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Time-Varying Equivalent Roll Damping Coefficient and Natural Frequency 

Estimation via Augmented Extended Kalman Filtering for Floating Body 

 

 

The time-varying equivalent roll damping coefficient and natural frequency in a nonlinear 

state-space model of a floating body are discussed in this article using an augmented extended 

Kalman filtering (EKF) method. In this paper, we present an estimation technique that can 

identify changes in the damping properties of the system considered by a single parameter 

based on roll angle data. The model used an augmented EKF to overcome parameter 

variability and noisy measurement input. The calculated error was compared with the 

covariance matrix's theoretical restrictions to determine whether the filtering was effective. It 

is found that the equivalent damping coefficient and natural frequency obtained from the EKF 

method is a more accurate depiction of the roll dynamics from the general estimation 

procedure given by the literature. The suggested technique has the ability to eliminate random 

noise from the measured signal. The effect of measurement noise levels on identification 

accuracy was investigated and discussed. 

 

Keywords: Extended Kalman filter, system identification, equivalent damping coefficient, 

parameter estimation, roll damping, natural frequency 
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1. Introduction 

1.1. Background 

Establishing hydrodynamic loads and assessing structural responses are pivotal elements 

within a robust design procedure for ships and offshore structures. In the design phase, it is 

advisable to model the rolling behavior of a hull form, including the associated parameters 

such as damping coefficient and natural frequency. In terms of ship safety at sea, rolling is 

still a serious occurrence. Excessive amplitude in rolling motion will negatively affect ship 

stability. In such cases, either the form should be redesigned, or efforts should be made to 

reduce the amplitude of the rolling motion with the help of a controller. Determining the 

internal states of a dynamic system is essential for effective control. To design a robust 

controller, one must understand both the governing equation of the system and the associated 

parameters and states. Calculating roll-damping coefficients and natural frequency has been 

an active research topic for years, and in this study, the calculation method of the roll-

damping coefficient and natural frequency with the extended Kalman filter was examined. 

 

1.2. Formulation of the Problem 

The basic 1DoF equation below describes the non-linear roll damping of a ship's roll decay 

motion: 

   I A B C 0,               (1) 

where  B   stands for nonlinear roll damping moment (Nms), I is the roll mass moment of 

inertia (kgm
2
), and A is the added mass moment of inertia (kgm

2
). The roll angle, angular 

velocity, and angular acceleration are denoted, respectively, as ,  and  [1].  

A series expansion with a linear component and higher-order nonlinear terms, as a function of 

  and  , can be used to describe the nonlinear damping moment B
[1]: 

3

1 2 3B B B B ,                  (2) 

this refers to a model with nonlinearity. By substituting Eq. (2) into Eq. (1) for the calm water 

roll decay test, the equation of motion transforms to: 

  3

1 2 3I A B B B C 0.                    (3) 

Equation (3) can be reformulated more conventionally using the acceleration coefficients, 

following the nomenclature outlined in ITTC-Recommended Procedures and Guidelines, [1]: 

3 22 0,                (4) 
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where: 
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
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
 


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




  


     (5) 

in Eq. (4), the quantity 
 denotes the natural frequency. The linearized roll decay motion 

with an equivalent damping coefficient is: 

2

E 0.              (6) 

Corresponding to Eq. (4), an equivalent damping coefficient
E can be defined as: 

2 2

E i i

8 3
2 ,

3 4
      


         (7) 

Where 
i  is the amplitude of the i-th oscillation cycle and   is the oscillation frequency in 

the i-th cycle [2].  

A roll decay test is the most effective method for determining the equivalent damping 

coefficient because of how easily it can be implemented. Additionally, the International 

Maritime Organization (IMO) has recommended this course of action [3]. 

Following the experimentally or numerically simulated roll decay test, the recorded roll 

motion is utilized to compute the roll damping coefficients through the analysis of time series 

data of roll angles. Simultaneously computing the 
E  and 

  values as outlined in Eq. 6 

through time series data proves to be a challenge. The presence of measurement noise in 

experimental studies introduces complexity to the resolution of this problem. 

Eq. (4) was solved by the fourth-order Runge-Kutta method and the validity of the model was 

checked. 

 

1.3. Literature Survey 

Several researchers describe some techniques for calculating roll damping coefficients in 

depth. 

