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ABSTRACT

The visibility graph of a simple polygon represents visibility relations between its vertices.

Knowing the correct order of the vertices around the boundary of a polygon and its

visibility graph, it is an open problem to locate the vertices in a plane such that it will
be consistent with this visibility graph. This problem has been solved for special cases

when we know that the target is a tower, a spiral, or an anchor polygon. Knowing that a

given visibility graph belongs to a simple polygon with at most three concave chains on its
boundary, a pseudo-triangle, we propose a linear-time algorithm for reconstructing one

of its corresponding polygons. Moreover, we introduce a set of necessary and sufficient

properties for characterizing visibility graphs of pseudo-triangles and propose polynomial
algorithms for checking these properties.

Keywords: Computational geometry; Visibility graph; Characterizing visibility graph; Polygon

reconstruction; Pseudo-triangle.

1. Introduction

The visibility graph of a simple polygon P is a graph G(V,E) where V is the vertices

of P and an edge (u, v) exists in E if and only if the line segment uv lies completely

inside P, i. e. they are visible from each other. Based on this definition, each pair

of adjacent vertices on the polygon boundary is assumed to be visible from each

other. This implies that we always have a Hamiltonian cycle in a visibility graph

that follows the order of vertices on the boundary of the corresponding polygon.

Computing the visibility graph of a given simple polygon has many applications

in computer graphics, computational geometry, and robotics. There are several ef-

ficient polynomial-time algorithms for this problem. Asano et al. [1] and Welzl [2]

proposed O(n2)-time algorithms for computing the visibility graph of a simple poly-

gon of n vertices. This was then improved to O(m+n log log n) by Hershberger [3],

where m is the number of edges in the visibility graph. The term n log log n is

due to the time required for triangulating a simple polygon. Using the O(n) time

triangulation algorithm of Chazelle [4] reduces the running-time of Hershberger’s

result to O(m+n) which is optimal. There are numerous recent results considering
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properties of the visibility graph [5, 6], visibility graphs of special polygons [7] and

visibility graph applications [8].

This concept has been studied in reverse as well: Characterizing a visibility

graph is to determine whether a given graph is isomorphic to the visibility graph

of some simple polygon, and the reconstruction problem is to build such a simple

polygon. Everett showed that these problems are in PSPACE [9], and this is the only

result known about the complexity of these problems. Although the problem has not

been settled yet for general polygons, it has been solved recently for some variants.

Ameer et al. proposed a polynomial-time recognition and reconstruction algorithm

for pseudo-polygons [10] improving the older related results [11, 12, 13, 14], Casel

et al. showed that the problem is NP-hard for unit square visibility graphs [15], and

Boomari et al. proved that the problem is ∃R-complete on 3D terrains [16]. The

class ∃R consists of problems that can be reduced in polynomial-time to the problem

of deciding whether a system of polynomial equations with integer coefficients and

any number of real variables has a solution. It can be easily seen that NP ⊆ ∃R.
This class has been studied earlier by other communities and recently, several long-

standing open computational geometry problems were proved to be complete for

this class [17, 18, 19].

For simple polygons, the recognition and reconstruction problems have been

solved only for special cases of spiral, tower, and anchor polygons. These results

are obtained by Everett and Corneil [20] for spiral polygons, by Colley et al. [21]

for tower polygons, and by Boomari and Zarei [22] for anchor polygons. In a spiral

polygon, there is at most one concave chain (Fig. 1a), the boundary of a tower

polygon is composed of two concave chains and a single edge (Fig. 1b), and an

anchor polygon is a tower polygon whose base edge is a convex chain.

Although there is a bit of progress on this type of reconstruction problem, there

have been plenty of studies on characterizing visibility graphs [23, 21, 24, 25, 20, 26].

In 1988, Ghosh introduced three necessary conditions for visibility graphs and con-

jectured their sufficiency [26]. In 1990, Everett proposed a counter-example graph

disproving Ghosh’s conjecture [9]. She also refined Ghosh’s third necessary condi-

tion to a new stronger condition [27]. In 1992, Abello et al. built a graph satisfying

Ghosh’s conditions and the stronger version of the third condition which was not

the visibility graph of any simple polygon, disproving the sufficiency of these con-

ditions [28]. In 1997, Ghosh added his fourth necessary condition and conjectured

that this condition along with his first two conditions and the stronger version of

the third condition are sufficient for a graph to be a visibility graph. This was also

disproved by a counter-example from Streinu in 2005 [14].

In this paper, we solve the reconstruction problem for pseudo-triangles. A

pseudo-triangle is a simple polygon whose boundary is composed of three concave

chains, called side-chains, where each pair shares one convex vertex (called a cor-

ner). Let P be a pseudo-triangle formed by the concave side-chains AB = [A, . . . , B],

AC = [A, . . . , C], and BC = [B, . . . , C] where A, B, and C are the corners (Fig. 1c).
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According to this notation, a concave side-chain joining corner vertices X and Y is

denoted by XY where X and Y are in {A,B,C}.
Let H = < A, . . . , C, . . . , B, . . . , A > be the Hamiltonian cycle of the visibility

graph of P which indicates the order of vertices on the boundary of P. Here, we use

the same notation for a vertex on the boundary of P and its corresponding vertex

in the visibility graph and H. For a given pair of Hamiltonian cycle H and visibility

graph G(V,E), we introduce a set of necessary properties on H and G when this

pair belongs to a pseudo-triangle and prove that these properties are sufficient as

well.

Having these properties, we propose a linear-time algorithm for reconstructing a

pseudo-triangle P =< A, . . . , C, . . . , B, . . . , A > with G(V,E) as its visibility graph.

Moreover, we propose algorithms for verifying the properties on a given pair of H
and G. These characterizing algorithms run in linear time in terms of the size of G.
Therefore, in this paper, we solve the characterizing and reconstructing problems

for another class of polygons called pseudo-triangles.

Since a tower polygon is a special case of a pseudo-triangle, we use the tower

reconstruction algorithm [21] as a sub-routine in our algorithm to build the initial

part of the polygon.

Our motivation in solving this problem for pseudo-triangles is that every poly-

gon can be partitioned into pseudo-triangles. Then, an idea for solving a general

reconstruction problem is to handle these steps:

• Recognize a pseudo-triangle decomposition for the target polygon from

G(V,E) and H.

