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Abstract:  

In this article, a novel iterative method is introduced to dynamic analysis of multi-degree-

of-freedom systems in which all characteristics of the system could be simultaneously 

changed with respect to time. The proposed scheme is based on the differentiation of the 

original equation of motion, on the contrary to the conventional approaches which are 

usually based on the integration of the motion equation. The numerical investigation of 

the present method was carried out by analyzing the three systems with one, two and three 

degrees of freedom. Moreover, the obtained results were comprehensively verified by two 

distinct approaches: a system with invariant characteristics, and a system with varying 

mass and stiffness, with closed-form solution. It should be noted that some closed-form 

solutions of multi-degree-of-freedom (MDOF) time-varying systems were derived and 

presented for the first time in this article. 

Keyword: Free vibration; MDOF systems; Successive differentiation; Time-varying 

coefficient; Taylor series expansion. 

1. Introduction 

As is well known, the dynamic behavior of linear and nonlinear structures with time-invariant 

properties has been comprehensively studied during the past several decades [1–6]. However, in 

many real phenomena, one or more main characteristics of the structures such as pumps, centrifuges, 

rockets, turbines, cables and aircrafts are variable. In addition, some new structural vibration control 

devices such as resettable variable stiffness tuned mass dampers [7], variable stiffness structural 

joints [8], variable stiffness bracing systems [9] and nonlinear adjustable dynamic vibration 

absorbers [10] are widely utilized to reduce the structural responses. In general, the governing 

differential equation of a linear time-varying (LTV) system with 𝑁 degrees of freedom can be 

derived by means of spatial discretization of Hamilton’s law of variable mass [11] or employing 

Newton’s balance of momentum axiom [12], and is given as: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t  M x C x K x F , (1) 

in which ( )tx  is the vector of displacement and a dot over a variable represents differentiation with 

respect to time, therefore ( )tx  is the vector of velocity and ( )tx  is the acceleration vector. The load 

vector, ( )tF , contains external active forces on the original structure, 
ext ( )tF , and additional force 

caused by the varied mass (expelled or gained). If the relative velocity between the varied mass and 

the inertial reference frame is represented by ( )tu  [13], then: 

ext( ) ( ) ( ) ( )t t t t F F M u . (2) 

Furthermore, ( )tM  is a symmetric and positive definite time-varying (TV) mass matrix, and ( )tC  

and ( )tK  are symmetric and positive definite or positive semi-definite TV matrices of damping and 

stiffness, correspondingly. The damping matrix consists of two parts as follows [13]: 

vis( ) ( ) ( )t t t C C M . (3) 

Here, 
vis ( )tC  is the viscous damping of the principal system. Considering the free vibration of the 

system and substituting of Eqs. (2) and (3) into Eq. (1), one obtains: 

 vis( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t     0M x M C x M u K x . (4) 

The initial conditions of the aforementioned systems are known as: 
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However, many engineering systems have multiple degrees of freedom, some cases such as an 

open-hearth furnace, the feed equipment of a blast furnace [14] or a pair of spur gears with a low 

contact ratio [15] can be simplified as a LTV single-degree-of-freedom (SDOF) system. A literature 

review indicates that in these cases an SDOF model despite its simplicity, can give accurate results 

[16]. In most of these investigations, analytic solutions for two special cases, namely, ( )t  0u  and 

( ) d ( ) dt t tu x  were obtained [17]. The first condition is relevant to a case in which the absolute 

velocity of expelled or gained mass is negligible when compared with the velocity of the original 

vibrating system. The second condition indicates a case in which the two velocities are equal. 

It is worth mentioning, that free oscillation of SDOF systems with periodic time-dependent 

coefficients has been widely studied in recent decades [18–21]. In general, these equations can be 

reduced to Mathieu’s or Hill’s equation [12]. In another research, the free vibration analysis and 

stability of a linear SDOF oscillator with periodically and stepwise changing TV mass were 

investigated [22]. Afterward, Núñez and Torres [23] generalized the results of this study to consider 

forced and nonlinear conditions. They derived the stability criteria by applying adequate change of 

variables which leads the governing equation to a Newtonian equation. They also used the Floquet 

theory for linear cases and the Kolmogorov–Arnold–Moser (KAM) method for nonlinear cases. 