While Ikeda et. al [4] have developed an empirical method to evaluate roll damping, 

pioneering studies conducted by Froude [5], Himeno [6], and Spouge [7] were presented to 

precisely assess the roll damping coefficients based on the resulting peak values of the roll 

angle from roll decay tests. 

The roll decay test can be used to calculate the damping coefficients for vessel roll motion in 

five different ways [7]: The Froude Energy technique, the Roberts Energy method, the 

Averaging approach, the Perturbation method, and the quasi-linear method. In recent times, 

thorough literature reviews on various approaches for estimating roll damping in floating 
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bodies have been presented by Igbadumhe et. al [3], Wassermann et. al [8], Yu et. al [9], 

Manderbacka et. al [10] and Rodríguez et. al [11].  

The usefulness of these methods has been limited to a few straightforward models, like linear-

plus-quadratic and linear-plus-cubic [12]. It is challenging to calculate both E  and 
  

simultaneously, as seen in Eq. 6. Consequently, in the methods found in the literature, the 

natural frequency (
 ) is often assumed to be identical to the damped frequency (). The 

parameter E  varies with time, and existing methods in the literature are unable to calculate 

its time-dependent changes [13]. Moreover, measurement noise presents a major problem in 

experiments. Most notably, these methods can only be applied to equations with one degree of 

freedom (1DOF). Despite their disadvantages, these methods continue to be employed today 

for evaluating the results of both experimental and numerical studies to obtain roll damping 

[11], [14-16]. 

The well-known Kalman filter, introduced by Kalman and Bucy [17], stands as one of the 

most significant algorithms for estimating the state of a system. Under the considerations of a 

linear model, it provides the optimal solution for minimizing mean square estimation error. 

However, when dealing with nonlinear filters, analytical solutions become challenging, 

necessitating the use of estimators, as noted by Welch and Bishop [18], Reina et. al [19]. 

The EKF technique has been widely employed in various industrial applications of the 

engineering disciplines for parameter estimation and system modelling. For instance, several 

aircraft aerodynamic parameter estimation issues have been effectively solved using the EKF.  

Chowdhary and Jategaonkar [20] presented parameter estimation techniques dependent on 

Kalman filters' use of aircraft flight data. Their findings show that the EKF algorithm is still a 

useful device for identifying flight system parameters. Megyesi et. al [21] employed an 

optimal Kalman filter that allows the determination of the optimal output signal. In their 

study, process, and measurement noise for different unmanned aerial vehicle speeds was 

effectively reduced. A practical EKF-based error filtering method for a nonlinear dynamic 

system with process and measurement noise was extended by Wang et. al [22], Wang et. al 

while [23] proposed an aircraft Anti-lock Braking System (ABS) control technique based on 

EKF. The success of the suggested control technique was confirmed through both simulation 

and experimental analyses. Furthermore, the Kalman filter has been utilized in structural 

engineering because of its relative simplicity. 

Zhi et. al [24] employed the Extended Kalman Filter (EKF) method to assess wind loads on a 

towering skyscraper, while Wu et. al [25] applied the Unscented Kalman Filter (UKF) method 
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to estimate aerodynamic damping. Additionally, Yang et. al [26] introduced a Kalman filter-

based method for inverting wind loads on tall buildings. In another study, Song et. al [27] 

presented adaptive Kalman filters for nonlinear model updating of the building structure. 

The EKF is also a widely used real-time observation problem-solving tool with a wide range 

of automotive applications. A novel approach to the issue of suspension system state 

estimation utilizing a Kalman Filter (KF) under diverse road conditions is presented by Wang 

et. al [23]. Their findings demonstrate that the suggested method can estimate a suspension 

system's state with a high degree of accuracy. In order to predict the road profiles travelled by 

a certain vehicle from the dynamic responses observed on this vehicle, Fauriat et. al [28] 

developed a data processing approach based on the Kalman filter. In order to deal with model 

parameter fluctuation and noisy measurement input, Reina and Messina [29] introduced a 

non-linear model-based observer that uses an augmented Extended Kalman filter. To predict 

several vehicle key states, Liu et. al [30] suggested a hybrid approach that combines an 

unscented Kalman filter (UKF) and a genetic-particle swarm algorithm (genetic-particle 

swarm UKF). For vehicle dynamics, Rodriguez et. al [31] presented a novel accurate 

estimator that is a new kind of dual Kalman filter. Results demonstrate that the novel observer 

accurately predicts the important factors for vehicle dynamics. Xu et. al [32] developed and 

validated a localization algorithm, which uses error-state Kalman filtering for deep-sea 

mining vehicles.  