• Reconstruct each pseudo-triangle separately.

• Attach the reconstructed pseudo-triangles satisfying the pseudo-triangle

decomposition and the visibility constraints.

In Section 2, we briefly describe the tower reconstruction algorithm [21] for re-

constructing tower polygons which is used as a sub-routine in our algorithm. In

Section 3, we introduce a set of necessary conditions (properties) of the visibility

graph of pseudo-triangles and in Section 4, we prove the sufficiency of these condi-

tions by proposing a reconstruction algorithm. Finally, we analyze the running time

of the reconstruction algorithm and the algorithms required to check the properties.

2. Reconstructing Tower Polygons

Let G(V,E) be a bipartite graph with partitions U and W , and <U and <W are

two orderings on respectively (resp.) vertices of U and W . The pair (<U , <W ) is a

strong ordering on this graph if having u <U u′ and w <W w′ implies that if the

edges (u,w′) and (u′, w) exist in E, then the edges (u,w) and (u′, w′) also exist in

E.

The following theorem by Colley et al. [21] indicates the main property of the

visibility graph of a tower polygon and guarantees the existence of a tower polygon
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consistent with such a visibility graph.

Theorem 1. [21] Removing the edges of the reflex chains from the visibility graph

of a tower gives an isolated vertex plus a connected bipartite graph for which the

ordering of the vertices in the partitions provides a strong ordering. Conversely, any

connected bipartite graph with strong ordering belongs to a tower polygon. Further-

more, such a tower can be constructed in linear time in terms of the number of

vertices.

The outline of the reconstruction algorithm proposed by Colley et al. [21] is

as follows. As input, it takes the corner vertex A = u0 = v0 and a connected

bipartite graph G(V,E) with vertices partitioned into two independent sets AB =

{u1, . . . , um} and AC = {v1, . . . , vn} having strong ordering.

In the first step, the position of the corner A and the vertices u1 and v1 are

determined as in Fig. 2. In a middle step, suppose that the positions of the vertices

u0, . . . , uj−1 and v0, . . . , vk−1 have been determined and the directions of the half-

lines from uj−1 and vk−1 which respectively contain uj and vk, where (uj , vk) ∈ E,

are also known. To complete such a middle step, the position of uj and the half-line

from uj which contains uj+1 (where uj+1 is visible from vk) must be determined.

For this purpose, uj is located somewhere on its containing half-line horizontally

below the vertex vc which vc has the minimum index among vertices of AC which

are visible from uj+1. Consider sj+1 to be a point on vc−1vc with an ϵ distance

below sj , when sj lies on vc−1vc. Then, the containing half-line of uj+1 will be the

half-line on the supporting line of uj and sj+1 downward from uj . If sj does not lie

on vc−1vc, then sj+1 is a point on vc−1vc with an ϵ distance below vc−1.

According to this construction, sj will be the intersection of chain AC and the

supporting line of uj and uj−1. Similarly, rj will be the intersection of AB and the

supporting line of vj and vj−1 (Fig. 2). We say “will” because we first fix the position

of sj (resp. rj) from which the position of vertex uj (resp. vj ) is determined. We

will use this notation once again in Section 4.

3. Properties of Pseudo-Triangle Visibility Graphs

In this section, we describe a set of properties that a pair of H and G must have to

be the Hamiltonian cycle and visibility graph of a pseudo-triangle.

Any sub-sequence < vi, . . . , vj > on the Hamiltonian cycle is called a chain and

is denoted by [vi, . . . , vj ]. A vertex va on a chain [vi, . . . , vj ] is a blocking vertex for

the invisible pair (vi, vj) if there is no visible pair of vertices vl in [vi, . . . , va−1] and

vk in [va+1, . . . , vj ]. Ghosh showed that for every invisible pair of vertices (u, v) in

a visibility graph, there is at least one blocking vertex in [u, . . . , v] or [v, . . . , u].

Furthermore, every vertex on the shortest Euclidean path between u and v(inside

the corresponding polygon) is a blocking vertex for this pair [26]. Note that in a

pseudo-triangle the shortest Euclidean path between two invisible vertices turns in

only one direction (i.e. clockwise or counterclockwise).
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Let AB, AC, and BC be the side-chains of a pseudo-triangle. The order of

vertices in these chains is defined with respect to one of their corner vertices. For a

vertex u in chain XY , IndX(u) is equal to the number of vertices in chain [X, . . . , u]

minus one. According to this definition, IndA(A) is zero and IndB(A) is k−1 where

k is the number of vertices in chain AB. Then, based on a given vertex indexing

we refer to the previous and next vertices of a given vertex on a side-chain. For a

vertex v in chain XY with IndX(v) = i, we use NX(v, j) to refer to the vertex

u ∈ XY with IndX(u) = i + j. Similarly, PX(v, j) is the vertex u ∈ XY with

IndX(u) = i − j. For the sake of brevity, we use NX(v) instead of NX(v, 1), and

PX(v) instead of PX(v, 1). Note that in this notation, j can be a positive or negative

natural number. For corner vertices that belong to two side-chains, we use N or

P notation only when the target chain is known from the context. For a vertex u,

FV X(u,XY ) is a vertex on chain XY with the minimum index that is visible from

u when the indices start from corner vertex X. Similarly, LV X(u,XY ) is a vertex

on chain XY with the maximum index that is visible from u when the indices start

from corner vertex X. We have used FV and LV respectively as abbreviations for

first visible and last visible. Fig. 3 depicts this notation.

Lemma 1. It is always possible to identify at least two corners of a pseudo-triangle

P from its corresponding Hamiltonian cycle and visibility graph.

Proof. Since a corner is a convex vertex, it cannot be a blocking vertex for its

neighbors. On the other hand, every concave vertex blocks visibility of its neighbors.

Therefore, in the Hamiltonian cycle of a pseudo-triangle, there are at most three

vertices whose adjacent vertices are visible pairs. By traversing the Hamiltonian

cycle, these visible pairs, and the corresponding corners, can be identified.

