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Abstract:  

This study investigates the impact of activation energy on the flow behaviour of a Prandtl 

nanofluid that includes gyrotactic microorganisms over a stretching cylinder. This study's 

uniqueness is in examining Prandtl nanofluid using a non-Fourier heat and mass flow model 

incorporating thermal radiation. The fluid flow phenomena are defined by nonlinear differential 

equations and the governing equations can be solved by using an appropriate numerical 

technique such as bvp4c with the MATLAB solver. Based on the current investigation, the 

velocity outline reduces as the magnetic field values increase, while it increases concerning the 

curvature parameter for 0   and / 2  . The temperature    increases as radiation values 

increase but decreases when the thermal relaxation parameter improves. Increased concentration 

relaxation, and activation energy values lead to a higher local Sherwood number. The proposed 

model presents significant advantages with the potential to revolutionize a wide range of 

applications, including biodiesel production, hydrogen fuel, oil storage techniques, geothermal 

energy manufacturing, base liquid mechanics, oil emulsification processes, food production, 

sewage systems, and serving as a substantial source of renewable energy. 

Keywords: Buongiorno nanofluid model, motile microorganisms, activation energy, non-Fourier 

heat and mass flux, thermal radiation. 

Nomenclature: 

x   Direction along the surface (m) 

0k    Permeability of the porous medium 

r   Direction normal to the surface (m) 

0U    Reference velocity 

l    Characteristic length 

1u  and 1v   Fluid velocity components in x  and r  directions (m/s) 

R   Radius of the cylinder 

pc    Specific heat at constant pressure 
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k    Mean absorption coefficient 

k   Thermal conductivity 

mc   Specific heat of dust particles 

wT   Wall temperature 

l   reference length 

T   Temperature of the ambient fluid 

A   ratio of the velocities 

    fluid parameter 

    elastic Parameter 

    curvature Parameter 

c    Parameter of the Prandtl fluid 

f   Kinematic viscosity 

    Density 

   Thermal diffusivity 

f    Dynamic viscosity of the fluid 

    Stefan-Boltzmann constant 

   Similarity variable 

M    magnetic parameter 

K    porosity parameter 

Nc    bioconvection Rayleigh number 

1    thermal relaxation parameter 

2    concentration relaxation parameter 

Ri    mixed convection parameter 

    microorganisms’ concentration difference parameter 

   Stream function 

Nr   buoyancy ratio parameter 

Nb    Brownian motion parameter 

Rd    radiation parameter 

Nt   thermophoresis parameter 

Pe    bioconvection Peclet number 

Le    Lewis number 

Q    heat source/sink parameter 

    Schemical reaction parameter 

E    non-dimensional activation energy 

w    temperature ratio parameter 

Lb    bioconvection Lewis number 

 

1. Introduction 

Bioconvection is a natural phenomenon mainly involving the dispersion of self-propelled 

microorganisms in fluid dynamics. It is important to note that bioconvection differs from 
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ordinary multi-phase flows in that it involves molecules that are not driven by themselves but 

rather by the fluid flow, as opposed to the typical multi-phase flows. These microorganisms tend 

to migrate upward in the upper part of the fluid, where a concentration causes instability due to 

the significant density stratification. Due to the tendency of these self-propelled motile 

organisms to collect at the top of the fluid layer, the top layer becomes significantly denser than 

the bottom region, which ultimately leads to system instability [1,2]. Nanoparticles, which lack 

the ability to push themselves like motile microorganisms, are propelled by the Brownian 

movement and thermophoresis in the tiny fluids. As a result, nanoparticle mobility is unrelated to 

the motion of the motile bacteria. Motile microorganisms, based on impellent, may be 

categorized into oxytocic, gyrotactic, and negative gravities microorganisms. However, 

microorganisms play a significant role in theoretical and applied research in engineering, 

biology, medicine, and the environment. The ability to absorb CO2 more effectively than crops, 

waste treatment plants, heterogeneous catalysis, the production of biodiesel, ethanol, and 

fertilizers, bacterially optimized petroleum and natural gas retrieval systems, production of food, 

along with the chemotherapy for cancer or the utilization of enzyme biomaterials in bio-

microsystems are a few examples of these applications in environmental and biological sciences 

[3–7]. Ahmad et al. [8] investigate the unique characteristics of hybridization tiny particles, such 

as manganese zinc ferrite and nickel zinc ferrite, in the bio-convective movement of mobile 

gyrotactic bacteria exposed to Darcy Forchheimer solutions. Dey and Chutia [9] investigated the 

two-phase bio-convective nanofluid flow across a vertically stretched flat surface when the dust 

particle volume fraction was present. 

In species-level chemical reactions with low Arrhenius activation energies (AAE), mass transfer 

is often not possible. For the sake of this discussion, AAE will refer to the minimal quantity 

required for atomic or molecular interactions in a chemical system to initiate a chemical reaction. 

In 1889, a Swedish scientist named Svante Arrhenius coined the term "activation energy." By 

applying the fundamental equation for mass conservation, we can swiftly gauge the influence of 

mass transfer on the reaction. Various domains such as engineering oil reserves, food 

preparation, and geothermal theories frequently employ these AAE-containing chemical 

processes [10,11]. Lian et al. [12] exemplified commercial software with high-performance 

computational fluid dynamics (CFD) programs like Ansys CFX and chemical kinetics programs 

like Chemkin Ansys. Khan et al. [13] discovered the influence of AAE chemical modification on 

magnetohydrodynamic stagnation point flow of Casson fluids over a stretched surface. 

Investigating further, Khan et al. [14] explored the impact of chemical processes and AAE on the 

nonlinear radiation-mixed convective flow of Casson nanofluid over a stretched surface. Using 

an extended surface, Arrhenius activation energy, and a chemical reaction, Shafiqu et al. [15] 

demonstrated the 3-dimensional Maxwell nanofluid flow. While the concentration of the solute 

reduced the wall mass flow, the AAE rose. This decline steepens as the temperature differential 

between the wall and the surrounding air decreases. In the study, Reddy et al. [16] proved that 

activation energy affects exothermic chemical reactions involving the 3D-MHD slip flow of 

Powell-Eyring fluid across a thin surface.  

Magnetohydrodynamics (MHD) is the study of how magnetic fields impact electrically 

conducting fluids such as plasmas, liquid metals, and electrolytes. Unlike classical fluid 

dynamics, which focuses on the interplay between fluid motion and external forces like pressure 

gradients, modern hydrodynamics (MHD) highlights the substantial influence of electromagnetic 
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forces on fluid behavior. This field unveils a myriad of unique phenomena and technical 

applications resulting from the strong interaction between fluid movement and magnetic fields. 