 

1.4. Scope of this study 

The scope of this study is to develop an enhanced inverse method based on the extended 

Kalman filter (EKF) for estimating the time-varying linear equivalent damping coefficient and 

natural frequency using data obtained from roll decay tests. This is the first time, to the best of 

the author's knowledge, that a method like this has been systematically employed for 

estimating states and identifying parameters in roll decay motion. The purpose of this 

investigation is to simultaneously estimate E  and 
  by mitigating the measurement noise at 

the system output using the EKF and to observe the change of E  over time. This study aims, 

importantly, to introduce a method applicable to motions with high degrees of freedom. The 

performance of an EKF approach will be assessed using numerical examples in this research. 

We put the technique to the test with the DTMB 5512 hull parameters, which have a wide 

range of both experimental and computational results in the literature. This study's major 
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novelty is demonstrating how this method can be used for hydrodynamic parameter 

identification and state estimation.  

 

 

1.5 Organization of the paper 

The structure of this paper is as follows: Section 2 presents the equation of roll decay 

coefficients and details of the pseudo-experiment. Brief explanations of the EKF method are 

provided in Section 3, and Section 4 presents the initial estimation error and model error of 

the EKF. The results are discussed in Section 5, followed by a detailed explanation of the 

study's contribution to the literature in Section 6 based on the obtained results. Finally, the 

conclusion is presented in Section 7. 

 

2. Experimental values  

The process of data assimilation requires experimental values. In this study, pseudo-

experimental values were created instead of conducting the actual experiment. We tested the 

technique using the DTMB 5512 hull parameters, which have been the subject of numerous 

experimental and computational studies in the literature. Subsequently, these parameters are 

treated as unknowns and determined during the estimation stage. 

 

2.1. Decay coefficient 

In a free-roll test, the ship is heeled to the desired angle and then released. The absolute value 

of the roll angle at the moment of the n-th peak value is shown by the symbol i , which can 

be seen in Figure 1 typical roll decay curve. The so-called decay curve explains how i  

decreases as a function of the mean roll angle. A third-degree polynomial is used to match the 

decay curve [1,2]: 

2 3

m m ma b c ,                  (8) 

where: 

i 1 i ,                (9) 

 m i 1 i / 2.              (10) 

 In this approach, “ i 1 ” refers to a positive peak while the successive “ i ” peak refers to a 

negative one, or vice versa [11, 33]. The terms "decay coefficients" refer to coefficients a, b, 

and c. Given below is the relationship between these coefficients and the damping 

coefficients: 
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2
2 a ,  


           (11) 

3 180
b ,

4
 


           (12)

2
8 180

c .
3 

 
   

   

          (13) 

 

2.2. DTMB 5512 model main particulars 

The geometry of the DTMB 5512 is shown in Figure 2. Table 1 also provides information on 

the model where length ( L ), beam ( B ), draft ( T ), wetted surface area ( WS ), block 

coefficient ( BC ), longitudinal centre of gravity ( LCG ), vertical centre of gravity ( VCG ), roll 

radius of gyration ( k
), natural roll period ( T

). The metacentric height ( GM ), is defined as 

the distance between the centre of gravity ( G ) and the metacentre ( M ). 

The first step in the research is to create a reliable nonlinear time-domain model capable of 

forecasting roll behavior while accounting for nonlinear factors. The experimental findings 

from Irvine et al. [34],  Gökce and Kinaci [35] were used to validate the EKF approach used 

in this work. The hull was allowed to roll decay with an initial roll angle of 
0 10  and a 

forward velocity of Fr 0.41 . Figure 3 shows a simulation of a free-decay roll motion with a 

15 s period and eighteen motion peaks. The fourth-order Runge-Kutta algorithm based on Eq. 

(4) was used to run the simulations for the time step ST 0.001  s (see Fig. 3). The target 

damping coefficients 0.3092  , 0.8680  , 0.1524    and T 1.54   s, 4.079   

rad/s. The simulation parameters are shown in Table 2. The rolling graph's peaks are listed in 

Table 3 for Figure 3. The correctness of the time step is illustrated by the roll extinction 

curves in Figure 4. 