Suppose that this method does not identify all three corners. Without loss of

generality, assume that A is an unidentified corner and its adjacent vertices on

chains AB and AC are respectively u and v. This means that u and v do not see

each other and there must be a blocking vertex for this invisible pair. Due to their

concavity, this blocking vertex cannot belong to the chains AB and AC. Consider

the shortest Euclidean path between u and v inside the pseudo-triangle(Fig. 4). It

is clear that this path is composed of a subchain of BC, say [w, . . . , w′], and two

edges (u,w) and (w′, v) where IndB(w′) ≥ IndB(w) and both edges (u,w) and

(w′, v) belong to the visibility graph. The polygon formed by < u, . . . , B, . . . , w >

is a tower polygon with base (u,w) and corner B. The corner of this tower is the

isolated vertex obtained by removing the edges of its Hamiltonian cycle from its

visibility graph. Therefore, the corner vertex B is detectable. The same argument

holds for the tower polygon formed by < w′, . . . , C, . . . , v > from which the corner

C can be identified. This means that if A cannot be identified from the visibility

graph, the other two corners will be detectable.

Consider a pseudo-triangle P with side-chains AB, AC, and BC, and G and H
as its visibility graph and Hamiltonian cycle, respectively. Assume that the method
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described in Lemma 1, identifies only two corners of P. Without loss of generality,

assume that A is the unidentified vertex. This means that there is a subchain on

BC which blocks the visibility of adjacent vertices of A on chains AB and AC.

Then, there is no visibility edge between a vertex from AB and a vertex of AC. By

removing the edges of the Hamiltonian cycle from the visibility graph, two isolated

vertices B and C and a connected bipartite graph, with parts S and T , is obtained

where S consists of vertices of chains AB and AC except the isolated vertices B

and C and T consists of vertices of BC except B and C. By adding the isolated

vertex B to T , and the boundary edge e to this bipartite graph that connects B to

its adjacent vertex on AB, we will have a single isolated vertex C and a bipartite

graph with strong ordering. Then, according to Theorem 1 this bipartite graph

corresponds to a tower polygon with base edge e and G and H as its visibility graph

and Hamiltonian cycle, respectively. Fig. 5 shows how such a pseudo-triangle can

be interpreted as a tower polygon.

Therefore, we have the following property about the pair of H and G of a pseudo-

triangle.

Property 1. If H and G are respectively the Hamiltonian cycle and visibility graph

of a pseudo-triangle P, at least two corners of P can be identified. Furthermore,

if only two corners are detectable, the given H and G belong to a pseudo-triangle

if and only if there is a tower polygon with H and G as its Hamiltonian cycle and

visibility graph, respectively.

From this property, we assume for the remainder of this section that the method

described in the proof of Lemma 1 identifies all three corners. Otherwise, we can use

the tower polygon algorithm to decide whether the given pair of H and G belong to

a tower polygon( which is a special case pseudo-triangle) and obtain the answer.

An interval of a chain with endpoints p and q is the set of points on this chain

connecting p to q. Note that in this definition, the endpoints of an interval are not

necessarily vertices of the chain. For example, for points p on edge (ui, ui+1) and q

on edge (uj , uj+1) of a chain AB where i < j, the interval defined by p and q is the

chain [p, ui+1, . . . , uj , q].

Property 2. Every non-corner vertex of a side-chain sees a single non-empty interval

from any one of the other side-chains.

Proof. The inner angle of such a vertex is more than π and its inner visibility

region cannot be bounded by a single concave chain. Therefore, it will see some

parts from any of the other side-chains. The continuity of these visible parts on

each side-chain is proved by contradiction. Assume that a vertex u ∈ AB sees

two disjoint intervals [vi, . . . , vj ] and [vk, . . . , vl] from AC meaning that the interval

(vj , . . . , vk) is not visible from u. Consider an invisible point v′ in (vj , . . . , vk). There

must be a blocking vertex for the invisible pair (u, v′). This blocking vertex must

lie on the third side-chain which will also block either the visibility of u and vj or

u and vk.
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Property 3. (Fig. 6(a)) For any pair of side-chains AB and AC and a pair of vertices

{u, v} where u ∈ AB, v ∈ AC, v ̸= A, and u = FV A(v,AB), we have (PA(v), u) ∈
E. In other words, the closest vertex to A on AB which is visible to a vertex v ∈ AC,

for v ̸= A, is also visible from PA(v).

Proof. Consider the subpolygon < u,PA(u), . . . , A, . . . , PA(v), v >. If we trian-

gulate this polygon, there is no internal diagonal connected to v which means

that< u, v, PA(v) > must be a triangle in any triangulation. Therefore, the edge

(u, PA(v)) is diagonal and this edge must exist in the visibility graph.

Corollary 1. (Fig. 6(b)) For any pair of side-chains AB and AC and a vertex

v ∈ AC where v ̸= C, if FV A(v,AB) = uj and FV A(NA(v), AB) = uk, then

IndA(uk) ≥ IndA(uj).

Corollary 2. For any pair of side-chains AB and AC and a vertex v ∈ AC where

v ̸= C, if v does not see any vertex from AB, then NA(v) does not see any vertex

of AB as well.

Corollary 3. (Fig. 7(a)) For any pair of side-chains AB and AC and a pair of

vertices (u, v) where u ∈ AB and v ∈ AC and k, l > 0, if both (PA(u, k), v) and

(u, PA(v, l)) exist in E, then (PA(u, k), PA(v, l)) ∈ E.

Proof. Let u′ and v′ denote PA(u, k) and PA(v, l), respectively. Trivially,

IndA(u′) ≥ IndA(FV A(v,AB)). Applying Corollary 1 iteratively on chain

[v′, . . . , v] implies that IndA(FV A(v,AB)) ≥ IndA(FV A(v′, AB)). This means that

u′ lies between two vertices FV A(v′, AB) and u which are both visible from v′. Then,
Property 2 implies that u′ is also visible from v′.

Corollary 4. (Fig. 7(b)) For any pair of side-chains AB and AC and a pair of

vertices (u, v) where u ∈ AB and v ∈ AC, if both (NA(u, k), NA(v, l)) and (u, v)

exist in E where l, k > 0, then at least one of the edges (NA(u), v) or (u,NA(v))

exists in E.

Proof. We prove this by induction on k+l. For the induction base step, assume that

k = l = 1. If v is not visible fromNA(u),NA(v) must be equal to FV A(NA(u), AB).

Then, Property 3 implies that u sees NA(v).