One of the crucial aspects of MHD is the connection between electromagnetic fields and fluid 

motion. When a fluid with electrical conductivity moves through a magnetic field, it generates 

electric currents, producing magnetic fields. These magnetic fields, in turn, exert forces on the 

fluid's velocity, interacting with the external magnetic field. Due to the intricate and often 

nonlinear dynamics arising from this interaction, MHD research is both extensive and 

challenging. However, it offers promising opportunities for enhancing heat transmission and 

controlling flow in boundary layer flows, where a thin film of fluid near a surface experiences a 

dense effect. MHD serves as a valuable toolkit for addressing these complexities. The boundary 

layer can be controlled, flow separation, drag reduction, and heat transfer may be achieved by 

introducing magnetic fields to a conducting fluid as it flows over a surface. Aerodynamics, 

marine engineering, and aerospace [17–21] are fields that may benefit from this since they focus 

on improving efficiency and performance by decreasing drag and increasing lift. An analytical 

solution was used for the first time by Crane [22] in order to investigate the boundary layer flow 

over a linearly stretched sheet of an incompressible viscous fluid. On top of that, MHD is quite 

useful for producing electricity. By harnessing the boundary layer fluxes of ionized gases or 

liquid metals, MHD generators can directly transform kinetic energy into electrical power. In 

these setups, a magnetic field is used to induce a current in the fluid, which may then be 

collected as electricity. The possibility for efficient and ecologically friendly energy conversion 

has prompted investigations into MHD power production for use on Earth and in space. Jamshed 

et al. [23] investigate transmission of heat by deploying a mixed nanofluid across an internally 

bending solar absorber. This allows for a more in-depth investigation of the solar aircraft wings 

in the presence of Cattaneo-Christov heat flux and porous medium.  Sheikholeslami et al. [24] 

looked into the effects of nanofluid on photovoltaic installations and flat-plate collectors for 

sunlight. Waqas et al. [5] examined the bioconvection slip flow of a nanofluid called Jeffrey in 

the presence of a stretched sheet, using activation energy, solar radiation, and viscous dissipation 

principles. 

Non-Newtonian fluids, unlike those following Newton's law, exhibit variable viscosity, 

impacting industries like pharmaceuticals and power engineering. Shear-thinning fluids, such as 

human blood, display decreasing viscosity under shear stress. Carreau's stress tensor expression 

facilitates analytical and numerical study of non-Newtonian fluids. The Prandtl fluid model, a 

specific type of non-Newtonian fluid, is vital for describing shear-thinning fluid behavior, aiding 

in understanding their properties. Biswas et al. [25] conducted a computer modeling study on 

Prandtl-nanofluid flow across infinitely vertically surfaces while a chemical reaction is present. 

They observed that Radiative heat increases the dispersion of temperature within a fluid by 

quantifying the electromagnetic radiation emitted by fluid particles and converting it into thermal 

radiation. Zafar et al. [26] revealed that the modeling of a mixed convective flow of stimulation 

energy including microorganisms with gyrotactic behavior over a stretched sheet using a Prandtl 

nanofluid. They concluded that in their observation the Prandtl nanofluid parameter increases the 

velocity of the fluid. Later, Hayat et al. [27] studied that the melting effect in Prantl-Eyring 

nanofluid flow over gyrotactic motile microorganism over stretching sheet in the presence of 

viscous dissipation. In their finding it was observed that higher melting parameter decelerates the 

concentration as increase in Brownian motion parameter. The references discussed regarding 

MHD non-Newtonian fluid models include ([28–37])  
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The flow across the cylinders is two-dimensional if the whole circumference is larger than the 

border layer's thickness. On the other hand, the radius of a thin or slender cylinder may 

correspond to the thickness of the boundary layer in the same order. This problem has 

applications in the areas of fiber coating, casting systems, metal spinning, wire drawing, flow 

meter design, and construction. Power, industry, transportation, and other industries all depend 

on fluid heating and cooling. Efficient cooling solutions are crucial for any gadgets that use a lot 

of energy. Due to their poor heat transfer properties, common heat transfer fluids which includes 

fluids such as ethylene glycol, water, and motor oil have limited heat transfer capacities. The 

combination of the two materials' desirable properties—fluidity and metal-like thermal 

conductivity—makes it an attractive heat transfer medium. Metallized materials outperform 

fluids in terms of heat conductivity by a factor of up to three. Wang [38]  inspected the liquid 

movement caused by a cylinder that was extending. Heat transfer resulting from a stretching 

cylinder and magnetohydrodynamic flow were studied by Ishak et al. [39]. They noticed that the 

fluid's velocity over a stretching cylinder is slowed down by the action of a transverse magnetic 

field. Muhammad Bilal et al. [40] investigated the time-dependent diffusive-thermo stretching 

cylindrical flow in Maxwell fluid using an unsteady comparative analysis. They concluded that 

the thickness of the thermal boundary layer improves with the Brownian motion parameter. The 

modeling of applied magnetic field and thermal radiation resulting from stretched cylinder was 

covered by Tamoor et al. [41]. They observed that the velocity outline is improved by the mixed 

convection parameter. 

The architecture and operation of the human brain serve as inspiration for computer models 

known as Artificial Neural Networks (ANNs). It has many layers of linked nodes, involving a 

source layer, a layer that is hidden (or layers), and an output layer. Throughout training, the 

network's weights are modified to let it to understand data patterns and correlations via the 

relationships among nodes [42–44]. Artificial Neural Networks (ANNs) are widely employed in 

modeling heat transfer for MHD Prandtl nanofluids, showcasing proficiency in handling intricate 

nonlinear relationships, predicting characteristics, and making informed decisions based on 

extensive datasets. This adaptability and capacity to learn from data make ANNs a potent tool 

specifically suited for addressing challenges inherent in MHD Prandtl nanofluid heat transfer 

studies. In the complete geometry or equations, sometimes the range of parameter values 

becomes too large or too small, making it challenging for the system to execute the solution. In 

such situations, the ANN model can be employed to effectively handle and overcome these 

numerical challenges. Their application in this domain enhances the modeling capabilities, 

providing an effective means to unravel nuanced heat transfer phenomena and make predictions 

essential for advancing scientific understanding in this specialized field. 

The proposed model's main objective is to study the thermal behavior of a Prandtl nanofluid with 

gyrotactic microorganisms on a stretched cylinder in the presence of homogenous heat sources 

and sinks as well as linear thermal radiation. Additionally, the study found that no research has 

previously examined the effects of activation energy and Prandtl nanofluid on a porous cylinder 

containing gyrotactic microorganisms, including non-Fourier heat and mass flux models with 

thermophoresis, Brownian motion, thermal radiation, and a uniform heat source. After applying 

the proper self-similarity transformations to convert the system of flow temperature transport and 
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concentration equations into an ordinary differential system, the bvp4c with MATLAB solver is 

used to compute the system. Boundary value issues for ordinary differential equations (ODEs) 

are numerically solved by Bvp4c using the finite difference technique. The differential equations 

on a grid are discretized using the finite difference technique, which turns them into an algebraic 

system of equations. This method is well-suited for problems with complex geometries and 

nonlinearities. By utilizing the bvp4c solver, we ensure a reliable and efficient numerical 

solution to our boundary value problem, enabling accurate and stable results within the defined 

computational framework. Graphs and tables are used to describe the calculated outcomes. Also, 

we compared the present results got a good agreement with the previous published results.  