From the trend line equation, the coefficients  ,   and   were calculated. It can be seen that 

the 2R value is extremely high indicating that predicted the values   can represent the cubic 

model. Table 4 compares the both decay and extinction coefficients between the numerically 

estimated values and the target values, as well as the errors between them. There is a 

remarkable coincidence for the chosen time step ( ST 0.001  s). For the numerical simulation, 

the maximum relative error is 0.99%, which is acceptable. It is evident that the suggested time 

step ( ST 0.001  s) can be used to obtain the desired pseudo-experimental value. The 

variation of the equivalent damping coefficient ( E ) obtained from Eq. 3 is depicted in Figure 
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5. Upon examination of Figure 5, it is evident that the equivalent damping coefficient 

decreases over time and approaches a constant value. Furthermore, large heel angles result in 

high damping, and the damping coefficients show a substantial dependence on roll amplitude. 

This is due to the stronger vortex strengths at larger roll angles compared to smaller roll 

angles [13, 36].     

This study examines the effect of measurement noise in the roll angle responses on the 

identification. The estimated response data from the simulated roll angle response time 

histories are then artificially corrupted by numerical noise.  

2.3. Covariance matrix of measurement noise 

The discrete measurement noise covariance characterizes the uncertainty in the pseudo-

experiment simulations: 

2
k mR ,               (14) 

Where m  is the standard deviation. The simulated roll decaying motion is then corrupted 

with random Gaussian white noise, modeled with normally distributed white noise added to 

the calculated responses. To choose m , several simulation runs were undertaken. The 

following are some of the values of m  that were tried in this work: 

Scenario (a): Noise-free simulation 4

m1 1x10   deg. 

Zero measurement noise in the EKF is acceptable theoretically for the noise-free simulation, 

however, this frequently leads to numerical problems [37]. To overcome this difficulty in 

noise-free simulations, standard deviations of the measurement errors are set as 4

m1 1x10   

deg.  

Scenario (b): 1

m2 0.1x10   deg. 

The main idea of this case is to investigate the effects of the considered measurement noise 

contamination 

Scenario (c): 1

m3 0.5x10   deg. 

The final example aims to evaluate the effectiveness of method, particularly considering large 

signal noise contamination. Figure 6 displays the simulated noisy signals for a duration 15 s 

long. 

When Figure 6 is examined, it becomes clear that the noisy measurement signal cannot be 

subjected to the ITTC-Recommended Procedure [1]. In this study, EKF is used to determine 

the equivalent roll damping coefficient and to remove noise from the output signal.  
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3. Extended Kalman Filter 

The filtering strategy transforms the parameter estimation problem into a state estimation 

problem, which is an indirect method for parameter estimation. To achieve this, the system 

state vector is intentionally extended to include the unknown parameters as additional state 

variables. In this study, EKF was used to estimate parameters E  and 
  given in Eq. (6). By 

incorporating unknown parameters to the state space vector, the equations for parameter 

estimation and state update become non-linear. Consequently, the EKF technique enables the 

simultaneous estimation of parameters and states. A detailed explanation of the Kalman filter 

theory can be found in Gelb [38] and Zarchan [39]. This section will only provide a summary. 

An example of a general non-linear system is: 

 x f x,u w,            (15) 

where 𝑥 is a vector of system states, u  is a vector of inputs, f  is a nonlinear operator and w  is 

a random zero-mean process noise. The process-noise matrix is provided by: 

 TQ E ww ,            (16) 

Where  TE ww  is the expected value of  Tww .  The measurement equation is considered a 

nonlinear function of the states according to: 

 z h x v,             (17) 

Where v  is the observation noise and h is the observation function. The measurement noise 

matrix is described as follows: 

 TR E vv ,            (18) 

where  TE vv is the expected value of  Tvv . Measurements are nonlinear and discrete can 

be represented by the following equations: 

 k k kz h x v ,            (19) 

and 

 T

k k kR E v v .            (20) 

The following Jacobians are used to define the systems dynamics matrix ( F ) and 

measurement matrices ( H ). 
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 

ˆx x

f x
F ,

x






          (21) 

 

ˆx x

h x
H .

x






           (22) 

Unknown parameters are added to the state dynamic matrix in this investigation. This is the 

form of the augmented state vector for the free decay motion: 

 
T

1 2 3 4x x x x x ,          (23) 

where, 

1x , 
2x ,  3 Ex ,  2

4x ,          (24) 

the system's dynamical equation is rewritten in state-space form as follows: 

 1 2 3 4x f x ,x ,x ,x ,           (25) 

Where f  is a nonlinear function. The Taylor-series expansion for SFT
e  can approach the 

fundamental matrix k : 

2 2 3 3

S S
k S

F T F T
I FT ....

