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Abstract 

By considering micro-rotational degrees of freedom (DOFs), the micropolar continuum 

theory (MPT) can characterize the effect of micro-structures on the mechanical analysis of 

material particles, which classical theories (CT) of elasticity are unable to describe. The 

vibration behavior of the higher-order plates with a drilling DOF is discussed in this article to 

suggest a novel size-dependent rectangular element based on the micropolar elasticity theory. 

To do this, a new general formulation of the MPT, which can be employed with ease in the 

finite element method (FEM), is initially developed. The displacements and micro-rotations 

are therefore computed using quadratic shape functions on a rectangular plate element. In this 

element, the proper stiffness and mass matrices for the drilling DOF are derived, and to 

demonstrate the precision and application of the proposed element, several numerical 

examples of micropolar plates with various boundary conditions have been carried out. The 

current finite element formulation shown here is effectively used to take into account the 

micropolar efficiency for modeling microplates. This research contributes to advancing our 

understanding of the mechanical response of materials at the microscale. 

Keywords: Micropolar continuum theory, Size-dependent plates, Higher-order elements, 

Micro-rotational degrees of freedom, Mechanical response, Drilling degrees of freedom, 

Finite element method. 

1. Introduction 

The mechanical behavior of small-scale structures is proven to be size-dependent 

experimentally. As a result, while CT is recognized as an effective technique for the study of 

large-scale structures, it can not be applied to micro-structure problems. When the micro-

structure effect is important during the analysis of materials, higher-order continuum theories 

are frequently applied. This is due to the fact that they are more accurate and efficient at 

computing than atomistic methods like molecular dynamics (MD) simulations. Several non-

classical continuum theories have been established to date in order to capture the small-scale 

influence on the mechanical behavior of micro- and nano-structures. For instance, several 

researchers have employed the strain gradient theory (SGT) and couple stress theory (CST) 

[1,2] as well as the modified versions of these theories (MSGT and MCST) to analyze 

microbeams and microplates behavior [3]. Under classical and elastic boundary conditions, 

Hou et al. [1] utilized the strain gradient theory to examine the vibration characteristics of a 

thin-walled cylindrical shell, in which natural frequencies measured using strain gradient 

elasticity theory are shown to be lower than those of the classical shell model. Ahmad et al. 

[2] presented numerical and analytical solutions to the Stokes theory of couple stress fluid in 

the inclined channel under the effects of constant, space, and variable viscosity. Based on 
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modified strain gradient theory, Gholami and Alizadeh [3] carried out a bending analysis of 

FG size-dependent beams. Particularly, the literature on the dynamics of micro-structures has 

a number of publications based on such theories. 

The Cosserat brothers [4] initiated the higher-order continuum theory known as the 

micropolar theory in 1909. After almost fifty years, a study rekindled the interest of Eringen 

and Suhubi [5] in the field of developing MPT, which is a size-dependent theory that takes 

into account a rigid micro-structure that may rotate independently from the neighboring 

medium [6, 7] at each material particle in a micropolar continuum. Each material point on the 

continuum possesses six DOFs, including three rotational and three translational ones. Both 

fluids [8, 9] and solids [10-16] may be studied using the MPT. A MPT, as proposed by Afsar 

Khan et al. [8], was employed to analyze the behavior of Magnetohydrodynamic (MHD) 

fluid over a curved stretching surface. The study incorporates the Cattaneo-Christov theory of 

heat diffusion with a novel heat model. A mathematical model was developed by Nadeem et 

al. [9] using micropolar fluid flows on a Riga plate. Additionally, it has been the focus of 

several research projects on solid mechanics. In a comprehensive study [11], the micropolar 

theory and Carrera unified formulation (CUF) were employed for finite element analysis, 

focusing on stationary and axially moving beams. The proposed approach used Taylor-like 

and Lagrange polynomials, considering material properties graded over the beam's thickness. 

The formulation of the linearized MPT was used by Aganovic et al. [12] to derive and justify 

models of microplates mathematically. A Cosserat model that was linear, elastic, static, and 

isotropic was developed by Jeong and Neff [13], who then examined the stability, uniqueness 

and existence of the weakest possible constitutive equations. Bhattacharyya [14] modified the 

linear micropolar plate theory. The constitutive equations of inelastic micropolar materials 

were studied by Altenbach [15]. Eremeyev and Konopiska-Zmysowska [16] developed a 

unique definition of the local material symmetry group of micro-structures based on the strain 

and kinetic energies of a micropolar medium with two kinematic fields. 