To examine the issue of MHD Prandtl nanofluid flow in the presence of heat radiation, the 

subsequent steps were taken: 

 Examining the Prandtl nanofluid's flow characteristics from multiple perspectives. 

 Investigated the density of motile microorganisms and the thickness of the boundary 

layer. 

 

2. Formulation of the Problem: 
 

2.1 Basic equation of Prandtl fluid model: 

This is the rheological model that Prandtl suggested [46]: 

11 sin ,
A

S A
c





  
   

  
          (1) 

In this case, the fluid parameters 
1A  and c , A  is the first Rivlin-Ericksen tensor, and   is 

defined as: 

21

2
trA             (2) 

The inverse of the sine function may be extended using Taylor's series up to the second-order 

approximation. 

3
1

3
sin , 1.

6
where

c c c c

     
   

 
        (3) 

2.2 Problem description 

The following is an assumption: a two-dimensional constant non-compressible and magnetically 

Prandtl nanofluid flow behaves on a stretchy cylinder. As seen in Figure 1, we may pretend that 

1u  and 1v  stand for the components of velocity in the x  and r  directions, respectively. When 

formulating the flow, the following factors are considered: the energy of activation, thermal 

radiation, Buongiorno nanofluid, non-Fourier heat and mass flux model, and the consequence of 

binary chemical processes. It is possible to stretch the cylinder with linear axial velocity. The 
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direction of application of the magnetic field 0B is perpendicular to the cylinder's axis. In 

addition, due to low magnetic Reynolds numbers, the produced magnetic field is rather weak in 

comparison to the applied magnetic field. 
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The associated BC’s are 
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The streaming function that was able to fulfill the equation for continuity is described as follows: 

1 1
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r r r x

  
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 
          (10) 

To change the set of Equations 4 to 9 into a nonlinearized ordinary differential equation, one 

may use the following transformations: 
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Equation 11 satisfies the Equation 4 we alter Equations 5 through 8: 
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 B w

f

D C C
Nb






 , 

34

f

T
Rd

k k

 




 , 

f

B

Le
D


 , 

2

0

rlK

U
  , aE

E
KT

 , w
w

T

T




 , 
f

m

Lb
D


 , 

 
0

0 p f

lQ
Q

U c
 , c

m

Pe
bW

D
 , and 

w

N

N N




  . 
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3. Engineering interest 

     2

2
, , ,w w w n

f w f w B w m w

fC S
xq xj xq

Nu h Nn
U k T T D C C D N N



   

  
  

   (17) 

Where Surface drag force 

3

1 1

36
w

r R

A Au u

c r c r




     
           

, 

Surface heat-flux-density 
316

1
3

w f

r Rf

T T
q k

k k r

 







   
        

, 

Surface mass-flux-density w B

r R

C
j D

r 

 
   

 
, 

Motile microorganisms-density n m

r R

N
q D

r 

 
   

 
. 

Equation 18 changes When we use the similarity changes, we get the surface friction coefficient, 

the heat transfer coefficient, the Sherwood number, and the density number of microbes that can 

move:  

    

 

 

 

31/2

1/2 1

1/2 1

1/2 1

1

.

1
0 0 ,

3

4
1 0 ,

Re
2

Re

R 0e

R

3

,

e 0

f x

x

x

x

f f

Nu Rd

X

Sh

N

C

X

Xn

X

 







 

 

 

  

 
    

 

  

 





       (18) 

Where Re w
x

f

U l


   and

x
X

l
 . 

4. Artificial neural network modelling  

 

A state-of-the-art method for computing systems, ANN originated on the premise that the brain 

of people functions as a connected system of cells called neural cells. Some have noted that this 

procedure mimics how the human brain's neural networks evolve. When it comes to optimizing, 

grouping, instruction, categorization, estimation, and generalization, this model is on par with the 

human brain [47]. 

 

Listed below are some of the most important benefits of the ANN method: 

 

 The ANN could be able to function well with very little hardware. 

 ANN makes the complex class-distributed connecting surprisingly simple. 
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 To train on, you need an input vector that will tell you which results apply. 

 Outcome-representing weights are acquired by iterative training. 

Numerous designs are produced by combining neurons in accordance with a training rule. The 

strong connections between neurons are the most common cause of the layers. The ANN method 

consists of three separate layers: hidden, input, and outputs. The ANN receives data from the 

external world, processes it, and then sends it back. The machine learning components of the 

input layer do not modify the information before sending it to the neurons of the hidden layer. 

Keep in mind that the translation of information is done by the weights, connection lines, and 

linking the neurons. The system stores the input values and weights in a database specifically for 

ANN training. An ANN's construction is guided by data usage, which considers things like the 

ideal quantity of layers and hidden neurons. 

Currently, the most popular and intriguing ANN simulation is the feed-forward neural network 

(FFNN) that uses a multi-layer perceptron architecture. When it comes to training FFNN, the 

back-propagation approach is by far the most efficient. While determining the network's output 

error, the backpropagation method may rearrange the weights of individual neurons in a 

consistent fashion, therefore reducing the output error. 

The j
th

 hidden neuron receives this information as its net input: 

 
1

1
l

j ji i j

i

y x W x a


   

By convention, we'll refer to the layer that contains the input with the i
th

 node as ix , the layer 

that is concealed with the j
th

 node as ja , and the weight that connects the two as 1jiW . 

Here is the representation of the result from the j
th

 hidden node: 

   

1
,

1 j
j y x

z x
e





 

Here is the k
th

 node of the result layer: 

 
1

2
m

k kj j k

j

o x W z b


   

In this context, kb  refers to the influencing term at the k
th

 layer-output node, and 2kjW  is the 

linking weight across that node and the j
th

 hidden layer node. This study looks at surface heat as 

well as friction transfer rates for a cross-section of ANN result nodes, as seen in Figure 2. The 

constraints , , , , , , &A M Ri NrNc    are estimated for the samples of input nodes.  

The quantity of time periods required to train the network, prevent overeating or under-setting of 

input parameters, and guarantee convergence of the procedure for learning determines the node 

count of the layer that is concealed by trial and error. To narrow the gap between the expected 

values of Cf and Nu, it was found that the convergence criteria used were adding one hidden 

layer with five cells. We trained the model using 70% of the data, validated it with 15%, and 

tested its predictions with the remaining 15%. Figure 3 displays the findings of the 
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 1 21/ 2 Ref xC X ,  1/2 1RexNu X 
,  1/2RexSh  and  1/2 1Rex xN X   in the training, validation, 

and test sets of the ANN model. With this, ANN models have all the tools they need to mimic 

the intricate relationship between the two variables being simulated. The ANN model's outputs 

are quite consistent with the computed values.  