Furthermore, Horssen and Pischanskyy [24] considered both forced and free vibration of a damped 
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linear SDOF oscillator with periodically and stepwise changing TV mass. In this study, the minimal 

damping rate in which the oscillator always remains stable has been determined. In a more recent 

study, the exact solution for motion and the criteria of stability of a linear SDOF oscillator with 

periodic piecewise TV mass for two different cases have been analytically derived by Zukovic and 

Kovacic [25]. In the first case, mass increases and then decreases linearly in time. In the second 

case, mass changes trapezoidically. 

Despite all these researches, the governing differential equation of many engineering systems has 

non-periodically TV coefficients [26]. For instance, the feed equipment of a blast furnace can be 

regarded as an SDOF system with non-periodically TV mass and constant stiffness. A linearly 

varying length pendulum is another case in which the mass is constant and the stiffness is non-

periodically TV. Moreover, deployable/retractable damped cantilever beams due to their application 

in the robotic field [27], the vibration of strings with TV lengths [28], inherent stability analysis of 

the systems with variable-stiffness springs [29], the influence of cutting vibration on the machining 

accuracy of thin-walled parts [30] and time-varying vehicle-bridge interaction systems [31] have 

received considerable attention in the literature. 

The exact analytical solution of Eq. (4) for an SDOF system has been found in some special 

cases. Konofin [32] investigated a simplified case with a linear stiffness function of time. Prior to 

this research, Kolenef [33] considered power functions for mass and stiffness, namely, 1

1( )m t At  

and 2

2( )k t A t , in which 
iA  and 

i  are constant. The governing differential equation, in this case, 

has the following form which does not contain ( ) ( )m t x t : 

2

2

d ( )
( ) ( ) ( ) 0

d

x t
m t k t x t

t
  . (6) 

In another study, Li [26] considered an undamped SDOF system with ( ) 0u t   and a general 

function for mass and stiffness in which mass was an arbitrary continuous TV function, and the 

stiffness variation was functionally related to the mass variation and vice versa. Hence, the Eq. (4) 

can be reduced to: 

d d ( )
( ) ( ) ( ) 0

d d

x t
m t k t x t

t t

 
  

 
. (7) 

The corresponding exact solution of the foregoing equation in six special cases was obtained by 

using appropriate functional transformation. In this way, Eq. (7) can be transformed into Bessel’s 

equation or other solvable ordinary differential equations with constant coefficients. In another 

study, Li et al. [12] took into account two different cases for ( )u t . The former is ( ) 0u t   which 

results in Eq. (7) and the latter is ( ) d ( ) du t x t t  which gives Eq. (6). Moreover, two different cases 

for the variation of mass and stiffness were considered as ( ) (1 )cm t a bt  , ( ) (1 )k t t     and 

( ) ebtm t a , ( ) e tk t   which are more appropriate functions in describing certain systems in 

engineering applications. Later, a more convenient recurrence formula was determined for six 

important cases of SDOF systems with arbitrary multi-step non-periodic TV mass and functionally 

related stiffness by Li [14]. In this investigation, the mass and stiffness in each interval can be 

described by a continuous real function. Next, Li [34] computed the exact solution of six different 
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forced cases of such SDOF systems. Moreover, Li [35] developed the closed-form solution for 10 

different cases with continuous TV mass and stiffness. As it is apparent up to now, all aforesaid 

closed-form solutions were proposed for SDOF systems and there is no exact solution for multi-

degree-of-freedom (MDOF) systems in the literature. 

It should be noticed, however the exact solutions which were found in aforesaid investigations 

are very useful, but they are limited to only a few classes of systems. In addition, most of previous 

studies isolated two special cases of free vibration separately, namely, ( ) 0u t   and ( ) d ( ) du t x t t . 