Several works in the engineering literature have already described successful approaches to 

incorporate in-plane rotational DOFs (also called drilling DOFs) in membrane elements [17-

20]. It is well known that increasing the drilling DOF at each node of a plane membrane 

element can improve element performance without increasing the element node numbers. As 

a nodal variable for interpolating element displacements, the drilling DOF was used in some 

studies [17]. In other works, a six-node triangular plane element or an eight-node 

quadrilateral element was transformed into a three-node or four-node element by substituting 

the middle side nodal displacements with the corner nodal displacements and rotations [18]. 

Hughes and Brezzi [19] presented a variational formulation by extending the skew-symmetric 

component of stress as a Lagrange multiplier. Ibrahimbegovic et al. [20] carried out a 

solution based on the hypothesis of Hughes and Brezzi [19] and the interpolation function of 

Allman [17]. Sangtarash et al. [21] developed an asymmetric quadrilateral membrane element 

with drilling degrees of freedom such that the required test functions are produced by 

enhancing four-node isoparametric-based displacement fields with drilling rotations. In such 

techniques, the drilling DOF is handled as a supplementary or internal variable. 

Due to the mathematical complexity of higher-order continuum models, closed-form 

solutions are typically hard to find. In order to comprehend the materials at small scales and 

their complicated mechanical behavior, effective numerical approaches for micro-continuum 

field theories are needed. FEM is a powerful numerical approach that works well for issues 
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involving micro- and nanostructures. In this line, investigations focus on Cosserat theory’s 

finite element formulations, including the research of Altenbach et al. [22], Yeh [23] and 

Huang et al. [24]. The theories of plates and shells based on Cosserat theory were introduced 

as unique applications of the theory of the micropolar continuum in Ref. [22]. It is 

worthwhile to mention that there is a body of work employing control volumes that is 

analogous to FEM to solve issues in micropolar elasticity [15]. Yeh and Chen [23] used 

Cosserat micropolar elasticity to create a degenerated shell element without spurious modes. 

Huang et al. [24] recognized the idea of enhancing the displacement field of standard FEM 

formulations in the framework of micropolar elasticity theory. Besides, Ansari et al. [25] 

developed a non-classical three-dimensional (3D) element based on the MPT to examine the 

free vibration behavior of beam and plate-type structures. A size-dependent quadratic 

tetrahedral element was used by Kohansal-Vajargah and Ansari [26] to present the free 

vibration analysis of 3D micropolar structures with various geometries based on the 3D linear 

elasticity. Kohansal-Vajargah et al. [27] proposed a two-dimensional (2D) micropolar 

element to describe the free vibration behavior, in which the frequencies decreased as the 

micropolar effects became more dominant. 

In this work, the non-dimensional natural frequency response of a novel size-dependent 

microplate element based on higher-order theory is studied using the finite element model. To 

do this, the element with drilling DOFs is generally obtained for a higher-order plate theory 

utilizing a derived formulation based on the theory of Eringen's micropolar elasticity [6] 

before being matricized for computing purposes. After employing the minimum total 

potential energy principle, the mass and stiffness matrices of a size-dependent rectangular 

microplate with a suitable stiffness are developed. The length-scale parameter and micro-

inertia affect the natural frequency response of micropolar plates. The devised quadratic size-

dependent plate element, which contains the micro-rotation DOFs in addition to the 

translational ones of material particles, captures this influence. The suggested element is then 

used to examine the behavior of micropolar plates, while several numerical examples with the 

CCCC, SSSS, CC, CF and SF boundary conditions (free and clamped edges and simply 

supported are denoted by F, C and S, respectively) and various geometries corresponding to 

the length-scale parameter are simulated in the context of micropolar continuum mechanics to 

show the present work’s applicability and validity. As examples of non-primitive geometry 

requiring irregular meshing, structures with a hole are used. According to certain researchers 

in Ref. [28], the presence of holes can also result in the structures being reinforced or 

weakened. Comparisons between the current calculated outcomes on the non-dimensional 

frequency of the natural oscillation of micropolar plates and their classical equivalent are 

done. This comprehensive study contributes to the understanding of the mechanical response 

of microplates, shedding light on the intricate interplay of micropolar effects, size-

dependency, and geometric configurations. 