The value of the  1 21/ 2 Ref xC X ,  1/2 1RexNu X 
,  1/2RexSh  and  1/2 1Rex xN X   for the 

numerous values of the magnetic field  0.0,1.0,2.0 ,M   Curvature Parameter

 0.1,0.4,0.7 ,   fluid parameter  1.0,1.5,2.0  , Elastic Parameter  0.0,2.0,4.0   , 

thermal radiation parameter  0.0,0.1,2.0Rd  , ratio of the velocities parameter 

 0.5,0.6,0.7A  , ratio of specific heat  0.5,1.0,1.5  , Buoyancy ratio parameter 

 0.5,1.0,1.5,2.0Nr  , heat-source/sink  0.5,0.0,0.5Q    thermophoresis parameter  

 0.1,0.2,0.3Nt  , Brownian motion parameter  0.1,0.2,0.3Nb  , thermal relaxation 

parameter  1 0.01,0.1,0.2  , Lewis number  1.0,1.5,2.0Le  , concentration relaxation 

parameter  2 0.01,0.2,0.4  , activation energy parameter  0.0,1.0,2.0E  , Peclet number 

 0.0,0.2,0.4Pe  , bioconvection  Lewis number  0.5,1.0,1.5Lb  , chemical reaction 

parameter  0.0,1.0,2.0   are shown in Tables 1 – 4. Positive results from the ANN model are 

shown alongside the numerical ones. So far, our work has shown that ANN can accurately 

estimate of skin friction, heat transmission rate, mass transfer rate and motile microorganism of 

local density number. 

5. Results and discussion 

This part aims to show precisely how the activation energy influences the flow of a Prandtl 

nanofluid containing gyrotactic microbes along a stretched cylinder using a Cattaneo-Christov 

model of mass and heat flux.   Physical significance of momentum and temperature features of 

critical parameters on Prandtl nanofluid containing gyrotactic microorganisms velocities  f  , 

temperature    , concentration    , motile microorganism    , skin friction

 1/21/ 2 Ref xC X , Nusselt number  1/2 1RexNu X 
, mass transfer rate  1/2 1RexSh X  and motile 

microorganism of local density number  1/2 1RexNn X  are pictured,  and decoratively 

deliberated. The bvp4c with MATALB solver is used to solve the dimensional version of the 

flow, heat transport, concentration, and density of the motile microorganism’s equations under 

certain boundary conditions. Prandtl nanofluid physical characteristics over the stretching 

cylinder with non-Fourier heat and mass flux of figures are compared by inclination 

 0&
2

    like solid and dotted lines, respectively. The comparative findings indicate a 

high level of agreement, which is displayed in Table 5.  This demonstrates that the results of the 

numerical simulation are reliable. 



12 

 

Figure 4 depict how the  0.0,1.0,2.0M   impacted on the  f    outline in the case of  0 

and  2   correspondingly.  This has been established that the  f   decreases for higher 

values of  M  values for  0  and  2  .  Changes in the values of the electromagnetic 

parameters practically cause a deviation in the Lorentz force, which in turn increases the 

resistance of the transport phenomenon. It is associated to inclination angle  0  , it is 

established that  2  has further substantial. The variations in a  f   are displayed in 

Figure 5 on behalf of diverse values of the Curvature Parameter  0.1,0.4,0.7  .  It is 

distinguished that the  f   outlines upsurge by augmenting the values of the  . Species in 

liquids have a lower concentration due to them disintegrate more quickly. The velocity improves 

as the curvature parameter enlarges, as does the thickness of the velocity boundary layer. The 

influence of Elastic Parameter  0.0,2.0,4.0  on  f   is seen in Figure 6. Therefore, the 

 f  is intensification when the   parameter's values increase. The velocity is retarded more 

when the elastic parameter increases due to more recovery. It is revealed that the inclination 

angle  0  has stronger influence than the inclination angle  2  . Figure 7 shows the 

outline  f   with various ratio of the velocities parameter  0.5,0.6,0.7A   values 

approaching both inclination angle  0  and  2  . The higher values of A is augmented

 f  . This relationship is explained by the fact that the ratio of velocities influences the 

acceleration of fluid flow, leading to an elevation in the velocity outline. The physical 

interpretation is that higher values of the stagnation parameter correspond to an augmented fluid 

flow velocity. The inclination angle  0   has a bigger effect than the inclination angle 

 2  , it is discovered.  

Figure 8 demonstrates how the  0.0,1.0,2.0Rd   influence on  0  and  2  of 

temperature    variations. As the Rd -values increase, the level of heat improves    , as 

shown in this graph. The inclination angle  2   has a bigger effect than the inclination 

angle  0  , it is discovered. There is a physical correlation between larger thermal radiation 

characteristics and higher temperatures as well as deeper thermal boundary layers. Figure 9 

shows the results of plotting several values of the thermophoresis parameter  0.1,0.2,0.3Nt   

against    , which are active aspects in the case of  0  and  2  .  It is observed that 

   intensifications for boosting the Nt .  The inclination angle  2   has a bigger effect 

than the inclination angle  0  , it is discovered. The process of thermal is responsible for this 

phenomenon because it exposes a larger thermal boundary layer and drags huge thermally 
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transmitting particles further into the fluid. The impact of the    on the changes in the 

Brownian motion parameter  0.1,0.2,0.3Nb   is shown in Figure 10. It has been seen that 

    intensifications Nb increase. With an enhancement in the Brownian motion parameter, 

which boosts the temperature and elevates kinetic energy, nanoparticles collide with the 

fundamental liquid particles. Figure 11 demonstrates how the  1 0.01,0.1,0.2   inspiration on 

   changes. An increase in the 1  causes the temperature to drop, as shown in the graph.  

Figure 12 is plotted for investigating the consequence of various active aspect values of the 

thermophoresis parameter   on the in the case of  0  and  2  .  

It is detected that amplifications for boosting the Nt .  The inclination angle  0   has a 

bigger effect than the inclination angle  0  , it is discovered. This is because a more intense 

thermal boundary region is exposed, and big thermally conductive particles are drawn deeper 

into the fluid via thermophoresis. The impact of the    on the changes in the  Nb  is revealed 

in Figure 13. It has been seen that     diminution for higher Nb . With an enhancement in the 

Brownian motion parameter, which contracts the temperature and elevates kinetic energy, 

nanoparticles collide with the fundamental liquid particles. Figure 14 illustrates how the 

concentration relaxation parameter  2 0.01,0.2,0.4   influence on temperature    changes. 