To address this predicament, Nhleko [17] considered the velocity of the deduced mass proportional 

to the velocity of the original system, i.e. ( ) d ( ) du t x t t  in which   is a scalar value. However, a 

special case with linear TV mass and constant damping and stiffness was considered in this 

numerical investigation, as follows: 

2

2

d ( ) d ( ) d ( ) d ( )
( ) (1 ) ( ) 0

d d d d

x t m t x t x t
m t c kx t

t t t t
     . (8) 

It is worth mentioning, that in the works of Cveticanin [36] and Flores et al. [37] a special case of 

Eq. (8) with linearly decreasing mass and ( ) d ( ) du t x t t  which means 1   was considered. In the 

last work, the exact solution was compared to experimental results. Moreover, Hassanpour [38] 

computed approximate analytical solutions for two other special cases of Eq. (8) with 0  , no 

damping and linearly or exponentially variation of mass which describes the governing equation of 

load-carrying conveyor belts or resonant biosensors. In another work, three classical perturbation 

methods have been used in studying the free vibration of LTV systems [39]. The governing equation 

in this work was taken as 2 ( ) 0u t u  . 

It is notable that some practical phenomena can be adequately described by differential equations 

with TV coefficients. Nhleko et al. [40] represented a pseudo-variable mass system for describing 

the load impulse and the treatment of structure-jumper interaction which is important in some 

structures such as stadiums. Finally, the responses of the method were verified by experimental data. 

In another remarkable work, on the basis of simple temporal supply and demand functions, an 

analogy between volatile stock market dynamics across an economic model and the spring motion in 

which mass increases linearly in time was established and instructions for better managing oil 

reserve demand and supply were given by Canessa [41]. In another study, the dynamic behavior of 

flexible rectangular fluid containers with decreasing liquid was investigated [42]. The virtual mass 

method (VMM) and finite element method (FEM) were utilized to derive the dynamic equation of 

the container. It was shown that the decrease of liquid could be treated as additional negative 

damping and leads to an increase in the frequency of vibration of the system. The vibration control 

of a flexible beam with a TV mass using piezoelectric actuators has been studied by Ma et al. [43]. 

In this paper, the linear quadratic Gaussian control strategy was utilized for the suppression of 

transverse vibration of the system. In a more recent research, the vibration of a rotor with varying 

mass was described by a two-degree-of-freedom (TDOF) system and the numerical responses were 

given by a more accurate procedure [44]. In another research, the transverse vibration of moving 

beams featuring time-varying velocity subjected to a self-excited force moving along with the end, 

subject to general initial conditions has been studied [45]. 
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As mentioned before, a few classes of systems with TV parameters were analytically studied in 

the past. To overcome this shortcoming, several numerical methods have been developed over the 

past decades. The Galerkin method was used to obtain an approximate solution of cantilever beams 

with TV length by Tabarrok et al. [46]. Sanders [47] studied the vibration of time variable-length 

strings by means of the finite difference method. In two other investigations, the dynamic behavior 

of cables with TV length was analyzed by FEM [28, 48]. An efficient transient analysis technique 

for linear TV structures by employing the Newmark-beta scheme and multi-level sub-structuring 

method was presented by Zhao and Yu [13]. They verified the proposed method by investigating the 

free and forced vibration of some structural systems including a steel structure subjected to fire 

which is a practical example of TV stiffness. In another investigation, Hozhabrossadati and Aftabi 

Sani [49] found a semi-analytical solution for the governing motion differential equation of 

structures by applying the differential transform method (DTM). Recently, Chen et al. [50] proposed 

a new recursive formula of the Wentzel–Kramers–Brillouin (WKB) approximation for linear TV 

dynamic systems. In this work, the effect of the time step on the calculation accuracy and the effect 

of the system parameters changing rate were investigated. 

In the foregoing section, first, the dynamic equilibrium equation of systems with TV 

characteristics was reviewed. Then, a brief literature survey was performed and it was shown that 

the analytical solution for MDOF systems with TV characteristics has not been investigated 

thoroughly. The remainder of the present article will introduce an iterative method based on Taylor’s 

series and successive differentiation of the governing equation of the system. Subsequently, the 

effectiveness of the proposed method is verified extensively by analyzing multiple SDOF and 

MDOF systems and comparing the numerical responses to existing closed-form solutions and 

additional solutions derived in this study. 