2! 3!
              (26) 

The identity matrix is called I , ST  represents for sampling time and F  is the systems 

dynamics matrix. The Kalman gains kK  are calculated from the matrix Riccati equations 

while the filter is running. The following definition applies to the Riccati equations, a set of 

iterative matrix equations: 

 
 

k k k 1 k k

1
T T

k k k k

k k k

M P Q ,

K M H HM H R ,

P I K H M .





   

 

 

         (27) 

kP  is a covariance matrix that shows errors in state estimates following an update, and kM is a 

covariance matrix that shows errors in state estimates prior to an update. By using the 

continuous process-noise matrix, Q , the discrete process-noise matrix, kQ , can be derived as 

defined: 

   
ST

T

k

0

Q Q dt.              (28) 

With EKF estimation of the state vector is given as: 

 k k k k kx̂ x K z h x .              (29) 
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To predict the state vector, we integrated the nonlinear differential equations using the Runge-

Kutta method. 

k k 1 k 1 S
ˆˆx x x T ,             (30) 

here the derivative is obtained from Eq. (31), [37]: 

 k 1 k 1
ˆ ˆx f x .            (31) 

In the above EKF, the values of the new state kx̂ are estimated iteratively. In-house code, 

written in the FORTRAN programming language, was used to solve the four-state EKF 

equations and the Riccati equations. 

 

4. Estimation of the equivalent damping coefficient and natural frequency via 

augmented extended Kalman filtering   

An evaluation of the EKF's capability for equivalent roll damping coefficient estimation in a 

nonlinear state-space model of freely decaying motion was attempted. The first phase in the 

filtering process involves estimating the initial values of the state variables. 

4.1. Initial estimation error 

Theoretical values for the errors in the estimation of the first, second, third, and fourth states 

are denoted by 11P , 22P  , 33P , and 44P , respectively. Due to the assumption that we lack any a 

priori knowledge of the natural frequency and equivalent-damping coefficient. The initial 

covariance matrix's diagonal values are infinite ( 33 44P P  ) and the filter state of the 

square of natural frequency �̂�40 and equivalent damping coefficient�̂�30 are initialized to zero (

30 40
ˆ ˆx x 0  ). These errors can be seen in the initial covariance matrix. The original 

covariance matrix's diagonal elements must not be zero, even when the roll angle 10x  and roll 

angular velocity 20x  first filter estimations are close to the right values. 

The filter fails the test because the initial values are assumed to be true, and the initial error 

covariance is set to zero [39]. Consequently, small values were chosen for the error 

covariance matrices of the roll angle and angular velocity: 

 H 1 0 0 0 ,           (32) 

 
T

0 10x̂ 0 0 0 ,           (33) 

 0P diag 0.1 0.1 .            (34) 
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4.2 Model Error 

The process-noise covariance matrix kQ should be zero or small if the real-world Kalman 

filter model is regarded to be accurate. Large values of kQ show that we really mistrust the 

accuracy of the Kalman filter to model the real world. The EKF model assumes E  is a 

constant by utilizing zero process noise [39]. The performance of EKF is mainly controlled 

using the process noise covariance matrix. Therefore, to increase the robustness of the final 

filter, process noise can be added the derivative of the E . For the non-linear model used in 

this study, it can be assumed that the continuous process-noise matrix is [39]. 

 2

PQ diag 0 0 0 .           (35) 

According to Eq. 28, the discrete process-noise matrix ( kQ ) can be generated using the 

continuous process-noise matrix. Standard deviations of the process noise (
p ) can be used as 

an adjusting parameter to enhance the filter's overall performance because they effectively 

increase or decrease noise in the high-ordered term. 

As a result, the accuracy of the Kalman filtering method is directly influenced by the process 

noise covariance matrix [39]. Various kQ  values were employed to explore their impact on 

the precision of the estimator. 

To determine whether the EKF was operating correctly, we compared the estimations 

obtained by the EKF to the ITTC–Recommended Procedures and Guidelines [1] in all the 

work we have completed thus far. It is impossible to know the actual system states during real 

filter operation. A comparison between the measured residual and the theoretical estimate is 

necessary to assess if the filter is operating correctly. A more detailed explanation can be 

found in Ozdemir [13]. 