According to this graph, the concentration is diminished by rising values in the 2 . Figure 15 

demonstrates how the activation energy parameter  0.0,1.0,2.0E  affects the concentration 

outline  in the case of and  2  into the system. It is distinguished that the

 0  and  2  outlines increase by augmenting the values of the activation energy 

parameter  E .  A more significant activation energy causes the Arrhenius function to incline 

while enhancing the chemical reaction's efficacy. As a result, the nanoparticle concentration 

improves. 

Figure 16 displays the consequence of Peclet number  0.0,0.2,0.4Pe   on microorganism 

density    . Consequently, greater values of the Pe parameter decrease the ambient fluid and 

density.  The influence of   on microorganism density     is seen in Figure 17. Therefore, 

the microorganism density is reduced when the  parameter's values increase in the case of 

 0  and  2   correspondingly. 

Figure 18 is outlined to reveal the influence of mixed convection parameter  Ri and elastic 

parameter   on skin friction  1 21/ 2 Ref xC X . It is discovered that decrees on the 

 1 21/ 2 Ref xC X nanofluid over the cylinder on the Ri and   parameters.   Figure 19 is 

 0.1,0.2,0.3Nt    

  

    0 


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recognized that the rate of heat transfer  1/2 1RexNu X  is increases for the higher values of the 

thermophoresis parameter  Nt  and radiation  Rd .  Figure 20 is outlined to reveal the 

influence of mixed convection parameter and elastic parameter   on rate of heat transfer 

 1/2 1RexNu X 
. It is discovered that increase on the rate of heat transfer nanofluid over the 

cylinder on the Ri and  parameters.   Figure 21 is outlined to reveal the influence of 

concentration relaxation  2 and activation energy E on mass transfer rate  1/2RexSh  .It is 

recognized that the higher values of the 2  and E  enhances the 
1/2RexSh 

. The consequence of 

the Peclet number  Pe and microorganisms concentration difference parameter    on motile 

microorganism of local density number  1/2 1Rex xN X   is presented in Figure 22. It is illustrious 

that the greater values of the Pe  is enriches the 
1/2 1Rex xN X 

 but it is decrees the higher   

values.   

6. Conclusion 

The objective of this research is to analyze the effects of a uniform heat source and thermal 

radiation on the flow of a Prandtl nanofluid containing gyrotactic microorganisms along a 

stretched cylinder using a non-Fourier heat and mass flux model. Depicting the characteristics of 

water-based nanofluid flow after the incorporation of gyrotactic microorganisms into the 

mechanism is the primary objective of this study. The effect on motile microbial density of 

certain characteristics such as elastic, thermal relaxation, thermophoresis, Brownian motion, heat 

source/activation energy, Peclet number, and concentration ratio. There are tables, two-

dimensional graphs, and contour figures that display the findings. This inquiry yielded the 

following noteworthy results: 

 

 Velocity outline decreases for higher values of  M  values but it is increases to Curvature 

parameter for and  0  and  2  . 

 The Elastic Parameter   is intensification for the higher values of the  f   outline. 

 The temperature    is growths by increasing values in the Rd  but it is diminished by 

rising values in the 1 . 

 The concentration     outlines decrease by enhancing the values of the Lewis number 

 Le .   

 The microorganism density is reduced when the  parameter's values increase. 

 Skin friction  1 21/ 2 Ref xC X decrees by improving the values of Ri and  . 

 The activation energy parameter enhances the solutal boundary layer thickness because it 

has more significance in the absence of inclination angle compared to the in the presence 

of inclination angle. 

 Ri





15 

 

 Thermophoresis parameter enhances the thermal and solutal boundary layer thickness in 

both presence and absence of inclination angle. 

 The microorganism concentration difference parameter decelerates the boundary layer 

thickness of density of microorganism. 
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Figure 1 Geometry of the problem. 
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Figure 2 An ANN model with several layers is shown schematically. 
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Figure 3 Statistical analysis with data from  1 21/ 2 Ref xC X  ,  1/2RexSh  and 

 1/2 1Rex xN X  . 

 

 

 

 

 1/2 1RexNu X 
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Figure 4  f   variation with M . 

 

Figure 5  f   variation with  . 

 

Figure 6  f   variation with  . 

 

Figure 7  f   variation with A . 

 

Figure 8     variation with Rd . 

 

Figure 9     variation with Nt . 
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Figure 10     variation with Nb . 

 

Figure 11     variation with 1 . 

 

Figure 12      variation with Nt . 

 

Figure 13     variation with Nb . 

 

Figure 14     variation with 2 . 

 

Figure 15     variation with E . 
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Figure 16     variation with Pe . 

 

Figure 17     variation with  . 

 

Figure 18 
1/21/ 2 Ref xC X  variation with Ri  

and  . 

 
Figure 19 

1/2 1RexNu X 
 variation with Nt  

and Rd . 

 
Figure 20 

1/2 1RexNu X 
 variation with Ri  

and  . 

 
Figure 21 

1/2 1RexSh X 
 variation with 2  

and E . 
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Figure 22 

1/2 1RexNn X 
 variation with   and Pe  . 

 

Table 1.  Artificial neural network (ANN) and Numerical method values of  
1/21/ 2 Ref xC X  . 

  A      M  Ri  Nc  Nr  

1/21/ 2 Ref xC X  

NM ANN Error 

0.2 0.5 1 0.2 0.5 0.5 0.5 0.5 -0.856 -0.86432 8.31E-03 

0.4 0.5 1 0.2 0.5 0.5 0.5 0.5 -0.89846 -0.89927 8.14E-04 

0.6 0.5 1 0.2 0.5 0.5 0.5 0.5 -0.93962 -0.93962 1.17E-08 

0.8 0.5 1 0.2 0.5 0.5 0.5 0.5 -0.97977 -0.97977 9.29E-09 

0.5 0.1 1 0.2 0.5 0.5 0.5 0.5 -1.4451 -1.4451 5.87E-09 

0.5 0.2 1 0.2 0.5 0.5 0.5 0.5 -1.33245 -1.33223 2.20E-04 

0.5 0.3 1 0.2 0.5 0.5 0.5 0.5 -1.2065 -1.2065 1.48E-07 

0.5 0.4 1 0.2 0.5 0.5 0.5 0.5 -1.06836 -1.06836 1.62E-07 

0.5 0.5 0.2 0.2 0.5 0.5 0.5 0.5 -0.38792 -0.38792 2.81E-08 

0.5 0.5 0.4 0.2 0.5 0.5 0.5 0.5 -0.55774 -0.55774 1.56E-08 

0.5 0.5 0.6 0.2 0.5 0.5 0.5 0.5 -0.69411 -0.69366 4.47E-04 

0.5 0.5 0.8 0.2 0.5 0.5 0.5 0.5 -0.8125 -0.8125 6.46E-09 

0.5 0.5 1 0.3 0.5 0.5 0.5 0.5 -0.92547 -0.92599 5.24E-04 

0.5 0.5 1 0.4 0.5 0.5 0.5 0.5 -0.93149 -0.93149 4.18E-09 

0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 -0.93728 -0.93651 7.72E-04 