2. Methodology 

As it is well known, the recursive formulas of many numerical methods, such as the Newmark-beta 

method and DTM, are based on omitting higher-order derivatives of the Taylor series expansion. In 

this way, truncation errors may occur when an approximate mathematical procedure is used for 

solving a specific problem [51]. To overcome this obstacle, in this section, a recursive scheme is 

presented to allow using higher-order derivatives in the solution series. First, the Taylor series for an 

infinitely continuously differentiable function of one variable may be written as: 

0

0 0
0 0 0 0

0

( ) d ( )
( ) ( ) ( ) ( ) ( )

2 ! d

i i

i
i t t

t t t t x t
t t t t t t

i t



 

 
     x x x x . (9) 

In actual applications, the number of terms in the series solution is limited to n . In addition, the 

point 
0t  is usually assumed to be zero. By applying these two conditions to Eq. (9), one can write: 

0 0

d ( )
( )

! d

i in

i
i t

t x t
t

i t 

x . (10) 

The first two parameters of the aforementioned relation are initial conditions of the system, and were 

given in Eq. (5). Recall that the motion equation of the system is as follows: 
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 vis( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t     0M x M C x M u K x . Rep. (4) 

Therefore, the next term, ( )tx , can be calculated according to Eq. (4) as follows: 

 1 1 1

vis( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t t t      x M M C x M M u M K x . (11) 

Obviously, one can obtain (0)x  by setting 0t   in the previous equation. Next, differentiating of 

Eq. (4) with respect to time, t , results in the following relation: 

   vis vis( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t    M x M C x M C K x

                                                      ( ) ( ) ( ) ( ) ( ) ( )t t t t t t    0M u M u K x , 
(12) 

therefor, ( )tx  can be found as follows: 

 1

vis( ) ( ) 2 ( ) ( ) ( )t t t t t  x M M C x  

 1

vis         ( ) ( ) ( ) ( ) ( )t t t t t  M M C K x  

 1         ( ) ( ) ( ) ( ) ( )t t t t t M M u M u  

1         ( ) ( ) ( )t t tM K x . 

(13) 

Similarly, one can obtain (4) ( )tx , the fourth derivation of ( )tx  with respect to time, by once again 

differentiating of Eq. (12), as follows: 

   (4)

vis vis( ) ( ) 3 ( ) ( ) ( ) 3 ( ) 2 ( ) ( ) ( )t t t t t t t t t    M x M C x M C K x  

   vis( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t t t t        0M C K x M u M u M u K x . 
(14) 

From this equation, (4) ( )tx  can be rewritten as: 

 (4) 1

vis( ) ( ) 3 ( ) ( ) ( )t t t t t  x M M C x  

 1

vis             ( ) 3 ( ) 2 ( ) ( ) ( )t t t t t  M M C K x  

 1

vis             ( ) ( ) ( ) 2 ( ) ( )t t t t t  M M C K x  

 1             ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )t t t t t t t  M M u M u M u  

1             ( ) ( ) ( )t t tM K x . 

(15) 

The procedure can be successively repeated to generate higher-order derivatives of the unknown 

function which all produce the terms in the solution series. Therefore, the foregoing procedure can 

be inductively generalized to the i th differentiation of Eq. (4) which may lead to the following 

expression: 

 ( 2) ( 1)

vis( ) ( ) ( 1) ( ) ( ) ( )i it t i t t t   M x M C x  

( 1) ( ) ( 1) ( 1)

vis

1

1
( ) ( ) ( ) ( )

1

i
j j j i j

j

i i i
t t t t

i j j j

   



       
        

       
 M C K x  

(16) 
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( 1 ) ( ) ( )

0

( ) ( ) ( ) ( )
i

i j j i

j

i
t t t t

j

 



 
   

 
 0M u K x  

or 

 ( 2) 1 ( 1)

vis( ) ( ) ( 1) ( ) ( ) ( )i it t i t t t     x M M C x  

1 ( 1) ( ) ( 1) ( 1)

vis

1

1
               ( ) ( ) ( ) ( ) ( )

1

i
j j j i j

j

i i i
t t t t t

i j j j

    



        
                  

M M C K x  

1 ( 1 ) ( )

0

               ( ) ( ) ( )
i

i j j

j

i
t t t

j

  



  
   

  
M M u  

1 ( )               ( ) ( ) ( )it t tM K x . 