2. Formulation of micropolar theory  

Micropolar theory is considered as a micro-continuum theory that a rigid micro-structure is 

taken into account at each particle in which it is able to rotate independently from medium 

surrounding it. Thus, three classical translational DOFs and three rotational DOFs exist in 

this theory. 

In Cartesian coordinate system, the tensor form of a micropolar continuum’s governing 

equations of motion is formulated as [6,10] 
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in which   and u  represent the micro-rotation and displacement vectors, respectively;   

and   denote the couple stress tensor and the stress tensor, respectively; m  and f  stand for 

the body couple and the body force, respectively. Furthermore,  shows the permutation 

symbol. Also, the micro-inertia and mass density are denoted by j  and  , respectively. 

Accordingly, in MPT, the micro-strain tensors are characterized as [6] 
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in which indicial representations may be provided by 
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It is pointed out that the micro-strain tensors are asymmetric. 

According to micropolar theory, the strain energy density W  can be characterized in the 

following form for the linear elastic micropolar element [10] 
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 (4) 

where   and   denote the classical Lame coefficients, which are obtained as follows: 
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Also,  ,  ,   and   are some of the material constants of micropolar [29] which are 

given by 
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 (6) 

As a result, the stress and couple stress tensors for a linear elastic micropolar element are 

obtained using the strain energy density as follows 

 ,
W W

 
 

 
 
 

 (7) 

Thus, MPT’s constitutive equations are expressed as [10] 

    2 , Ttr e I e tr              (8) 

where I  denotes the identity tensor and e  represents the classical strain that can be written 

as 
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The asymmetry of micro-strain tensors leads to asymmetric stress tensors of Eq. (8). In the 

Cartesian coordinate system, the components of stress and couple stress may be given as 

 2 ,ij kk ij ij ij ij kk ij ji ije e               (10) 

Utilizing the following relation [6] 

  
1

2
ij ij jie    (11) 

and defining two fourth-order tensors 
ijklA  and ijklA , 
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  
 (12) 

and by using Eqs. (10) - (12), the tensors of stress and couple stress can be restated as 

 ,ij ijkl kl ij ijkl klA A     (13) 

By utilizing the preceding relations, the strain energy density’s indicial form may be 

written as 

    
1 1

2 2
ij ij ij ij ijkl ij kl ijkl ij klW A A           (14) 

From the computational point of view, Eq. (14) is considered as an important relation. 

Multiplication of matrices can be used to get the indicial form of the strain energy density. 

The material position vector may be defined as follows [30]: 

        1 2 3 0 1 2 3 1 2 1 2, , , , ,
2ii ijk j k

h
u u e n            (15) 

where  1 2,   denotes the non-dimensional coordinates in the plane of the plate, and 3  

denotes the non-dimensional coordinate in the thickness direction ( 31 1  through the 

thickness). The coordinates of the reference surface are given by  0 1 2,
i

u    at the nodes. As 

regards, 1 2 0n n   , 3 1n   are on the 1 2x x  plane. 

 In this perspective, the components of   and   are arranged within the following matrice 

forms 
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 (16) 

and one can introduce the following vectors 
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or 
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(19

) 

where 3I  shows the three by three identity matrix and   represents the Kronecker product 

symbol.  

The relationship between lengths 1dx , 2dx , 3dx  in 1x , 2x , 3x  space and 1d , 2d , 3d  

in 1 , 2 , 3  space can be rewritten as follows 
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wherein 
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The asymmetric bending and transverse shear strains are substituted with half of their 

corresponding engineering strains in order to preserve the drilling DOF and avoid using 

engineering strains. The bending strains also disappear in the transverse direction [23]. 

Consequently, the strain vector ̂  of a general plate is rewritten as 
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Moreover, the stress and couple stress vectors may be considered as follows 
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Thus, for a linear micropolar elasticity continuum, the formulation of the constitutive 

equation is expressed as follows  

 
ˆA

A

 

 




 (25) 

in which A  and A  denote the symmetric forms of the micropolar elastic stiffness matrices, 

which are written as 
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Using Eq. (12), with considering sk  as the shear correction factor, A  and A  are rewritten 

as follows: 
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

 

(27) 

in which 
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1

2

1
2

1


 

  


 

  

 
  

  

 
  

  

 (28) 