For the inductive step, assume that the corollary holds for all k + l < n

where n > 2. Let u′ and v′ denote NA(u, k) and NA(v, l), respectively. If

IndA(FV A(u′, AB)) ≥ IndA(v), v sees both vertices u and u′ which according to

Property 2 sees NA(u) as well. Otherwise, according to Property 3, FV A(u′, AB)

is visible from PA(u′). If PA(u′) = u, then u sees v and FV A(u′, AB) which is

farther from A than v and means that u and NA(v) see each other. Finally, when

PA(u′) ̸= u we obtain a smaller version of the problem with parameters k − 1 and

l which holds by induction.
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Corollary 5. (Fig. 7(c)) For any pair of side-chains AB and AC and a pair of

vertices u ∈ AB and v ∈ AC, where (u, v) ∈ E and none of the edges (NA(u), v)

and (u,NA(v)) exist in E, all visible vertices of AC from NA(u, k) are also visible

from NA(u, k − 1) (for any k > 0). This implies that LV A(NA(u, k), AC) must lie

above v.

Proof. Any visible vertex v′ must belong to [A, . . . , PA(v)]. Otherwise, according

to Corollary 4 either (NA(u), v) or (u,NA(v)) must exist. According to Corollary 1,

FV A(u,AC) is closer to A than FV A(NA(u, k), AC), and because of the continuity

of the chain that is visible from u (Property 2) , v′ will be visible from u. This implies

that v′ is visible from all vertices of the chain [u, . . . , NA(u, k)].

For each pair of vertices u ∈ AB and v ∈ AC, the diagonal edge (u, v) in

the visibility graph of a pseudo-triangle specifies a tower formed by the boundary

vertices < u, . . . , A, . . . , v >. The vertices of this tower satisfy the strong ordering

defined earlier. This strong ordering can be derived from Property 2 and corollaries 3

and 4. Therefore, we do not specify this as a new property.

Property 4. For any pair of side-chains AB and AC and a pair of vertices u ∈ AB

and v ∈ AC, where (u, v) ∈ E and none of the edges (NA(u), v) and (u,NA(v))

exist in E,

a. (Fig. 8(a)) there is a non-empty subchain of the third side-chain BC which

is visible from both u and v.

b. (Fig. 8(b)) let [w, . . . , w′] be the maximum subchain of BC visible to both

u and v where w′ = NB(w, l), l ≥ 0. Then, w′ is not closer to B than

LV B(NA(u), BC), or formally, IndB(w′) ≥ IndB(LV B(NA(u), BC)).

c. (Fig. 8(b)) FV B(NA(v), BC) is not closer to B than LV B(NA(u), BC), or

formally, IndB(FV B(NA(v), BC)) ≥ IndB(LV B(NA(u), BC)).

Proof. (a) Triangulating P using the edge (u, v), the adjacent triangle of this edge

on the opposite side of A must have its third vertex on BC. This is due to the

invisibility of (NA(u), v) and (u,NA(v)) pairs. Therefore, this chain contains at

least one vertex. From Property 2 we know that the visible part of BC from any

one of vertices u and v is continuous and the intersection of these parts will be

continuous as well.

(b) From (a) we know that the subchain [w, . . . , w′] is non-empty. For the sake

of contradiction, assume that w′′ = LV B(NA(u), BC) is farther from B than w′.
Then, the segments (w′′, NA(u)) and (w′, v) intersect each other inside the pseudo-

triangle. Let p be this intersection point. The sub-polygon formed by the boundary

vertices < u,NA(u), p, v > must be a convex polygon that completely lies inside the

pseudo-triangle. Otherwise, w′ will prevent NA(u) and w′′ from seeing each other.

So, the diagonal edge (NA(u), v) must exist in E which is a contradiction.
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(c) Let v′ be NA(v) and u′ be NA(u). For the sake of contradiction, assume that

FV B(v′, BC) is closer to B than LV B(u′, BC). Then, the edges (v′, FV B(v′, BC))

and (u′, LV B(u′, BC)) intersect within the pseudo-triangle. Let p be this intersec-

tion point. The sub-polygon formed by the boundary vertices < u, v, v′, p, u′ >

must be a convex polygon that completely lies inside the pseudo-triangle. Other-

wise, FV B(v′, BC) will prevent u′ and LV B(u′, BC) from seeing each other. So, all

diagonal edges (u, v′), (u′, v), and (u′, v′) must exist in E which is a contradiction.

Corollary 6. For any side-chain BC, there exists at least one vertex w ∈ BC that

sees some vertices from both of the other side-chains. Furthermore, every vertex

PB(w, k) where k > 0, sees at least one vertex from AB.

Proof. If there is a pair of vertices u ∈ AB and v ∈ AC satisfying Property 4(a),

the first part holds for the vertices of the subchain of the third side-chain BC

which is visible from both u and v. If there is no such a pair of vertices, without

loss of generality assume that B sees some vertices of AC and v = LV A(B,AC).

Trivially, the adjacent vertex of B on side-chain BC sees both B ∈ AB and v ∈ AC.

This can be obtained directly from Property 4(a) by imaginary cloning B as two

separate vertices on AB and AC. and adding new corner vertex B as a point on

the supporting line of B and v in the opposite side of v.

Having a vertex satisfying the first part, the second part follows from Property 3.

Property 5. (Fig. 9) For any side-chain BC and a vertex w ∈ BC with distinct

vertices u = FV A(w,AB) and v = FV A(w,AC), the vertices u and v are visible

from each other.

Proof. Let P ′ be the subpolygon with < A, . . . , u, w, v, . . . , A > as its boundary

vertices. The vertex w does not see any other vertex of P ′ which means that the

diagonal uv must be used to triangulate P ′. This means that u and v must be visible

from each other.

Property 6. (Fig. 10) For any side-chain BC, let u and v be respectively the closest

vertices on AB and AC to A which are visible from some vertex (not necessarily

the same) of BC. Then, there exists a non-empty subchain [w, . . . , w′] in BC ,

w′ = NB(w, l) and l ≥ 0, that either all vertices of this subchain are visible from

both u and v, or, (w,w′) is an edge of BC and w sees v and w′ sees u.