(17) 

Here, ( )p  over a variable denotes p th differentiation with respect to time t . This equation can be 

more simplified into: 

( 2) ( 1) ( 1) ( )

1 1

1 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i i

i i i j j

j j

j j

t t t t t t t t t   

 

    x A x B x C u D x  (18) 

in which, 1( )tA , ( )j tB , ( )j tC  and 1( )tD  are defined as: 

 1

1 vis( ) ( ) ( 1) ( ) ( )t t i t t   A M M C  (19) 

1 ( 1) ( ) ( 1)

vis

1
( ) ( ) ( ) ( ) ( ) ,      1,2, ,

1

j j j

j

i i i
t t t t t j i

i j j j

  
       

          
       

B M M C K  (20) 

1 ( 1 )( ) ( ) ( ) ,      0,1, ,i j

j

i
t t t j i

j

  
  

   
  

C M M  (21) 

1 ( )

1( ) ( ) ( )it t t D M K  (22) 

This recursive formula gives the value of ( 2) ( )i t
x . Finally, by using Taylor’s expansion (Eq. (10)), 

one can obtain a semi-analytical solution of the problem. It is worth noting that here, like some other 

numerical methods such as DTM, it is implicitly assumed that the matrices ( )tM , ( )tC , and ( )tK  

are sufficiently many times continuously differentiable. It should be noted that if one or more 

elements of the mentioned matrices are piecewise functions, one can divide the total time of the 

analysis into some shorter subintervals in which all the matrices ( )tM , ( )tC , and ( )tK  are n  times 

continuously differentiable. 

It should be pointed out that to rely on the accuracy of the results in the numerical examples, first, 

an appropriate number of terms in the solution polynomial, n , was supposed. Then, the response 

was compared with the results of the procedure when the number of terms in the solution series was 

taken 1n . Afterward, if the difference between two sets of responses does not meet the 

convergence criteria, the number of terms in the solution series should be added one more time. This 

process must be continued until accurate results are achieved. It is noteworthy that a realistic 



8 

 

criterion to evaluate the convergence of the results is utilizing the root mean square error ( RMSE ) 

which can be derived from the following relation: 

 
2 11

1 2
( ) ( )( ) ( )

N n nn n

end endi end i endi
t tx t x t

RMSE
N N








  
 x x

 (23) 

here, 1( )n

i endx t  and ( )n

i endx t  correspond to the displacement of the i th degree of freedom at the final 

time of analysis in which the number of terms in the solution polynomial in Eq. (10) is taken 1n  

and n , respectively. Moreover,   is the convergence tolerance and should be a sufficiently small 

value. Recall, that N  is the number of degrees of freedom of the system and the operator 
2

 .  

stands for Euclidean norm. If the foregoing equation is satisfied, then we get accurate results. The 

mentioned computation procedure is summarized in a flowchart shown in Fig. 14. 

3. Numerical investigations 

To illustrate the robustness of the developed method, the free vibration of four SDOF and MDOF 

systems with non-periodically time-variable parameters was investigated. In each numerical 

example, after giving all parameters, the results are graphically presented in the form of time history 

and hysteresis plots. 

3.1. An undamped and invariant SDOF mass-spring system 

The closed-form solution for the response of the well-known equation of motion of an undamped 

and invariant SDOF mass-spring system which is shown in Fig. 15, may be found as [52]: 

0
0( ) cos sinn n

n

x
x t x t t 


  , (24) 

here, 
0x  and 

0x  are the initial displacement and velocity, correspondingly; and 
n  is equal to 

k m  and represents the natural circular frequency of the system. 

To clarify the proposed procedure, a few derivatives of the unknown function in the solution series 

are obtained in detail. (0)x  and (0)x  are the initial conditions and are equal to 
0x  and 

0x , 

respectively. By setting 0i   and 0t   in Eq. (17) one can obtain: 

2

0 0

0

1
(0) ( ) nx kx x

m
    . (25) 

In the same way, setting 1i   and 0t   in the mentioned equation leads to: 

2

0 0

0

11
(0)

0
nx kx x

m


  
     

  
. (26) 

Likewise, one can obtain the next derivative by setting 2i   and 0t   in the recursive equation, as 

below: 
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(4) 4

0 0

0

21
(0)

0
nx kx x

m


  
    

  
. (27) 

This procedure can be continued until sufficient derivatives of the unknown function are obtained. 