Therefore, the relation of the strain energy density of Eq. (14) is restated as 

    
1 1

2 2

T T T TW A A           (29) 

By introducing C  and   as the elastic stiffness matrix and micro-strain vector, 

respectively, one can rewrite the elastic strain energy density relation as follows 

 
1

2

TW C  (30) 

wherein 

 
ˆ 0

,
0

A
C

A






   
    
   

 (31) 

Finally, the strain and kinetic energies may be calculated as follows, respectively 

  

 

 

1 1

2 2

1

2

T

V V

i i i i

V

W W dV C dV

T u u j dV

 

   

 

 

 



 
(32) 

and the corresponding variational forms of the kinetic and strain energies can be expressed 

as 

 

 
1

2

T

V

i i i i

V

W C dV

T u u j dV

  

    



 




 (33) 

By integrating from 1t  to 2t  one obtains 

  
2 2

1 1

t t

T T

t t V

Tdt u u j dV         (34) 

where t  stands for time.  

One can write the variational equation of motion using the Hamilton’s principle as 

  
2

1

0

t

t

T W dt   (35) 
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3. Formulation of micropolar finite elements 

Fig. 1 shows the suggested schematic for a rectangular micropolar plate element. It 

introduces a quadratic element with nine nodes. The suggested element has six DOFs at each 

node. There are three DOFs for translation and three DOFs for rotation.  

Consequently, the element's micro-strain vector is obtained in the manner shown below 

 e Bd  (36) 

As a result, an element's strain energy density is given as 

 
1

2

T T
eW d B CBd (37) 

The strain energy is obtained as follows by substituting Eq. (37) into Eq. (32) 

 
1 1

,
2 2

e e

T T T T

e

V V

W d B CBdV d d Kd K B CBdV    (38) 

where K  denotes the stiffness matrix. 

In the end, by utilizing the Hamilton's principle given in Eq. (35), the governing equations 

for free vibration are found as below 

 
20,Md Kd d d    (39) 

where   represents the natural frequency. 

4. Validation study 

The analysis of a microbeam is carried out first, and the results are compared with the 

results of the study of Huang et al. [24] to guarantee the correctness and validity of the 

current study and the developed micropolar plate element. 

Table 1 presents a comparison of the deflection values for a microbeam under identical 

loading conditions, geometrical data, and material constants. The table includes results from 

the current study, a theoretical solution, and a numerical solution referenced from [24]. The 

deflection values are provided for different cross-section heights ( H ). The purpose of the 

table is to demonstrate the agreement between the deflection results obtained in the current 

work and those reported in the literature. Investigations are also done on the relationship 

between the deflection of a micropolar beam and the value of  . Fig. 2 displays a comparison 

between the outcomes and those mentioned in [24].  

In the next case, the article by Sargsyan and Sargsyan [7] is taken into consideration in the 

context of micropolar plates, where the frequencies of natural oscillations of square 

microplates with simply-supported boundary condition are given using comparable 

hypotheses. Results are presented in Fig. 3 according to adopting notations ( , ,  and  are 

instead of , ,   and , respectively). Moreover, the frequencies of higher-order microplate 

shown here agree well with the theoretical solutions of the literature. 

 

5. Frequencies of natural oscillations of microplates with various geometries 

Here, the natural frequencies of microplates with diverse geometries are examined using 

the proposed 9-node quadrilateral micropolar element. Square microplates with and without a 
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central hole, and a circular microplate with a central hole are three different types of 

geometry that are taken into account. The parameters mentioned below are defined as 

  3

2
2

,
12

hh
L D

D

  


 
    

where   is the non-dimensional frequency of natural oscillation of the micropolar plate. The 

constants listed in Table 2 are used to calculate the frequencies' values.  

5.1 Example 1: Frequencies of natural oscillations of the square microplate 

For a microplate with 10L h  , the length scale parameter effects ( bl ) on the first five 

non-dimensional frequencies of natural oscillations are examined in this section. Here, L  and

h  represent the length and thickness of the side, respectively. The CCCC and SSSS 

boundary conditions are applied to the microplates. Additionally, the effects of geometry on 

the frequencies of natural oscillations of micropolar plates are reviewed.  

In order to do this, Table 3 provides the first five frequencies of natural oscillations of the 

square microplate for various elements number, with 10bh l   and 10L h  . The 

convergence behavior of the proposed approach improves as the elements number increases, 

as seen in Table 3. It was concluded that the use of higher-order plate theory tends to 

converge the frequencies of microplates with fewer elements compared to the literature. 