Proof. It is simple to show that (u, v) ∈ E. Assume that no vertex on BC sees

both vertices u and v. Then, we first show that there is a pair of vertices w and

w′ = NB(w, l) where w sees v and w′ sees u. Let w be FV C(v,BC) and w′ be
FV B(u,BC). Trivially, w ̸= w′ and w is closer to B than w′ (otherwise, u and v

will be visible to both w and w′). To complete the proof, it is enough to show that

w′ = NB(w). This is done by showing that any vertex w′′ between w and w′ on



10 S. Mehrpour, A. Zarei

BC must see at least one of the vertices u and v which contradicts the definition of

w and w′.
Assume that there is a vertex w′′ between w and w′ and it sees neither u nor

v. In the tower polygon formed by boundary < u, . . . , B, . . . , w′′, w′ >, the blocking

vertex for the invisible pair (w′′, u) must lie on AB. Similarly, in the tower formed by

boundary < w,w′′, . . . , C, . . . , v >, the blocking vertex for the invisible pair (w′′, v)
must lie on AC. Therefore, at least one of the side-chains AB and AC must be

convex which is a contradiction. So, w′′ must see at least one of the vertices u and

v.

Corollary 7. (Fig. 11) If w and w′ satisfy the conditions of Property 6, then for

k > 0:

• ui = FV A(PB(w′, k), AB) is not closer to A than

uj = FV A(P (w′, k − 1), AB).

• If there are vertices vi = FV A(PB(w, k), AC) and

vj = FV A(PB(w, k − 1), AC), then vi is not closer to A than vj.

These mean that as we move from w′ to w the topmost visible vertices of AB and

AC go down along these chains.

Proof. For the sake of contradiction, assume that ui is closer to A

than uj . The diagonal edge (w′, FV A(w′, AB)) along with vertices <

w′, . . . , B, . . . , FV A(w′, AB) > form a tower polygon which contains the vertices

ui and uj , and satisfies strong ordering. When both edges (PB(w′, k), ui) and

(PB(w′, k − 1), uj) exist in the visibility graph, the edge (PB(w′, k − 1), ui) must

also exist in E.

We prove the second part by contradiction. Let PB(w, l) be the closest vertex

of BC to B which sees at least one vertex from AC (l ≥ 0). For l ≥ k > 0, assume

that vi is closer to A than vj . Since FV A(w,AC) is not farther from A than vi,

Corollary 3 implies that vi sees w. According to Property 2, vi is also visible from

PB(w, k − 1) which is a contradiction.

Property 7. Let [wi, . . . , wj ] be the subchain of BC satisfying Property 6 and for

any vertex w ∈ BC, u = FV A(w,AB) and v = FV A(w,AC) are the closest vertices

to A which are visible to w. Then:

a If w ∈ [wi, . . . , wj ], then at least one of the pairs (NA(u), PA(v)) and

(PA(u), NA(v)) are invisible.

b If w ∈ [B, . . . , wj ] and (NA(u), PA(v)) are invisible vertices, then this hap-

pens for all vertices in [B, . . . , w] and LV A(w,AC) is not farther from A

than LV A(NB(w), AC). This is symmetrically true when w ∈ [wi, . . . , C]

and (PA(u), NA(v)) are invisible vertices.
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c If w ̸= B is closer to B than wi, then (NA(u), PA(v)) is an invisible pair.

Symmetrically, (PA(u), NA(v)) are invisible vertices when w ̸= C is closer

to C than wj .

Proof. (a) Consider the subpolygon P ′ with boundary < w, v, . . . , A, . . . , u >. The

pairs (w,PA(v)) and (w,PA(u)) are invisible. These pairs share the same blocking

vertex. If u is the blocking vertex, then (NA(u), PA(v)) is an invisible pair, and if

v is the blocking vertex, then the pair (PA(u), NA(v)) is invisible.

(b) Assume that (NA(u), PA(v)) are invisible from each other. This means that

the visible vertices of AC from w are bounded from above by vertices of AB. This

will happen for all vertices in [B, . . . , w] as well. A similar argument holds when

(PA(u), NA(v)) is the invisible pair.

(c) It is clear that at least one of the vertices FV A(wi, AB) and FV A(wi, AC)

is farther from A than u and v. For the sake of contradiction, assume that

(NA(u), PA(v)) is a visible pair. Then, in subpolygon P ′ =< w, v, . . . , A, . . . , u >,

v must be the blocking vertex for the pairs (w,PA(v)) and (w,PA(u)). This

vertex also blocks the pairs (NB(w), PA(u, i)) and (NB(w, l), PA(v, j)). But, for

some l > 0 and i and j ≥ 0, NB(w, l) = w′, PA(u, i) = FV A(w′, AB), and

PA(v, j) = FV A(wi, AC) which contradicts the definition of wi.

As mentioned earlier, Ghosh introduced four necessary conditions for a visibility

graph of a simple polygon. It is simple to show that these conditions are derived

from the properties described in this section which means that these properties

include Ghosh’s conditions.

4. Pseudo-Triangle Reconstruction

In this section, G(V,E) denotes the visibility graph of a pseudo-triangle P with

AB, AC, and BC side-chains and the order of vertices on the boundary of P is

specified by a Hamiltonian cycle H =< A, . . . , C, . . . , B, . . . , A > in G. We assume

that the inputs G and H satisfy the properties 1 to 7. We propose an algorithm for

reconstructing a pseudo-triangle corresponding to the given pair of G and H.

In order to reconstruct the pseudo-triangle P, we divide P into four subpolygons

X , Y, Z, and Z ′ as shown in Fig. 12 and reconstruct each one separately. For the

sake of brevity, ui = NA(A, i) on side-chain AB, vj = NA(A, j) on side-chain AC,

and wk = NB(B, k) on side-chain BC where i, j, k ≥ 0. We assume that AB and

AC have respectively α+ 1 and δ + 1 vertices.

The subpolygon X is formed by subchains [A, . . . , uν ] and [A, . . . , vµ] and edge

(uν , vµ) where LV A(uν , AC) = vµ and LV A(vµ, AB) = uν . The vertices uν and

vµ are identified by walking alternatively on side-chains AB and AC from corner

vertex A towards B and C. As a step of this trace, assume that we are at vertices

ui and vj and want to go one step further on AB. If ui is the last vertex on AB or

vj does not see ui+1 we fix ui as uν . Otherwise, we go to ui+1 in this step. Walking
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on side-chain AC is done similarly. The sub-polygon X is a tower polygon with

strong ordering in its visibility graph. Note that uν+1 or vµ+1 exists only when the

side-chain BC has more than one edge, otherwise, two identified adjacent corners

uν and vµ compose the base of a tower polygon which can be constructed by the

tower reconstruction algorithm. So, we assume that BC has more than one edge.