Finally, the substitution of the Eqs. (25) through (27) and other obtained values in Eq. (10) lead to 

the response series as: 

2 2 4 4 3 3 5 50
0

1 1 1 1
( ) (1 ) ( )

2 24 6 120
n n n n n

n

x
x t x t t t t t    


        . (28) 

It is obvious that the two parentheses on the right side of the foregoing relation are the Taylor series 

expansion of cos nt  and sin nt , respectively. ( )x t  and ( )x t  are depicted in Fig. 16 for 0 0.1 mx  , 

0 0.1 m sx  , 1000 kgm  , 40000 N mk   and 80n  . Since both curves have a good 

agreement, the robustness of the proposed method is clearly indicated. 

3.2. An undamped SDOF mass-spring system with variable parameters 

The second example is an undamped SDOF mass-spring system with time-variable mass and 

constant stiffness which is shown in Fig. 17. The governing differential equation of the system can 

be obtained by setting 
0( ) e tm t m   and ( )k t constant  in Eq. (7). Exact solution of this equation 

could be easily found using the classical methods of solving differential equations [53] as: 

2 2 2
1 1 2 1

2 2
( ) e ( e ) ( e )

t t t

x t C J C Y
  

 

 

 
  

 
, (29) 

where J  and Y  represent the first kind and the second kind of Bessel functions of order  , 

correspondingly. Besides,   is equal to 0k m . Moreover, 1C  and 2C  stand for constants of 

integration. By applying the initial conditions 
0(0)x x  and 

0(0)x x  to determine the integration 

constants, one can obtain: 

2 2 2
1 0 0 0 1 1 0 0 0 1

π 2 2 2 2 2 2
( ) e ( e ) ( ) ( ) ( e ) ( ) ( )

t t t

x t J x Y x Y Y x J x J
  

     
 

      

    
       

    
. (30) 

For a better understanding of the proposed arithmetic operations, a few derivatives of the 

unknown function in the solution series were obtained in detail. (0)x  and (0)x  are the initial 

conditions and are equal to 
0x  and 

0x , respectively. In the next step, by setting 0i   and 0t   in 

Eq. (17) one can write: 

2

0 0 0 0 0

0 0

1 1
(0) ( ) ( )x m x kx x x

m m
        . (31) 

Likewise, by setting 1i   and 0t   in the mentioned equation, one obtains: 

2 2 2 2

0 0 0 0 0 0

0 0

1 1
(0) ( 2 ) ( ) ( ) 2x m x m k x x x

m m
             . (32) 
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The proposed procedure can be continued until sufficient derivatives of the unknown function are 

determined. Finally, the substitution of Eq. (31) and Eq. (32) and other derived values in Eq. (10) 

leads to the following series: 

2 2 2 2 2 3

0 0 0 0 0 0

1 1
( ) [ ] [( ) 2 ]

2 6
x t x x t x x t x x t              (33) 

The displacement variation with respect to time is depicted in Fig. 18 for 
0 0.1 mx  , 

0 0.1 m sx  , 

0 1000 kgm  , 40000 N mk  , 0.25    and 0.5    and 140n  . It can be seen that both 

numerical and exact solutions almost coincide in all four cases. In addition, all solutions remain 

pseudo-periodic. It is notable, that the pseudo-period decreases and the amplitude of the response 

increases as time elapses when   is positive and vice versa. As it is concluded in the previous 

research [26], the parameter mx  in the governing equation can be considered as viscous damping. 

Therefore, it can be assumed as negative damping when   is positive and vice versa. Furthermore, 

the phase plots for the mass-spring systems are also presented in Fig. 19 by utilizing both numerical 

and exact responses. To clear phase plots more, we also depict the phase plots in ( , ( ), ( ))t x t x t  space 

in Fig. 20 for 0.25   and 0.5  . 

3.3. An undamped two-DOF system with variable mass and stiffness 

The third example is an undamped two-degree-of-freedom system with TV mass and stiffness which 

is presented in Fig. 21. 

The mass and stiffness variations are expressed in the following equations. 