Specifically, the first five natural frequencies in the present work converge with a 

computational model consisting of 400 elements, 1681 nodes, and 10086 DOFs, while the 

convergence in Ref. [26] is achieved with a model comprising 5400 elements, more than 

8904 nodes, and more than 53424 DOFs. This emphasizes the efficiency and computational 

advantages of the developed plate element in this study. 

The results of the comparison between the first five frequencies of natural oscillations of a 

square microplate and corresponding frequencies of natural oscillations of the classical theory 

are shown in Table 4. The CT frequencies and those obtained using the commercial software 

ABAQUS are quite consistent. According to the frequency values in this table, the micro-

inertia has a significant effect and diminishes the stiffness of microplate in the free vibration 

analysis. Fig. 4 displays the CCCC square microplate's first five mode shapes.  

The relationship between the thickness-to-length scale ratio ( bh l ) and the square 

micropolar plate's first five non-dimensional frequencies is illustrated in Fig. 5. Additionally, 

for comparison, Fig. 5 shows the expected non-dimensional classical frequencies of natural 

oscillations. It is important to note that during the computations a fixed length scale 

parameter ( bl ) should be used, similar to the material characteristics. This figure illustrates 

how the effects captured by MPT and the distinction between the corresponding micropolar 

and classical frequencies are significant at the small values of bh l . This figure also shows 

that the distinction between the frequencies of natural oscillations expected by the micropolar 

theory and classical theory may be omitted for larger values of bh l . As a result, it was 

shown that higher modes had a larger effect on material characteristics. When the 

microplate’s value of the thickness is small ( bh l ), it is noticed that the discrepancy 
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between MPT and CT frequencies at higher modes is larger than the frequency values at 

lower modes.   

In addition, Figures 6 and 7 illustrate how the side-to-thickness ratio ( L h ) affects the 

frequencies of natural oscillations of microplates with 1bh l  and 10bh l  , respectively. 

Additionally, these figures include the values of the respective classical frequencies. The 

values of frequencies of natural oscillations in different modes demonstrated here increase by 

increasing the L h  ratio. The size effects on the characteristics of material discovered here 

are significant for large values of L h  and increase the stiffness of the square plate.  

5.2 Example 2: Frequencies of natural oscillations of the annular microplate  

The vibration behavior of an annular microplate with clamped-clamped (CC), clamped-free 

(CF) and simple-free (SF) boundary conditions is investigated in the next case. iR  and 
oR  

are the inner and outer radius of an annular microplate, respectively. Also, it is assumed that 

2o iR R and o il R R  . The first five frequencies of natural oscillations of the annular 

microplate for various elements number, with 10bh l   and 10l h  , are provided in Table 

5. 

The comparison between the first five frequencies of natural oscillations of an annular 

micropolar plate and the CT is presented in Table 6. Like in the preceding example, the effect 

of micro-inertia in this example is considerable. It has been shown that micropolarity reduces 

the plate stiffness, which in turn reduces the frequencies of natural oscillations’ values of 

microplate, and are smaller than classical frequencies. Fig. 8 displays the annular structure's 

first five mode shapes.  

Fig. 9 illustrates the first five non-dimensional frequencies within the annular microplate 

which are under the effect of length scale parameter. The results shown here are aimed to 

represent the influences of the length scale parameter ( bl ) and material characteristics on the 

vibrational behavior of the micropolar annular plate. One can observe that the small-scaled 

micropolar plates’ frequencies of natural oscillations are overestimated by the classical 

elasticity. Moreover, the convergence to classical results occurs at higher modes and larger 

values of bh l . Fig. 10 and Fig. 11 clearly show the considerable effects of the boundary 

conditions and length-to-thickness ratio ( l h ) on the frequencies of natural oscillations of 

the annular microplate. It is demonstrated that distinct mode frequencies increase when the 

value of l h  increases, particularly from 1l h  to 20l h  . 

5.3 Example 3: Frequencies of natural oscillations of the square microplate with a 

central hole 

The next case focuses on investigating the influence of micropolarity on the vibrational 

characteristics of a specific geometric configuration: a square microplate with a central hole. 