0.5 0.5 1 0.6 0.5 0.5 0.5 0.5 -0.94287 -0.94287 7.72E-09 

0.5 0.5 1 0.2 0 0.5 0.5 0.5 -0.83707 -0.83707 4.73E-06 

0.5 0.5 1 0.2 0.15 0.5 0.5 0.5 -0.86246 -0.86245 1.23E-05 

0.5 0.5 1 0.2 0.3 0.5 0.5 0.5 -0.88718 -0.88719 8.67E-06 

0.5 0.5 1 0.2 0.45 0.5 0.5 0.5 -0.91128 -0.91129 4.64E-06 

0.5 0.5 1 0.2 0.5 0.1 0.5 0.5 -0.89071 -0.8908 8.69E-05 
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0.5 0.5 1 0.2 0.5 0.2 0.5 0.5 -0.89779 -0.8978 1.44E-06 

0.5 0.5 1 0.2 0.5 0.3 0.5 0.5 -0.9049 -0.9049 4.42E-06 

0.5 0.5 1 0.2 0.5 0.4 0.5 0.5 -0.91203 -0.91203 4.50E-06 

0.5 0.5 1 0.2 0.5 0.5 0.1 0.5 -0.85421 -0.85423 2.59E-05 

0.5 0.5 1 0.2 0.5 0.5 0.2 0.5 -0.87035 -0.87035 1.10E-06 

0.5 0.5 1 0.2 0.5 0.5 0.3 0.5 -0.88656 -0.88656 2.91E-06 

0.5 0.5 1 0.2 0.5 0.5 0.4 0.5 -0.90284 -0.90284 2.38E-06 

0.5 0.5 1 0.2 0.5 0.5 0.5 0.1 -0.84482 -0.84482 6.24E-09 

0.5 0.5 1 0.2 0.5 0.5 0.5 0.2 -0.86329 -0.86338 9.02E-05 

0.5 0.5 1 0.2 0.5 0.5 0.5 0.3 -0.88184 -0.88184 3.03E-09 

0.5 0.5 1 0.2 0.5 0.5 0.5 0.4 -0.90047 -0.90036 1.10E-04 

 

 

Table 2.  Artificial neural network (ANN) and Numerical method values of 
1/2 1RexNu X 

 . 

  A      Ri  Rd  Nb  Nt  Q  1  

1/2 1RexNu X 
 

NM ANN Error 

0.2 0.5 1 0.2 0.5 1 0.3 0.2 0.1 0.01 1.377561 1.393351 1.58E-02 

0.4 0.5 1 0.2 0.5 1 0.3 0.2 0.1 0.01 1.357161 1.358349 1.19E-03 

0.6 0.5 1 0.2 0.5 1 0.3 0.2 0.1 0.01 1.348286 1.348286 2.68E-08 

0.8 0.5 1 0.2 0.5 1 0.3 0.2 0.1 0.01 1.347633 1.347633 1.28E-08 

0.5 0.1 1 0.2 0.5 1 0.3 0.2 0.1 0.01 1.13887 1.13887 2.40E-08 

0.5 0.2 1 0.2 0.5 1 0.3 0.2 0.1 0.01 1.202696 1.202292 4.04E-04 

0.5 0.3 1 0.2 0.5 1 0.3 0.2 0.1 0.01 1.256444 1.256445 6.95E-08 

0.5 0.4 1 0.2 0.5 1 0.3 0.2 0.1 0.01 1.305427 1.305427 7.28E-08 

0.5 0.5 0.2 0.2 0.5 1 0.3 0.2 0.1 0.01 1.161937 1.161937 8.53E-08 

0.5 0.5 0.4 0.2 0.5 1 0.3 0.2 0.1 0.01 1.248216 1.248216 5.18E-08 

0.5 0.5 0.6 0.2 0.5 1 0.3 0.2 0.1 0.01 1.296608 1.296668 5.97E-05 

0.5 0.5 0.8 0.2 0.5 1 0.3 0.2 0.1 0.01 1.328532 1.328532 5.61E-08 

0.5 0.5 1 0.3 0.5 1 0.3 0.2 0.1 0.01 1.353769 1.35519 1.42E-03 

0.5 0.5 1 0.4 0.5 1 0.3 0.2 0.1 0.01 1.355886 1.355886 2.17E-08 

0.5 0.5 1 0.5 0.5 1 0.3 0.2 0.1 0.01 1.357886 1.355537 2.35E-03 

0.5 0.5 1 0.6 0.5 1 0.3 0.2 0.1 0.01 1.359781 1.359781 2.10E-08 

0.5 0.5 1 0.2 0.1 1 0.3 0.2 0.1 0.01 1.362925 1.362927 2.08E-06 

0.5 0.5 1 0.2 0.2 1 0.3 0.2 0.1 0.01 1.360118 1.360118 3.48E-07 

0.5 0.5 1 0.2 0.3 1 0.3 0.2 0.1 0.01 1.357282 1.357283 9.29E-07 

0.5 0.5 1 0.2 0.4 1 0.3 0.2 0.1 0.01 1.354416 1.354414 1.06E-06 

0.5 0.5 1 0.2 0.5 0.2 0.3 0.2 0.1 0.01 0.443591 0.443591 2.73E-07 

0.5 0.5 1 0.2 0.5 0.4 0.3 0.2 0.1 0.01 0.668951 0.668952 1.32E-06 

0.5 0.5 1 0.2 0.5 0.6 0.3 0.2 0.1 0.01 0.897832 0.89783 2.43E-06 
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0.5 0.5 1 0.2 0.5 0.8 0.3 0.2 0.1 0.01 1.126047 1.126049 1.88E-06 

0.5 0.5 1 0.2 0.5 1 0.1 0.2 0.1 0.01 2.334367 2.334367 4.70E-09 

0.5 0.5 1 0.2 0.5 1 0.15 0.2 0.1 0.01 2.062188 2.060346 1.84E-03 

0.5 0.5 1 0.2 0.5 1 0.2 0.2 0.1 0.01 1.805833 1.805833 2.99E-08 

0.5 0.5 1 0.2 0.5 1 0.25 0.2 0.1 0.01 1.56873 1.56873 1.22E-08 

0.5 0.5 1 0.2 0.5 1 0.3 0.25 0.1 0.01 1.19948 1.19948 5.51E-09 

0.5 0.5 1 0.2 0.5 1 0.3 0.3 0.1 0.01 1.060995 1.060995 1.55E-08 

0.5 0.5 1 0.2 0.5 1 0.3 0.35 0.1 0.01 0.935057 0.937175 2.12E-03 

0.5 0.5 1 0.2 0.5 1 0.3 0.4 0.1 0.01 0.820692 0.820692 8.11E-09 

0.5 0.5 1 0.2 0.5 1 0.3 0.2 0.2 0.01 0.897126 0.897126 4.51E-09 

0.5 0.5 1 0.2 0.5 1 0.3 0.2 0.3 0.01 0.375753 0.320942 5.48E-02 

0.5 0.5 1 0.2 0.5 1 0.3 0.2 0.4 0.01 -0.24349 -0.24349 3.23E-08 

0.5 0.5 1 0.2 0.5 1 0.3 0.2 0.5 0.01 -1.01657 -0.67101 3.46E-01 

0.5 0.5 1 0.2 0.5 1 0.3 0.2 0.1 0.02 1.352533 1.352533 5.28E-08 

0.5 0.5 1 0.2 0.5 1 0.3 0.2 0.1 0.03 1.353549 1.353549 3.15E-09 

0.5 0.5 1 0.2 0.5 1 0.3 0.2 0.1 0.04 1.354569 1.353466 1.10E-03 

0.5 0.5 1 0.2 0.5 1 0.3 0.2 0.1 0.05 1.355591 1.3511 4.49E-03 

 