The subpolygon Y is identified as follows: Let [wi, . . . , wj ] be the maximum sub-

chain of BC visible from both uν and vµ. According to Property 4(a), this chain is

non-empty and continuous. Let LV B(uν+1, BC) = wk and FV B(vµ+1, BC) = wl.

From Property 4(b), k ≤ j and l ≥ i and from Property 4(c), k ≤ l. We

define M and N as max(k, i) and min(l, j), respectively. It is clear that chain

[wM , . . . , wN ] contains at least one vertex. Then, Y is defined to be the polygon

with < uν , wM , . . . , wN , vµ > as its boundary.

The subpolygon Z is formed by subchains [uν , . . . , B)] and [B, . . . , wM ] and

edge (uν , wM ). Similarly, subchains [vµ, . . . , C] and [C, . . . , wN ] and edge (vµ, wN )

specify the subpolygon Z ′. It is clear that P is the union of X , Y, Z, and Z ′.
Our reconstruction algorithm first builds X using the tower reconstruction al-

gorithm in such a way that vertices of AB lie to the left of vertices of AC. Then, we

extend this polygon to build Y (Section 4.1) and build and attach Z and Z ′ parts
to this polygon (Section 4.2) to complete the construction procedure.

4.1. Reconstructing Y
In this step, we build the subpolygon Y =< uν , wM , . . . , wN , vµ >. We know the

position of vertices uν and vµ from the previous step, which are also on the boundary

of Y. To locate positions of other vertices, we show that there are non-empty regions

in which these vertices can be placed.

For any vertex wj from Y which FV A(wj , AB) = ui and FV A(wj , AC) = vl,

we define a region W j
i,l from which each point sees all vertices in the subchains

[ui, . . . , uν ] and [vl, . . . , vµ]. Therefore, wj can be placed in W j
i,l satisfying the visi-

bility constraints between wi and vertices of X . We use W j instead of W j
i,l whenever

i and l indices are not important. The region W j is determined as follows: Since

wj sees uν and vµ, the vertices ui and vl always exist and are well-defined. If ui

and vl are identical, then i = l = 0 and the region W j = W j
0,0 is defined to be the

part of the cone formed by the lines through (A, u1) and (A, v1) restricted to the

underneath of the line through points uν and vµ. Trivially, each point of W j sees

all vertices uν , . . . , A, . . . , vµ.

Let Fz(x, y) be the ‘z’ half-plane defined by the line through x and y where ‘z’

is ‘b’ (bottom), ‘r’ (right), or ‘l’ (left). If ui and vl are distinct vertices, according

to Property 7, at least one of the pairs (ui+1, vl−1) and (ui−1, vl+1) do not see each

other. The invisible pair is determined by applying Corollary 7 and Property 7.

Assume that (ui+1, vl−1) is the invisible pair. Then, W j
i,l is defined to be

Fr(si+1, ui)
⋂Fr(vl, ui)

⋂Fl(ui−1, ui)
⋂Fl(vl−1, ui)

⋂Fb(vµ, uν) (Fig. 13). As de-

fined in Section 2, si+1, ui and ui+1 are collinear. We used Fr(si+1, ui) instead of

Fr(ui+1, ui) here because at least for i = ν we do not know the position of ui+1 yet.
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Any one of these half-planes forces some visibility constraints for wj . Fb(vµ, uν)

implies that wj sees both unu and vµ; Fr(si+1, ui) implies that wj sees all vertices <

ui, . . . , uν >; Fr(vl, ui) implies that wj sees all vertices < vl, . . . , vµ >; Fl(ui−1, ui)

prevents wj from seeing vertices < A, . . . , ui−1 >; and Fl(vl−1, ui) prevents wj

from seeing vertices < A, . . . , vl−1 >. Therefore, all points in this region satisfy the

visibility constraints from wj to vertices < uν , . . . , A, . . . , vµ >.

Concavity of AB and AC implies that intersections Fr(si+1, ui)
⋂Fl(ui−1, ui)

and Fr(vl, ui)
⋂Fl(vl−1, ui) are not empty. Therefore, W j

i,l will be empty only when

Fr(si+1, ui)
⋂Fl(vl−1, ui) is empty or Fr(vl, ui)

⋂Fl(ui−1, ui) is empty. The first

case is impossible, because otherwise, ui+1 must be visible from vl−1 which is in

contradiction with invisibility assumption of (ui+1, vl−1). The second case is also

impossible because then, the pair ui and vl must be invisible. But, according to

Property 5, ui and vl must be visible from each other.

Therefore, the region Fr(si+1, ui)
⋂Fr(vl, ui)

⋂Fl(ui−1, ui)
⋂Fl(vl−1, ui) is

non-empty and some part of this intersection lies in half-plane Fb(vµ, uν).

According to the above discussion, W j is defined by Fb(vµ, uν) and two half-

planes of {Fr(si+1, ui),Fr(vl, ui),Fl(ui−1, ui),Fl(vl−1, ui)}. The apex of W j is de-

fined to be the intersection of the corresponding lines of these two half-planes which

is ui.

The above discussions were for the assumption that (ui+1, vl−1) is the invisible

pair. The description for the cases where (ui−1, vl+1) is the invisible pair is sym-

metric: W j
i,l is Fl(rl+1, vl)

⋂Fl(vl, ui)
⋂Fr(vl−1, vl)

⋂Fr(ui−1, vl)
⋂Fb(vµ, uν) and

the apex of W j will be vl.

If the apex of W j lies on AB, Property 7 implies that the apex of W j−1 will

lie on AB as well. Furthermore, Corollary 7 implies that W j−1 is either completely

coinciding W j or is completely on its left. Similarly, if the apex of W j lies on AC,

then the apex of W j+1 lies on AC as well, and W j+1 is either coinciding W j or is

completely on its right.

Then, we can place the vertices wM , . . . , wN of Y on an arbitrary concave chain

inside Fb(vµ, uν) in such a way that wj ∈ W j . This placement satisfies the visibility

constraints for X and Y. However, to guarantee the reconstruction of Z and Z ′, we
define some constraints on this concave chain which is described in the rest of this

section.