The obtained results were then compared with the frequencies of micropolar square plates 

that do not feature a central hole. The CC, CF, and SF boundary conditions are applied to the 

plates that include a central hole. The dimensions of the central hole are defined relative to 

the length of the side of the square microplate, with the outer length being twice the inner 

length. L  represents the outer length of a square micropolar plate with a central hole.  
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Table 7 presents the first five frequencies of natural oscillations for a square microplate, 

considering various element numbers, with 10bh l   and 10L h  . The convergence 

behavior of the proposed approach improves as the number of elements increases, as 

observed in Table 7. 

The results of the comparison between the first five frequencies of natural oscillations of a 

square microplate with a central hole and the corresponding frequencies of natural 

oscillations from classical theory are presented in Table 8. Similar to the preceding examples, 

the frequencies from the CT and those obtained using the ABAQUS show consistent results. 

The table indicates that micro-inertia has a significant effect, reducing the stiffness of the 

micropolar plate in free vibration analysis. Consequently, the frequencies of natural 

oscillations for the microplate are smaller than classical frequencies. Figure 12 displays the 

first five mode shapes of the CC square microplate structure.  

The relationship between the thickness-to-length scale ratio ( bh l ) and the first five non-

dimensional frequencies of the square microplate with a central hole is illustrated in Fig. 13. 

The figure also includes the expected non-dimensional classical frequencies of natural 

oscillations for comparison. It's essential to note that a fixed length scale parameter ( bl ) is 

maintained during the computations, similar to the material characteristics. The figure 

demonstrates the significant effects captured by MPT and the notable distinction between 

micropolar and classical frequencies, particularly at small values of bh l . Moreover, the 

figure indicates that as bh l  increases, the difference between the frequencies of natural 

oscillations predicted by MPT and CT becomes less pronounced. The results suggest that 

higher modes exert a more substantial effect on material characteristics. Additionally, for a 

microplate with small thickness ( bh l ), the discrepancy between MPT and CT frequencies 

is more prominent at higher modes than at lower modes. 

Figures 14 and 15 depict the effect of boundary conditions and the side-to-thickness ratio (

L h ) on the frequencies of natural oscillations for microplates with 1bh l   and 10bh l  , 

respectively. These figures also include the corresponding classical frequencies. The 

frequencies of natural oscillations in various modes show an increase with higher L h  ratios. 

The observed size effects on material characteristics are substantial, especially for large 

values of L h , resulting in increased stiffness of the square micropolar plate. 

6. Discussion and conclusion 

MPT’s constitutive relations are first calculated using micropolar continuum mechanics to 

develop the element. The derived mass and stiffness matrices with micropolar effects for a 

non-classical quadrilateral plate were then obtained and directly implemented into MATLAB 

programming software. The proposed element applies to investigate three numerical 

examples under the different boundary conditions and geometries that correspond to the 

length-scale parameter. These examples demonstrate the advantages of the designed 

microplate. To explore the microplates’ mechanical behavior, the influence of the length 

scale parameter is captured by the developed quadratic size-dependent plate element, which 

has three micro-rotational DOFs along with three traditional translational ones. It was 

concluded that when a microstructure's mesh is coarse, the adoption of higher-order plate 

theory tends to converge its frequencies more than once in earlier literature. Additionally, the 
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non-dimensional frequencies of natural oscillations of higher-order microplates demonstrated 

here closely match the analytical solutions, indicating that this model's geometry has a 

significant effect on the frequencies of natural oscillations of micropolar plates. When 

compared to other micropolar constants, the frequencies of the natural oscillations of 

microplates show that micro-inertia has a considerable effect. At small scales, the micropolar 

frequencies are also smaller than the classical ones. Furthermore, it appears that there is a 

noticeable change in the micropolar characteristics at higher modes since the discrepancy in 

frequencies between classical and micropolar plates increases with the mode number. 

However, it is shown that the results of the micropolar theory tend to resemble those of the 

classical theory at large values of bh l . In thick plates, unlike thin ones, the micropolar 

efficiency of the higher-order plate theory studied here can be concluded to diminish the 

difference between frequencies provided by the micropolar and the classical theories by 

increasing the side length-to-length scale ratio. The developed micropolar plate element has 

proven effective in capturing the mechanical behavior of microplates under various 

conditions. The study's insights into the influence of the length scale parameter, micro-inertia, 

and mode number on micropolar plate frequencies contribute to a better understanding of 

micropolar elasticity and its application in the analysis of microplates.