Table 3.  Artificial neural network (ANN) and Numerical method values of 
1/2 1RexSh X 

 . 

      Nr  Nb  Nt  Sc    w  E  2  

1/2 1RexSh X 
 

NM ANN Error 

0.2 1 0.2 0.5 0.3 0.2 1 1 0.5 1 0.01 0.862574 0.811141 5.14E-02 

0.4 1 0.2 0.5 0.3 0.2 1 1 0.5 1 0.01 0.997403 0.992454 4.95E-03 

0.6 1 0.2 0.5 0.3 0.2 1 1 0.5 1 0.01 1.123547 1.123547 7.21E-09 

0.8 1 0.2 0.5 0.3 0.2 1 1 0.5 1 0.01 1.242808 1.242807 1.06E-08 

0.5 0.2 0.2 0.5 0.3 0.2 1 1 0.5 1 0.01 1.053035 1.053035 2.01E-08 

0.5 0.4 0.2 0.5 0.3 0.2 1 1 0.5 1 0.01 1.053246 1.053246 3.28E-09 

0.5 0.6 0.2 0.5 0.3 0.2 1 1 0.5 1 0.01 1.055709 1.055664 4.51E-05 

0.5 0.8 0.2 0.5 0.3 0.2 1 1 0.5 1 0.01 1.058592 1.058592 2.76E-08 

0.5 1 0.3 0.5 0.3 0.2 1 1 0.5 1 0.01 1.061503 1.061754 2.51E-04 

0.5 1 0.4 0.5 0.3 0.2 1 1 0.5 1 0.01 1.061572 1.061572 4.51E-09 

0.5 1 0.5 0.5 0.3 0.2 1 1 0.5 1 0.01 1.061643 1.061316 3.27E-04 

0.5 1 0.6 0.5 0.3 0.2 1 1 0.5 1 0.01 1.061717 1.061717 8.82E-09 

0.5 1 0.2 0.1 0.3 0.2 1 1 0.5 1 0.01 1.0654 1.0654 1.48E-08 

0.5 1 0.2 0.2 0.3 0.2 1 1 0.5 1 0.01 1.064419 1.066345 1.93E-03 

0.5 1 0.2 0.3 0.3 0.2 1 1 0.5 1 0.01 1.063431 1.063431 7.06E-09 

0.5 1 0.2 0.4 0.3 0.2 1 1 0.5 1 0.01 1.062437 1.061037 1.40E-03 

0.5 1 0.2 0.5 0.1 0.2 1 1 0.5 1 0.01 0.401997 0.401997 4.83E-08 

0.5 1 0.2 0.5 0.15 0.2 1 1 0.5 1 0.01 0.750979 0.731291 1.97E-02 
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0.5 1 0.2 0.5 0.2 0.2 1 1 0.5 1 0.01 0.916107 0.916107 7.58E-08 

0.5 1 0.2 0.5 0.25 0.2 1 1 0.5 1 0.01 1.007246 1.007246 7.21E-08 

0.5 1 0.2 0.5 0.3 0.25 1 1 0.5 1 0.01 1.115031 1.115031 2.57E-08 

0.5 1 0.2 0.5 0.3 0.3 1 1 0.5 1 0.01 1.181046 1.181046 4.20E-08 

0.5 1 0.2 0.5 0.3 0.35 1 1 0.5 1 0.01 1.257195 1.25821 1.02E-03 

0.5 1 0.2 0.5 0.3 0.4 1 1 0.5 1 0.01 1.341462 1.341462 1.48E-08 

0.5 1 0.2 0.5 0.3 0.2 0.2 1 0.5 1 0.01 0.259452 0.235326 2.41E-02 

0.5 1 0.2 0.5 0.3 0.2 0.4 1 0.5 1 0.01 0.561353 0.561353 7.06E-09 

0.5 1 0.2 0.5 0.3 0.2 0.6 1 0.5 1 0.01 0.768081 0.768081 2.70E-09 

0.5 1 0.2 0.5 0.3 0.2 0.8 1 0.5 1 0.01 0.928579 0.909389 1.92E-02 

0.5 1 0.2 0.5 0.3 0.2 1 0.2 0.5 1 0.01 0.844885 0.845257 3.72E-04 

0.5 1 0.2 0.5 0.3 0.2 1 0.4 0.5 1 0.01 0.907112 0.907112 5.82E-08 

0.5 1 0.2 0.5 0.3 0.2 1 0.6 0.5 1 0.01 0.963255 0.963254 2.12E-07 

0.5 1 0.2 0.5 0.3 0.2 1 0.8 0.5 1 0.01 1.014418 1.014419 2.52E-07 

0.5 1 0.2 0.5 0.3 0.2 1 1 0.8 1 0.01 1.130753 1.134878 4.12E-03 

0.5 1 0.2 0.5 0.3 0.2 1 1 1 1 0.01 1.176446 1.178391 1.95E-03 

0.5 1 0.2 0.5 0.3 0.2 1 1 1.2 1 0.01 1.220318 1.220318 1.79E-09 

0.5 1 0.2 0.5 0.3 0.2 1 1 1.4 1 0.01 1.262045 1.262045 3.36E-09 

0.5 1 0.2 0.5 0.3 0.2 1 1 0.5 0.2 0.01 1.39428 1.39428 6.84E-09 

0.5 1 0.2 0.5 0.3 0.2 1 1 0.5 0.4 0.01 1.286526 1.286526 2.35E-08 

0.5 1 0.2 0.5 0.3 0.2 1 1 0.5 0.6 0.01 1.197227 1.196768 4.59E-04 

0.5 1 0.2 0.5 0.3 0.2 1 1 0.5 0.8 0.01 1.123067 1.123067 4.42E-10 

0.5 1 0.2 0.5 0.3 0.2 1 1 0.5 1 0.02 1.062036 1.062044 8.12E-06 

0.5 1 0.2 0.5 0.3 0.2 1 1 0.5 1 0.04 1.063244 1.06324 3.65E-06 

0.5 1 0.2 0.5 0.3 0.2 1 1 0.5 1 0.06 1.064464 1.064464 2.05E-07 

0.5 1 0.2 0.5 0.3 0.2 1 1 0.5 1 0.08 1.065697 1.065697 5.19E-07 

 

Table 4.  Artificial neural network (ANN) and Numerical method values of 
1/2 1RexNn X 

 . 