Let s′i (i > ν) be the intersection of AC and the line through ui and

LV B(ui, BC), r′k (k > µ) be the intersection of AB and the line through vk and

FV B(vk, BC), t′j (j < M) be the intersection of AC and the line through wj and

wj+1, and t′j (j > N) be the intersection of AB and the line through wj and wj−1

(see Fig. 14).

Note that although we have not yet determined positions of vertices defining s′i,
r′k, and t′j , we determine their containing edges from the visibility information as

follows: for i > ν, if ui sees at least one vertex from AC, si lies on the segment con-

necting PA(FV A(ui, AC)) and FV A(ui, AC) and s′i lies on the segment connecting
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(LV A(ui, AC) and NA(LV A(ui, AC)). On the other hand, if ui sees no vertex from

AC, then for k ≥ i, both sk and s′k lie on the segment connecting PA(LV A(uj , AC))

and LV A(uj , AC) where uj has the highest index among the vertices of AB that

see at least one vertex from AC. Corollary 5 implies that all these points lie on

boundary edges of X , except when i = ν+1 and wM−1 is visible to both uν and vµ,

for which both sk and s′k for k ≥ i lie on (vµ, vµ+1). The same situation happens

for rl and r′l when l > µ.

The containing edge of t′j for j < M is determined as follows: If wj sees at

least one vertex from AC, then t′j lies on the segment connecting LV A(wj , AC)

and NA(LV A(wj , AC)), otherwise, it lies on the containing edge of s′α (Note that

according to our assumption at the beginning of Section 4, α and δ are respectively

the greatest indices of vertices ui and vj on AB and AC side-chains.). Similarly, for

j > N , if wj sees at least one vertex from AB, then t′j lies on the segment connecting

LV A(wj , AB) and NA(LV A(wj , AB)), and otherwise, it lies on the containing edge

of r′δ. Property 7 implies that all these points lie on boundary edges of X or edges

(vµ, vµ+1) and (uν , uν+1).

The containing edges of s′α and r′δ are respectively called “the floating edge in

AC” and “the floating edge in AB”. We call these edges floating because we increase

their length and reposition their underneath vertices to enforce the concavity in

building Z and Z ′.
We define the vertices wM∗ and wN∗ as follows: If BC has two edges, then wM

and wN are both equal to w1 (the middle vertex of BC), and wM∗ and wN∗ are

also defined to be w1. When BC has more than two edges, M∗ is defined to be

M when the apex of W M does not lie on a vertex of AC below its floating edge.

Otherwise, M∗ is defined to be j where j is the maximum index for which the

apex of W j lies above the floating edge of AC (this apex may lie on AB). If the

index of IndA(FV A(wM∗ , AB)) is greater than ν, the apex of W M∗
is temporarily

assumed to be uν and W M∗
is defined to lie between Fr(si+1, uν) and Fl(uν−1, uν).

The index N∗ is defined similarly. It is clear that at least one of the equalities

wM∗ = wM or wN∗ = wN holds.

We use R(x, y) to denote the ray from x towards y. In addition, Ra(x, y) denotes

the ray from a and parallel to R(x, y) (Fig. 15).

Despite our definition of the regions W i for all vertices wi ∈ BC, we refine this

definition for W N∗
(resp. W M∗

) when N∗ ̸= N (resp. M∗ ̸= M) or the floating

edge of AC (resp. AB) lies under the line through uν and vµ. At most one of the

floating edges lies under R(uν , vµ). Because otherwise, either vmu will see uν+1 or

uν will see vµ+1 which is in contradiction with the selection of uν and vµ. Let v be

a point on Rvµ(rµ+1, vµ) when the floating edge of AC lies under R(uν , vµ), or be

vµ otherwise. Similarly, u is defined to be either uν or a point on Ruν
(sν+1, uν).

The regions W N∗
and W M∗

are restricted to lie under the line through u and v.

Moreover, we know that at most one of the indices M∗ and N∗ is not equal to its

corresponding index M or N . Without loss of generality, assume that N∗ ̸= N .
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Then, we additionally restrict the region W N∗
as follows (this restriction is not

applied when we reconstruct Z or Z ′). Let p be a point inside the intersection of W N

and Fb(u, v) and with an arbitrary positive distance from R(u, v). We determine

t′N∗ on its edge and with ϵl distance above the lower endpoint of this edge where

ϵ > 0 and l is the number of vertices in AC and BC whose r′(·)’s and t′(·)’s lie on

this edge. The region W N∗
is restricted to lie under the line through t′N∗ and p (see

Fig. 16).

Let sα be a point on its edge and with ϵk distance below the upper endpoint of

this edge where ϵ > 0 and k is the number of vertices in AB whose s(·)’s lie on this

edge. Similarly, let s′α be a point on its edge and with ϵm distance above the lower

endpoint of this edge where ϵ > 0 and m is the number of vertices in AB and BC

whose s′(·)’s and t′(·)’s lie on this edge. The value of ϵ is small enough such that sα
lies above s′α. The points rδ and r′δ are defined similarly.

As shown in Fig. 15, let S (resp. T ) be the strip defined by the supporting lines

of R(sα, u) and Rs′α
(sα, u) (resp. R(rδ, v) and Rr′δ

(rδ, v)).

Lemma 2. It is always possible to enlarge the floating edges of AC and AB and

re-position the vertices that lie under the enlarged edges such that W M∗ ⋂S and

W N∗ ⋂ T are not empty and the new positions of vertices of X satisfy their visibility

relations in the visibility graph.

Proof. Assume that the intersection of W M∗
and S is empty. According to the

definition of M∗, the apex of W M∗
either lies above the floating edge of AC or lies

on AB. This implies that enlarging the floating edge of AC only affects half-plane

Fb(vµ, uν) that defines up-side of W M∗
. Then, we can enlarge the floating edge of

AC in such a way that the lower defining ray of S and the upper defining half-plane

of W M∗
intersect inside W M∗

which means that the intersection of W M∗
and S

is not empty. Moreover, when this intersection is not empty, this extension will

just increase the intersection. On the other hand, enlarging this edge changes the

position of vertices of X which lie under this edge. For these vertices, we have their

corresponding points r’s. By enlarging the floating edge of AC, the new positions

will be computed according to their definition (for a vertex vi it must lie on the

supporting line of ri and vi−1) to satisfy the visibility relations in the visibility graph

reduced to vertices of X . To complete the proof, it is simple to see that extending

the floating edge of AB will again increase the intersection of BCM∗
and S.