A number of simulation runs were performed to select 
p , and the following are some of the 

values of 
2

p  that were tried in this work: 

2 5

p1

2 4

p2

2 3

p3

1 10 ,

1 10 ,

1 10 .







  

  

  

           (36) 

 

5. Results 
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Simulations were performed for  15000  equally spaced time points ( sT 0.001  s) with a 

measurement sampling rate of 1000  Hz. This section demonstrates a simulation that 

illustrates how the EKF's processing of noisy roll angle measurements can be utilized to 

estimate the roll angle ( ), natural frequency (
 ), and equivalent damping coefficient ( E ). 

When different values of 
p  are employed in the EKF, the true state and the estimated first 

state are shown in Figures 7-9. The estimation of the roll angle is found to be a good match 

for the simulation result. These results demonstrate the outstanding estimation quality of the 

filter since the estimated roll angle looks to be almost identical. Furthermore, the 

measurement noise was well filtered by the EKF. It is worth noting that the larger the process 

noise, the smaller the prediction error, which is an expected result [37]. 

The same conclusion can be seen from the root mean square error (RMSE) values, which are 

given in Table 5. RMSE was used as an indicator to measure the performance of the Kalman 

filter. It measures the degree of discrepancy between two sets of data. The RMSE is 

calculated by: 

 
N

2

k k

k 1

x̂ z

RMSE ,
N








         (37) 

Where kx̂  is the state estimate from the filter, kz  is the calculated value from pseudo-

experimental values and N  is the number of measurements. From the data in the table, it can 

be seen that the EKF filters appeared to be working after the addition of process noise (i.e., 

p3 ). Examining the error in the estimates (i.e., the difference between actual signal and 

estimate) a performance indicator is necessary. 

To verify the proper functioning of the filter, Figure 10 compares the inaccuracy in the 

estimate of the roll angle  1x , of the EKF with the theoretical values derived from the 

covariance matrix (i.e., square root of 11P  for the first state, square root of 22P  for the second 

state, etc.). The simulated error in the estimation of roll angle outside the theoretical error 

limitations was obtained using the Riccati equations covariance matrix when the process noise 

was small (i.e.,
p1 ), showing that the filter is not functioning properly. 

Figure 10 now demonstrates that the filter appears to be operating because of errors in the 

estimations of roll angle within the theoretical c restrictions after the high process noise was 

added to the Kalman filter (i.e., 
p3 ). It was demonstrated in Figure 10 that the error and 

theoretical bounds can be used to determine whether or not the filter is performing properly. 
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Figure 11 displays the time histories of the estimated equivalent damping coefficient (
E ) for 

scenarios (a), (b), and (c), along with the true state. Due to an incorrect filter setup, a 

significant transient is observed at the beginning, but it quickly converges to the true 

parameters. As the covariance decreases, as depicted in Figure 10, the oscillation value of the 

convergence curve in Figure 11 also diminishes, ultimately leading the parameter to converge 

to its true value. This shows that the EKF algorithm accurately estimates the states of free-

decay roll motion for noise-free simulation. As can be seen, the estimated parameters exhibit 

more severe oscillations in the recursive process over time due to significant noise 

interference. It can be seen from Figure 11 that incorporating process noise could somewhat 

enhance the estimates. The estimations obtained using EKF are highly reliant on the 
p , as 

evident in the same figure. The equivalent linear damping coefficient estimates of the Kalman 

filter align more closely with the exact results when process noise is introduced. The 

parameter estimates are more delayed as 
p  decreases, and they sometimes differ 

dramatically from the exact values. However, the inclusion of process noise comes with a 

cost. As observed in Figure 11, estimates made with large process noise are noisier compared 

to those made with small process noise. It is found that the EKF can estimate accurate states 

when there is noise and this can be easily explained by using Figure 12. The filter is able to 

pay greater attention to the measurements because of the larger Kalman gains [39]. 

Examining the residuals, or the discrepancy between the measured values and the estimates, is 

one technique to assess the accuracy of the observer. White noise with a mean of zero should 

make up the residuals for an accurate observer. This is further supported by the examination 

of measurement residuals that roughly resemble zero mean white noise. Figure 13 shows that 

the mean of the residuals for 
p3  is certainly close to zero and the standard deviation's closest 

value is represented by the following [39]: 

APPROX

Peak toPeak
,

6
           (38) 

which represents the actual value in theory. 