0

0

2 e 0
( )

0 e

t

t

m
t

m









 
  
 

M , (34) 

0 0

0 0

3 e e
( )

e e

t t

t t

k k
t

k k

 

 

 

 

 
  

 
K . (35) 

The governing differential equation of the system can be obtained by setting the following mass and 

stiffness matrices into Eq. (4) and considering ( )t  0u , which means the absolute velocity of the 

separated mass is negligible. Before utilizing the proposed method, the exact solution of the system 

depicted in Fig. 21 could be obtained by the pseudo-modal analysis described in the following. The 

governing differential equation of such a system with initial displacement  
T

1,0 2,0x x  and zero 

initial velocity can be turned into two decoupled ordinary differential equations by the pseudo-modal 

analysis. Therefore, the system response can be evaluated through pseudo-modal expansion as: 

( ) ( ) ( )t t tx Φ y , (36) 

in which ( )tΦ  and ( )ty  are the normal modal matrix and modal displacements, correspondingly. In 

this case, the modal matrix can be found as: 

1 1
( )

2 1
t

 
  

 
Φ , (37) 
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hence, decoupled mass, damping and stiffness matrices can be calculated as: 

* T 0

0

6 e 0
( )

0 3 e

t

t

m
t

m









 
  

 
M Φ MΦ = , (38) 

* T 0

vis

0

6 e 0
( ) ( )

0 3 e

t

t

m
t

m













 
   

 
C Φ C M Φ = , (39) 

* T 0

0

3 e 0
( )

0 6 e

t

t

k
t

k









 
  

 
K Φ KΦ = . (40) 

Also, the initial modal displacement and velocity are: 

1,0 2,01 1

1,0 2,0

( ) 3 0
(0) (0) ,      (0) (0)

(2 ) 3 0

x x

x x

 
   

      
   

y Φ x y Φ x . (41) 

Consequently, two decomposed differential equations could be written in the following forms: 

0 1 0 1 0 16 e ( ) 6 e ( ) 3 e ( ) 0t t tm y t m y t k y t       , 

0 2 0 2 0 23 e ( ) 3 e ( ) 6 e ( ) 0t t tm y t m y t k y t       . 
(42) 

Similar to the previous example, the exact solution of these two equations can be calculated as: 

1 2
1

2
1 1

1 2
2

2 (2 )
 ( ) e

( ) 2
( ) e ( )

2 (2 )2
 ( ) e

( ) 2

t

t

t

C J

y t

C J

 

 
    

 



 

  

     
  

   

     



  





  
         

   
  

          

, (43) 

and 

2 2
3

2
2 2

2 2
4

2 (2 )
 ( ) e

( ) 2
( ) e ( )

2 (2 )2
 ( ) e

( ) 2

t

t

t

C J

y t

C J

 

 
    

 



 

  

     
  

   

     



  





  
         

   
  

          

, (44) 

in which 1C  through 4C  are constants of integration and can be found by applying the initial 

conditions to the problem. In addition, 1 0 0(2 )k m  , 2 0 02k m  , and   represent the 

gamma function. The free vibration of the system for  
T

0 0.5 2  m x , 0  m s 0x , 

0 1000 kgm  , 
0 40000 N mk  , 0.1    and 0.25    is presented in Fig. 22. The numerical 

solutions were obtained by using the first 100 terms of the series. Once again, numerical and exact 

solutions coincide very well, for both time history and hysteresis plots. In addition, both numerical 

and exact phase plots of the first and second degrees of freedom of the mass-spring system are 

depicted in Fig. 10. 

As mentioned before, the parameter mx  in the motion equation can be regarded as viscous damping. 

Here, this hypothesis was examined again. To do this, numerical phase plots of the first and second 
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degrees of freedom for two values of 0.25    and 0.15    are plotted in Fig. 24. All other 

parameters in both plots are similar to the previously given values. It should be noted that as a result 

of damping, amplitudes of the displacement and velocity decrease as time elapses while the system 

loses energy. Additionally, this phenomenon results in the phase plots spiraling inward [54]. 

3.4. A three-DOF system with time-variable mass and stiffness 

Finally, an undamped three-DOF system with time-variable mass and stiffness which is shown in 

Fig. 25 is taken into account. 