  A      M  Nc  Pe  Sb    

1/2 1RexNn X 
 

NM ANN Error 

0.2 0.5 1 0.2 0.5 0.5 0.1 1 0.5 0.857494 0.854728 2.77E-03 

0.4 0.5 1 0.2 0.5 0.5 0.1 1 0.5 0.956104 0.955943 1.61E-04 

0.6 0.5 1 0.2 0.5 0.5 0.1 1 0.5 1.051524 1.051524 1.10E-08 

0.8 0.5 1 0.2 0.5 0.5 0.1 1 0.5 1.144169 1.144169 6.63E-09 

0.5 0.1 1 0.2 0.5 0.5 0.1 1 0.5 0.845034 0.845034 2.34E-08 

0.5 0.2 1 0.2 0.5 0.5 0.1 1 0.5 0.896244 0.895472 7.73E-04 

0.5 0.3 1 0.2 0.5 0.5 0.1 1 0.5 0.936702 0.936702 8.28E-08 

0.5 0.4 1 0.2 0.5 0.5 0.1 1 0.5 0.972002 0.972002 9.83E-08 
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0.5 0.5 0.2 0.2 0.5 0.5 0.1 1 0.5 0.955319 0.955319 3.99E-09 

0.5 0.5 0.4 0.2 0.5 0.5 0.1 1 0.5 0.974017 0.974017 1.09E-08 

0.5 0.5 0.6 0.2 0.5 0.5 0.1 1 0.5 0.9868 0.986643 1.57E-04 

0.5 0.5 0.8 0.2 0.5 0.5 0.1 1 0.5 0.99647 0.99647 3.26E-09 

0.5 0.5 1 0.3 0.5 0.5 0.1 1 0.5 1.004741 1.004672 6.86E-05 

0.5 0.5 1 0.4 0.5 0.5 0.1 1 0.5 1.005268 1.005268 4.79E-09 

0.5 0.5 1 0.5 0.5 0.5 0.1 1 0.5 1.005772 1.006012 2.40E-04 

0.5 0.5 1 0.6 0.5 0.5 0.1 1 0.5 1.006255 1.006255 6.04E-09 

0.5 0.5 1 0.2 0 0.5 0.1 1 0.5 1.009025 1.009021 3.57E-06 

0.5 0.5 1 0.2 0.15 0.5 0.1 1 0.5 1.007484 1.007493 9.13E-06 

0.5 0.5 1 0.2 0.3 0.5 0.1 1 0.5 1.006022 1.006014 7.80E-06 

0.5 0.5 1 0.2 0.45 0.5 0.1 1 0.5 1.004634 1.004637 3.10E-06 

0.5 0.5 1 0.2 0.5 0.1 0.1 1 0.5 1.010341 1.010445 1.04E-04 

0.5 0.5 1 0.2 0.5 0.2 0.1 1 0.5 1.008822 1.008826 3.68E-06 

0.5 0.5 1 0.2 0.5 0.3 0.1 1 0.5 1.00729 1.007279 1.10E-05 

0.5 0.5 1 0.2 0.5 0.4 0.1 1 0.5 1.005746 1.005756 1.09E-05 

0.5 0.5 1 0.2 0.5 0.5 0.2 1 0.5 1.146177 1.114978 3.12E-02 

0.5 0.5 1 0.2 0.5 0.5 0.3 1 0.5 1.288816 1.24507 4.37E-02 

0.5 0.5 1 0.2 0.5 0.5 0.4 1 0.5 1.432077 1.398904 3.32E-02 

0.5 0.5 1 0.2 0.5 0.5 0.5 1 0.5 1.575936 1.575936 2.60E-10 

0.5 0.5 1 0.2 0.5 0.5 0.1 0.2 0.5 0.619313 0.619313 1.34E-07 

0.5 0.5 1 0.2 0.5 0.5 0.1 0.4 0.5 0.741594 0.741593 6.36E-07 

0.5 0.5 1 0.2 0.5 0.5 0.1 0.6 0.5 0.841092 0.841093 1.30E-06 

0.5 0.5 1 0.2 0.5 0.5 0.1 0.8 0.5 0.927119 0.927118 1.12E-06 

0.5 0.5 1 0.2 0.5 0.5 0.1 1 0.6 1.013155 1.013144 1.02E-05 

0.5 0.5 1 0.2 0.5 0.5 0.1 1 0.7 1.022122 1.022132 9.37E-06 

0.5 0.5 1 0.2 0.5 0.5 0.1 1 0.8 1.03109 1.031087 2.87E-06 

0.5 0.5 1 0.2 0.5 0.5 0.1 1 0.9 1.040058 1.039927 1.30E-04 

 

Table 5.  The  0f   values are compared across various M  values with those presented by 

Vajravelu et al. [45]). 

 
M  = 0.0 M  = 0.5 M  = 1.0 M  = 1.5 M  = 2.0 

Vajravelu et al. [45] 

Keller-box 

method 
1.000001 1.224745 1.414214 1.581139 1.732051 

Analytical 

solution 
1 1.224745 1.414214 1.581139 1.732051 

Present values 1 1.224745 1.414214 1.581139 1.732051 
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Appendix A: List of Figures 

Figure 1  Geometry of the problem. 

Figure 2  An ANN model with several layers is shown schematically. 

Figure 3  Statistical analysis with data from  1 21/ 2 Ref xC X , ,  1/2RexSh 

and  1/2 1Rex xN X  . 

Figure 4   f   variation with M . 

Figure 5   f   variation with  . 

Figure 6   f   variation with  . 

Figure 7   f   variation with A . 

Figure 8      variation with Rd . 

Figure 9      variation with Nt . 

Figure 10      variation with Nb . 

Figure 11      variation with 1 . 

Figure 12       variation with Nt . 

Figure 13      variation with Nb . 

Figure 14      variation with 2 . 

Figure 15      variation with E . 

Figure 16      variation with Pe . 

Figure 17      variation with  . 

Figure 18  
1/21/ 2 Ref xC X  variation with Ri  and  . 

Figure 19  
1/2 1RexNu X 

 variation with Nt  and Rd . 

Figure 20  
1/2 1RexNu X 

 variation with Ri  and  . 

 1/2 1RexNu X 
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Figure 21  
1/2 1RexSh X 

 variation with 2  and E . 

Figure 22  
1/2 1RexNn X 

 variation with   and Pe  . 
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