Since the natural frequency is constant, model error is not included in its derivative. As 

depicted in Figure 14, the variation in the natural frequency estimates of the filter is very 

small due to the model error involved in the damping coefficient. The simulation resulted in a 

natural frequency of 4.080   rad/s, deviating by only 0.02% from the actual value of 

4.079   rad/s. 
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In Figure 15, the variation of the linear equivalent-damping coefficient estimated by EKF 

with time is shown as a result of modeling with different sampling times. All other filter 

parameters remain the same with the ideal case ST 0.001 s. It can be seen from Figure 15 

that as the measurement noise increases, the error value increases in the solutions carried out 

at large sampling periods. The effect of sampling time on the results is reduced when there is 

small measurement noise. 

Figure 16 shows the natural frequency calculated for three different scenarios at a sampling 

period of ST 0.01 s. The simulations calculated a natural frequency of 4.086   rad/s, 

which differs by 0.17% from the actual value ( 4.079   rad/s). From this figure, it has 

been seen that the sampling time has no significant effect on the estimation of the natural 

frequency. 

 

6. Contribution of this study 

In this study, both E  and  , as defined in Eq. (6), are simultaneously estimated using the 

EKF method. The parameter identification method presented in this paper can calculate the 

time-varying linear equivalent-damping coefficient from freely rolling decay motion. The 

proposed technique can effectively eliminate noise from the measurement signals. Moreover, 

it was suggested to apply an alternate and practical tool for system identification and state 

estimate. Of particular note, the proposed parameter estimation method can also be applied to 

motions with high degrees of freedom.  

The suggested method is still fairly robust even if any measurement noise is incorporated in 

the provided additional information on measured data. When the DTMB 5512 research hull's 

hydrodynamic parameters were estimated using an EKF, there was not much of a difference 

between the predicted values and exact values of the parameters. The key reason for this is a 

precise estimating model. Moreover, with the EKF method, time-varying parameter 

estimation was made without the need for curve fitting and knowing the natural frequency. 

This result is an important advantage of EKF over the method proposed by the ITTC [1]. As 

an alternative to the procedure proposed by the ITTC–Recommended Procedures and 

Guidelines [1], a method is presented to determine the time-varying equivalent-damping 

coefficient. 

These examples demonstrate that, even though the parameters were considered as the systems' 

states, implying potential changes over time, they can still converge to stable values. This 

approach allows for the estimation of linear equivalent damping coefficient and natural 
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frequency without requiring prior knowledge of the input. The study reveals that the initial 

covariance matrix has little effect on the EKF's performance. Furthermore, the EKF algorithm 

demonstrates compatibility between the estimated roll angle response and the actual roll angle 

response, despite the chaotic nature of the measurement signal caused by noise. The EKF 

algorithm effectively filters out measurement noise, while its accuracy is impacted by 

measurement noise in Kalman filter-based inversion. Interestingly, measurement noise has no 

discernible impact on estimating natural frequencies. It can be concluded that both process 

noise and sampling time do not affect natural frequency estimation. Keeping process noise 

high and the sampling period low allows for the estimation of a linear equivalent damping 

coefficient in the presence of high measurement noise. 

 

7. Conclusion 

In this study, a novel method for determining the equivalent linear roll damping coefficient 

and natural frequency was presented based on the augmented EKF. The EKF method is 

accurate in determining both time-varying linear equivalent damping coefficient and natural 

frequency. It may be concluded that the proposed method can evaluate time-varying damping 

coefficient and natural frequency with sufficient accuracy and can be used as a design tool for 

ship design. Future research work will focus on the extension of the proposed method. 

Currently, the recommended method considers free roll decay motion only. The method 

introduced in this article will be applied to experimental data in the future. Additionally, there 

is potential for applying the method to high-degree-of-freedom motions. It is planned to 

examine the 2DOF heave and pitch motion, which are among the most common motions in 

ships. 
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Nomenclature 

B         Beam VCG Vertical position of centre of gravity 

BC       Block coefficient 
kv       Vector of measurement error 

kF        Systems dynamics matrix 
kw     Vector of disturbances (errors in the system) 