The time-varied mass and stiffness matrices of the system are as follows: 

1

2

3

0

0

0

e 0 0

( ) 0 e 0

0 0 e

t

t

t

m

t m

m













 
 

  
 
 

M , (45) 

1 2 2

3 32 2

3 3

0 0 0

0 0 0 0

0 0

3 e 2 e 2 e 0

( ) 2 e 2 e e e

0 e e

t t t

t tt t

t t

k k k

t k k k k

k k

  

  

 

  

  

 

  
 

    
  

K . (46) 

Initial conditions of the system were considered as  
T

(0) 1 0.5 2 m x  and 
0  m s 0x . Also, 

( )t  0u  was taken into account. Firstly, to verify the numerical solution, the displacement curves 

are presented for 
0 1000 kgm  , 

0 40000 N mk  , 
1 2 3 0.1       and 

1 2 3 0.25       in 

Table 2. The exact solution is obtained in the same way as the previous example. Once again, both 

numerical and exact plots have excellent agreement. The diagrams were obtained by taking the first 

120 terms of the series. Afterward, the effect of parameters   and   on the structure was 

investigated and the numerical response for 1 0.25   , 2 0.15   , 3 0.05   , 1 0.3   , 

2 0.15    and 3 0.1    were obtained. 

It is noteworthy to mention that, like other numerical methods, this scheme requires appropriate 

convergence criteria. The number of terms in the solution series, i.e. n , is the key parameter that 

affects the convergence. Selecting a small value for n  may affect the convergence, but in some 

problems with large t , the results may never converge. This phenomenon arises from the essence of 

the numerical methods, especially the schemes that are based on Taylor series expansion which 

could be converged around the base expansion point, i.e. 
0t . To remedy this, the total time of the 

analysis should be divided into shorter subintervals and the solution series should be written at the 

beginning of each subinterval [55]. Fig. 26 displays the convergence of the response by increasing 

the value of n  in the last numerical example. 

4. Conclusion 

This article proposed an iterative numerical method, based on successive differentiation, for 

dynamic analysis of time-varying multi-degree-of-freedom systems. The solution process was 

thoroughly described and the required equations were derived step by step. After that, the proposed 

method was first validated by the results of two single-degree-of-freedom systems with invariant and 
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variant coefficients. Then, the verification process was continued by the help of two multi-degree-

of-freedom systems with time-varying mass and stiffness. It is worth mentioning that the closed-

form solution for an undamped two DOF system with variable mass and stiffness was also extracted 

for the first time. Based on the numerical investigations performed in this study, the following 

concluding remarks could be offered: 

 The proposed method could be systematically applied to any equation of motion for time-

varying discrete dynamical systems. Also, the required formulations could be generalized in 

a simple and straight process. 

 It was demonstrated that time-varying mass could be considered as viscous damping. It 

means when the rate of variation of mass is positive, pseudo-period increases and the 

amplitude of the response decreases as time elapses and vice versa. 

 Similar to the other numerical methods, the convergence test should be carried out, and the 

sensitive parameters should be detected. For the proposed method, the final results are 

strongly dependent on the number of differentiating of the original equation. It is noticeable 

that the number of differentiations is approximately equal to the number of terms in the 

solution series. It is important to note that to have converged results for the problems with 

large time, the total time of the analysis should be divided into smaller time steps. 
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Fig. 14 Flowchart of the proposed method 

 
Fig. 15 Undamped and invariant mass-spring system 



20 

 

 
Fig. 16. The response of an undamped and invariant mass-spring system with 80n   

 
Fig. 17 Undamped time-variable SDOF mass-spring system 

 

  
(a) 0.25   (b) 0.5   

  
(c) 0.25    (d) 0.5    

Fig. 18 The response of an undamped SDOF mass-spring for various values of   and 140n   
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(a) 0.25   (b) 0.5   

  
(c) 0.25    (d) 0.5    

Fig. 19 Phase plots of an undamped SDOF mass-spring for various values of   and 140n   

  
(a) 0.25   - Exact response (b) 0.25   - Numerical response 

  
(c) 0.5   - Exact response (d) 0.5   - Numerical response 

Fig. 20 Phase plots in 3D space of an undamped SDOF mass-spring with respect to 0.25   and 0.5  , and 140n   
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Fig. 21 Two-degree-of-freedom mass-spring system 

  
Fig. 22 Response of two DOF system with 100n   

  
Fig. 23 Phase plots of two DOF system with 100n   

  
Fig. 24 Phase plots of two DOF system for various values of   and 100n   

 
Fig. 25 Three DOF mass-spring system 
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Fig. 26 Convergence test for three DOF system
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Tables 

Table 2 Response of three DOF system with different parameters and 120n   

1 2 3 0.25       

1 2 3 0.1       

1 0.25   , 2 0.15   , 3 0.05    

1 0.3   , 2 0.15   , 3 0.1    

 

 

 

 

  

  

 


