1MHz to 7MHz 

*for color reproduction on the Web 
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Figure 10. PHL curves observed for decremental floating FOMI for α = 0.2 to 0.8 

*for color reproduction on the Web 

 

                

(a)                                     (b) 

Figure 11. PHL curves observed for the incremental FOMI with α = 0.5 for a frequency range of (a) 

100kHz to 700kHz (b) 1MHz to7MHz  

*for color reproduction on the Web 

 

            

(a)       (b) 

Figure 12. PHL curves observed for the grounded decremental FOMI with α = 0.5 for a frequency 

range of (a) 100kHz to 700kHz (b) 1MHz to7MHz 

*for color reproduction on the Web 



28 
 

 

          

(a)       (b) 

Figure 13. PHL curves of proposed floating FOMI (a) incremental (b) decremental configuration for 

temperature fluctuations from -500C to 500C 

*for color reproduction on the Web 

 

 

           

(a)       (b) 

Figure 14. PHL curves of the proposed FOMI for (a) floating incremental (b) floating decremental 

observed with ±10% deviations in supply voltage 

*for color reproduction on the Web 
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(a)       (b) 

Figure 15. PHL curves of the proposed floating FOMI observed for deviations in C2 for (a) 

incremental (b) decremental configuration 

*for color reproduction on the Web 

 

    

(a)       (b) 

Figure 16. PHL curves observed with MC analysis for the proposed floating FOMI for 5% variations 

in aspect ratio and threshold voltage for (a) incremental (b) decremental. 
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(a)                                                                            (b) 

Figure 17. Waveform corresponding to α = 0.2, 0.4, 0.6 and 0.8 for (a) Magnitude of impedance 

realized using 5th order Foster-I form (b) % error in the magnitude of fractional capacitor impedance 

*for color reproduction on the Web 

 

   

(a)                                                                           (b) 

Figure 18. Waveform corresponding to α = 0.2, 0.4, 0.6 and 0.8 for (a) Phase response of impedance 

realized using 5
th
 order Foster-I form (b) % error in the phase response of fractional capacitor 

impedance 

*for color reproduction on the Web 
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Figure 19. A fourth-order Chua’s chaotic oscillator 

*for color reproduction on the Web 

 

 

 

    

(a)       (b) 

      

(c)       (d) 

Figure 20. Projection plots of chaotic oscillator observed between space variables (a) VX & IL (b) VX 

& IML (c) VY & VX (d) VY & IL 

*for color reproduction on the Web 
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Tables: 

Table 1 Comparison of the suggested FOMI with existing meminductor emulators 

CCII: Second generation current conveyor, TA: Transconductance amplifier, BOCCII: Balanced Output CCII, 

DVCC: Differential Voltage Current Conveyor, OTA: Operational transconductance amplifier, CDBA: Current 

differencing buffered amplifier, OPAMP: Operational amplifier 

G: Grounded; F: Floating 

 

 

Table 2: Aspect Ratios of MOSFETs 

VDIBA CF 

MOS Transistors W (µm) L (µm) MOS Transistors W (µm) L (µm) 

M1-M9 54 0.18 M10-M15 14.04 1.08 

M16-M21 56.16 1.08 

 

Ref  

No 

No. of ABB No. 

of R 

No.of 

C 

No.of 

L 

Multi

plier 

Less 

Memristor 

less 

Operat

ing 

Freq. 

Electronic 

Tunability 

*F/G 

[6] 5-CCII 4 0 0 No Yes 10kHz No  F+G 

[7] 2 CCII+  

1 TA,  

1 BOCCII 

0 0 0 Yes  No  2kHz No  F 

[8] 1 DVCC+  

1 BOCCII,  

1 0 0 Yes  No  2kHz No  F 

[9] 3-CCII 3 1 0 Yes  Yes  10Hz No  F 

[10] 2 OTA+  

1 CDBA 

0 1 0 Yes  Yes  3MHz No  F 

[11] 4-AD844+ 

1-AD633 

2 0 1 No  Yes  5kHz No  F 

[12] 4-OPAMP 5 1 1 Yes  No --- No  G 

[13] 3-CCII 2 0 0 No  Yes  500Hz NO G 

Our 

work 

1-VDIBA+ 

1-CF 

0 1 0 Yes  Yes  7MHz No   G+F 
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Table 3: R and C values for Foster-I form for various values of α 

Alpha 

(α) 

R0(Ω) Ra(Ω) Rb(Ω) Rc(Ω) Rd(Ω) Re(Ω) Ca(F) Cb(F) Cc(F) Cd(F) Ce(F) 

0.2 63.43k 40.89k 31.35k 34.73k 54.72k 174.23k 2.44p 17.37p 51.34p 111.55p 247.96p 

0.3 3.95k 4.22k 3.89k 4.93k 8.98k 38.05k 2.65p 14.90p 38.27p 72.87p 134.32p 

0.4 24.23k 38.1k 41.92k 60.61k 128.60k 751.68k 3.26p 14.74p 33p 54.9p 82.23p 

0.5 14.4k 31.4k 40.8k 67.4k 167.68k 1.42M 4.36p 16.07p 31.4p 45.50p 53.88p 

0.6 8.29k 23.92k 36.54k 68.83k 201.83k 2.71M 6.30p 19.11p 32.64p 40.99p 36.85p 

0.7 4.45k 1.65k 2.95k 6.36k 22.11k 535.25k 9.94p 25.06p 37.45p 40.54p 25.95p 

0.8 2.11k 10k 20.72k 50.98k 213.87k 11.66M 17.97p 37.97p 49.64p 46.03p 18.64p 
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