GM    Transversal metacentric height 
kx̂      Vector of estimated value of states variables 

kH      Measurement matrix 
kz       Vector of measurements 

kK      Kalman gain matrix          Roll angle 

k
      Roll radius of gyration 

m      Mean roll angle 

L        Length  i      Roll angle amplitude 

LCG  Longitudinal position of the centre of     

gravity 
k    Transition or system matrix of discrete system 

WS     Wetted surface area        Damped frequency 

kP       Covariance matrix of estimate error 
      Natural frequency 

kQ     Covariance matrix of system noise        Linear extinction coefficient 

kR     Covariance matrix of measurement noise 
E     Equivalent linear extinction coefficient 

T       Draft        Quadratic extinction coefficient 

ST      Sampling time        Cubic extinction coefficient 

T
     Natural roll period        Standard deviation      
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Figures 

 

Figure 1. Typical roll decay curve 

 

 

 

Figure 2. The DTMB model 5512 seen from a perspective 

 

 

 

Figure 3. Simulated free roll decay with an initial angle 
0 10   at Fr 0.417  by running 

the fourth-order Runge-Kutta algorithm ( ST 0.001 s) 
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Figure 4. Extinction curve  ( ST 0.001 s) 

 

 

 

 

Figure 5. Equivalent linear damping coefficient  ( ST 0.001 s) 
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Figure 6. The simulated noisy signals ( s): (a)
2

m2 1x10  deg;   

(b)
1

m3 0.5x10  deg 
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Figure 7. Comparison of actual and estimated roll angle for Scenario (a) (noiseless input) 
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Figure 8. Comparison of actual and estimated roll angle for scenario (b)  
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Figure 9. Comparison of actual and estimated roll angle for scenario (c) 
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Figure 10. Covariance propagation of the  1x  for three simulation scenarios 

 

 

 

 

 



30 

 

 

 

Figure 11. The estimated value of equivalent linear damping coefficient ( E ) for three 

scenarios 

 

 

 

 

 

 

 

 

Figure 12. The effects of process noise covariance matrix Q  on the Kalman Gain 
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Figure 13. Residuals from EKF(s) 

 

 

 

Figure 14.  The estimated value of natural frequency (
 ) for the various sets of the process 

noise  
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Figure 15. The effects of the sampling time, ST , on the estimated value of equivalent linear 

damping coefficient ( E ) 
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Figure 16.  The estimated value of natural frequency (
 ) at ST 0.01  s 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 

 

Table 1. Hydrostatic properties of the DTMB hull model 5512  

Symbol Unit Model 5512 

L m 3.048 

B m 0.405 

T m 0.132 

SW m2 1.459 

CB - 0.506 

LCG m 1.536 

VCG m 0.030 

kφ m 0.158 

Tφ s 1.540 

GM m 0.043 

 

 

Table 2. Simulation parameters 

Coefficients a  b  c         
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0.2363 0.0202 -0.0017 0.3092 0.8680 -1.1524 

 

 

 

Table 3. The numerical peaks of the roll response  

i 0 1 2 3 4 5 6 7 8 9 

  (deg) 10 7.504 5.562 4.130 3.090 2.332 1.774 1.359 1.047 0.810 

m  (deg) 8.752 6.533 4.846 3.610 2.711 2.053 1.567 1.203 0.929 0.720 

 (deg) 2.496 1.942 1.432 1.040 0.758 0.558 0.415 0.312 0.237 0.181 

i 10 11 12 13 14 15 16 17 18 19 

  (deg) 0.629 0.490 0.383 0.299 0.235 0.184 0.144 0.113 0.089 0.070 

m  (deg) 0.560 0.437 0.341 0.267 0.210 0.164 0.129 0.101 0.080 0.063 

 (deg) 0.139 0.107 0.084 0.064 0.051 0.040 0.031 0.024 0.019 0.015 

 

 

Table 4. Comparison of the decay and extinction coefficients  

Coefficients a  b  c         

Target values 0.2363 0.0202 -0.0017 0.3092 0.8680 -1.1524 

Estimated 0.2377 0.0200 -0.0017 0.3086 0.8594 -1.1613 

Difference*  0.59 % 0.99 % 0.00 % 0.19 % 0.99 %  0.77 % 
*𝐷ifference =

(Exact−Estimated)

Exact
   

 

Table 5. RMSE values for the first state for various choices of 
p3 in EKF(s) 

Scenario RMSE (deg) 

 p1  
p2  

p3  

Scenario (a) 3.28x10-5 2.01x10-5 1.11x10-5 

Scenario (b) 2.70x10-2 2.68x10-2 2.67x10-2 

Scenario (c) 1.36 x10-1 1.35 x10-1 1.34 x10-1 
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