Nomenclature 

  Classical stress tensor 

  Couple stress tensor 

ij  Components of the classical stress tensor 

ij  Components of the couple stress tensor 

ijklA , ijklA  Fourth-order tensors 

I  Identity tensor 

 ,   Micro-strain tensors 
  Micro-strain vector 

e  Micro-strain vector of the microplate element 

̂  Strain vector of a general microplate 

e  Classical strain 

  Micro-rotation vector 

u  Displacement vector 

 ,   Classical Lame coefficients 

3I  Three by three identity matrix 

C  Elastic stiffness matrix 

A , A  Symmetric forms of the micropolar elastic stiffness matrices 

K  Stiffness matrix 

W  Strain energy of the microplate 

eW  Strain energy of the microplate element 

W  Variational form of the strain energy of the microplate 

W  Strain energy density of the microplate 

eW  Strain energy density of the microplate element 

T  Kinetic energy of the microplate 

T  Variational form of the kinetic energy of the microplate 
  Mass density 
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f  Body force per unit mass 

m  Body couple per unit mass 
j  Micro-inertia per unit mass 

bl  Length scale parameter 

tl  Characteristic length (torsion) 

L  Length of the Microplate 

h  Thickness of the Microplate 

1 2,   Dimensionless coordinates in the plane of the plate 

3  Dimensionless coordinate in the thickness direction 

 0 1 2,
i

u    Coordinates of the reference surface at the nodes 

  Natural frequency 

  Dimensionless frequency of natural oscillation of the micropolar plate 

E  Young modulus 

G  Shear modulus 

sk  Shear correction factor 

  Poisson's ratio 
, , ,     Material constants of micropolar 

  Permutation symbol 

  Kronecker product symbol 

H  Microbeam cross-section height 
t  Time 
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Fig. 1 Rectangular micropolar plate element 

 

 

Fig. 2. Relation of deflection against value of   for the microbeam. 
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Fig. 3. Comparison of lowest frequency of natural oscillation of the square microplate on its size 

0.2 0.7  , predicted in [7] and present work ( 2 1 40h a  ). 

 

   

  
Fig. 4. Mode shapes of CCCC square microplate. 
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Fig. 5. Non-dimensional natural frequencies of rectangular microplate discrepancy versus thickness-to-length 

scale ratio ( 10L h  ). 
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Fig. 6. Non-dimensional natural frequencies of rectangular microplate discrepancy versus length-to-thickness 

ratio ( 1bh l  ). 
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Fig. 7. Non-dimensional natural frequencies of rectangular microplate discrepancy versus length-to-thickness 

ratio ( 10bh l  ). 

 

   

  

Fig. 8. Mode shapes of CC annular microplate. 
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Fig. 9. Non-dimensional natural frequencies of annular microplate discrepancy versus thickness-to-length 

scale ratio ( 10l h  ). 
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Fig. 10. Non-dimensional natural frequencies of annular microplate discrepancy versus length-to-thickness 

ratio ( 1bh l  ). 
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Fig. 11. Non-dimensional natural frequencies of annular microplate discrepancy versus length-to-thickness 

ratio ( 10bh l  ). 



29 

 

 

   

  
Fig. 12. Mode shapes of CC square microplate with a central hole. 
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Fig. 13. Non-dimensional natural frequencies of square microplate with a central hole discrepancy versus 

thickness-to-length scale ratio ( 10L h  ). 
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Fig. 14. Non-dimensional natural frequencies of square microplate with a central hole discrepancy versus 

length-to-thickness ratio ( 1bh l  ). 
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Fig. 15. Non-dimensional natural frequencies of square microplate with a central hole discrepancy versus 

length-to-thickness ratio ( 10bh l  ). 
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Table 1   Comparison between the results of a microbeam 

H (in) Current work (in) 
Ref. [24] 

Theoretical solution (in) 

Ref. [24] 

Numerical solution (in) 

0.2 0.2617 0.2614 0.2669 

0.4 0.03403 0.03380 0.03412 

 

Table 2   Properties of the microplate [29] 

Parameter Definition  Value 

Young's modulus (𝐌𝐏𝐚)  
  2 3 2

2 2
E

    

  

  


 
 299.52 

Shear modulus (𝐌𝐏𝐚) 
2

2
G

 
  104 

Poisson's ratio  
2 2




  


 
 0.44 

Coupling number  
 

2

2
N



 



 0.04 

Characteristic length (bending) (𝐦𝐦)  
 2 2

bl


 



 0.33 

Characteristic length (torsion) (𝐦𝐦)  tl
 

  




 
 0.62 

Polar ratio  
 


  




 
 1.5 

Density (𝐍 𝐦𝐦𝟑⁄ )   2e-9 

Micro-inertia (𝐦𝐦𝟐) j  50 

  

 

Table 3   Convergence study of the first five frequencies of natural oscillations (KHz) of the microplate (CCCC,

10bh l  ; 10L h  ) 

Number of elements 1  2  3  4  5  

𝟔 × 𝟔 1.5034 2.3187 2.3187 2.8504 3.1690 

𝟖 × 𝟖 1.5032 2.3158 2.3158 2.8485 3.1563 

𝟏𝟎 × 𝟏𝟎 1.5031 2.3149 2.3149 2.8480 3.1524 

𝟏𝟐 × 𝟏𝟐 1.5031 2.3146 2.3146 2.8478 3.1509 

𝟏𝟒 × 𝟏𝟒 1.5031 2.3145 2.3145 2.8477 3.1503 

𝟏𝟔 × 𝟏𝟔 1.5031 2.3144 2.3144 2.8476 3.1499 

𝟏𝟖 × 𝟏𝟖 1.5031 2.3144 2.3144 2.8476 3.1497 

𝟐𝟎 × 𝟐𝟎 1.5031 2.3144 2.3144 2.8476 3.1496 

𝟐𝟐 × 𝟐𝟐 1.5031 2.3144 2.3144 2.8476 3.1496 

The bold shows the converged value. 
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Table 4 First five frequencies of natural oscillations (KHz) of a square microplate (CCCC, 10bh l  ; 10L h  ) 

Frequency CT-ABAQUS CT-present MPT 

1  1.9125 1.9100 1.5031 

2  3.6107 3.6038 2.3144 

3  3.6107 3.6038 2.3144 

4  5.0290 5.0175 2.8476 

5  5.9002 5.8851 3.1496 

 

 

 

Table 5   Convergence study of the first five frequencies of natural oscillations (KHz) of an annular microplate 

(𝐶𝐶, 10bh l  ; 10l h  ) 

Number of elements 1  2  3  4  5  

32 1.0900 1.0942 1.0942 1.1072 1.1109 

50 1.0875 1.0915 1.0915 1.1038 1.1074 

72 1.0866 1.0904 1.0904 1.1025 1.1061 

98 1.0862 1.0900 1.0900 1.1020 1.1056 

128 1.0860 1.0898 1.0898 1.1017 1.1053 

162 1.0859 1.0897 1.0897 1.1016 1.1052 

200 1.0858 1.0896 1.0896 1.1015 1.1051 

242 1.0858 1.0895 1.0895 1.1014 1.1050 

288 1.0858 1.0895 1.0895 1.1014 1.1050 

The bold shows the converged value. 

 

Table 6   First five frequencies (KHz) of an annular microplate (𝐶𝐶, 10bh l  ; 10l h  ) 

Frequency CT-ABAQUS CT-present MPT 

1  1.2283 1.2266 1.0858 

2  1.2405 1.2388 1.0895 

3  1.2405 1.2388 1.0895 

4  1.2795 1.2779 1.1014 

5  1.2795 1.2779 1.1050 
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Table 7   Convergence study of the first five frequencies of natural oscillations (KHz) of the microplate                

(CC, 10bh l  ; 10L h  ) 

Number of elements 1  2  3  4  5  

128 4.8254 4.8254 4.8387 4.8530 4.9588 

288 4.8210 4.8210 4.8324 4.8447 4.9529 

512 4.8200 4.8200 4.8303 4.8432 4.9501 

800 4.8200 4.8200 4.8303 4.8429 4.9490 

The bold shows the converged value. 

 

Table 8   First five frequencies of natural oscillations (KHz) of a square microplate with a central hole                   

(CC, 10bh l  ; 10L h  ) 

Frequency CT-ABAQUS CT-present MPT 

1  10.005 9.9479 4.8200 

2  10.010 9.9555 4.8200 

3  10.010 9.9555 4.8303 

4  10.017 9.9622 4.8429 

5  11.114 10.6531 4.9490 

 

 