The proof for wN∗ is analogously the same.

After locating the position of vertices in X (by possibly extending the floating

edges), we place the vertices of Y as follows: If N∗ ̸= N , then we set p as wN and

place wM∗ = wM inside the intersection of W M and S in such a way that both

wM and wN be visible to u and v; neither wM blocks the visibility of wN , nor wN

blocks the visibility of wM . WhenM∗ ̸= M , wM and wN are positioned analogously.

Finally, if M∗ = M and N∗ = N , we select a point from S ∩ W M as wM and a
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point from T ∩W N as wN again in such a way that both see u and v. Then, we put

the vertices wM+1, . . . , wN−1 on a slightly concave chain from wM to wN in such a

way that each wj (M ≤ j ≤ N) lies inside W j and sees u and v.

Based on the definition of W i’s regions and the specified positions of vertices

inside these regions, this setting is compatible with the visibility graph restricted

to the vertices of X and Y.

4.2. Reconstructing Z and Z′

In this step, we place the vertices of Z and Z ′ to complete the reconstruction

procedure. As said before, Z (resp. Z ′) is a part of the target pseudo-triangle with <

uν , uν+1, . . . , B, . . . , wM > (resp. < vµ, vµ+1, . . . , C, . . . , wN >) boundary vertices.

Here, we only describe how to build Z. The construction of Z ′ is symmetrically the

same.

Location of a vertex ui ∈ Z is determined by the intersection point of the

rays R(si, ui−1) and R(s′i, LV
B(ui, BC)) and location of a vertex wh ∈ Z is an

arbitrary point on R(t′h, wh+1) inside the region W h. Therefore, to construct Z
we start from uν+1 and wM−1, and in each step, we determine the position of

one of the vertices and go forward to the next vertex. This is done by incrementally

determining direction of the rays R(si, ui−1), R(s′i, LV
B(ui, BC)), and R(t′h, wh+1)

as well as W h regions.

Consider the edges of the pseudo-triangle on which the points si, s
′
i, rj , r

′
j , and

t′l for i > ν, j > µ, and l < M and l > N lie. Keep an upper point and a lower

point for each edge. Initialize the upper point with the upper endpoint of that edge

or the latest located s(·) or r(·) on this edge. Initialize the lower point with the

lower endpoint of the edge. Position of each s(·), r(·), s′(·), r
′
(·), and t′(·) is determined

whenever we need the rays passing through them. We place the points s′(·), r
′
(·),

and t′(·), with ϵ > 0 distance above the current lower point of their edges and place

the points s(·) and r(·), with ϵ > 0 distance below the upper point of their edges.

Whenever a new s(·), r(·), s′(·), r
′
(·), or t

′
(·) point is located on an edge, the upper or

lower point of that edge is updated properly.

More precisely, assume that we have already determined positions of vertices

uν , uν+1, . . . , ui−1 (i > ν) as well as the vertices wM , wM−1, . . . , wj+1 (j < M). To

determine the position of one of the vertices ui and wj we do as follows: Let wk

be LV B(ui, BC). If k < j, then we have already located the position of wk, and

directions of the rays R(si, ui−1) and R(s′i, LV
B(ui, BC)) are known. We will show

in Lemma 3 that these rays intersect. So, ui is located on the intersection point of

these rays (Fig. 17a). Otherwise, we must first determine position of wj which lies

on R(t′j , wj+1) and inside W j (Fig. 17b). The position of wj+1 is already known

and t′j+1 is determined according to the above paragraph. From these two points

the direction of R(t′j , wj+1) is obtained. The region W j is determined as follows:

Suppose that FV A(wj , AB) = uk and FV A(wj , AC) = vl. We define W j as in the

previous section with the exception that it may be possible that only one of the

vertices uk and vl exists. By Corollary 6, for j < M , uj always exists. If wj sees



Pseudo-Triangle Visibility Graph: Characterization and Reconstruction 17

no vertex from AC, then it would see a part of the floating edge of AC. Hence, we

consider the upper endpoint of this edge as vl−1. From properties 5 and 7 we know

that W j is not empty and lies to the left of W j+1. Moreover, it will be shown in

Lemma 3 that R(t′j , wj+1) intersects Rs′α
(sα, u). Since Rs′α

(sα, u) passes through

all W (·), R(t′j , wj+1) passes through W j . Therefore, we can determine the position

of wj .

Note that the definitions of si’s and t′j ’s enforce the concavity of the ver-

tices on AB and BC, respectively. According to the definition of R(si, ui−1) and

R(s′i, LV
B(ui, BC)) for ui and R(t′j , wj+1) and W j for wj , in both cases (locating

ui or wj), visibility of the newly located vertex is the same as its visibility in the

visibility graph (restricted to the vertices of X , Y, and the constructed part of Z).

This means that at the end of this construction where vertices B and C are located

the visibility graph of the constructed polygon is consistent with the input visibility

graph.

Lemma 3. The rays R(si, ui−1) and R(s′i, LV
B(ui, BC)) for i > ν are convergent

inside S.

Proof. Remember that S is the strip defined by the supporting lines of R(sα, u)

and Rs′α
(sα, u). By Corollaries 1 and 5, we know that si lies above the strip S and s′i

lies below this strip. Then, it is enough to show that for i > ν, R(s′i, LV
B(ui, BC))

crosses Rs′α
(sα, u) and R(si, ui−1) crosses R(sα, u). We first prove that Rs′α

(sα, u)

intersects R(s′i, LV
B(ui, BC)). Let LV B(ui, BC) = wh. For M∗ ≤ h ≤ M , it can

be easily shown by induction that wh is located above R(t′M∗ , wM ). Moreover, it is

simple to see that s′i must lie below t′M∗ . Then, knowing that R(t′M∗ , wM ) crosses

Rs′α
(sα, u) implies that R(s′i, wh) intersects Rs′α

(sα, u) as well. From the fact that

wM∗ lies inside S, it can also be shown by induction that wh for h < M∗ lies inside

S which means that R(s′i, wh) crosses Rs′α
(sα, u).

To complete the proof, we prove by induction on i that R(si, ui−1) crosses

R(sα, u). It is clear that sν+1 is located above sα which means that R(sν+1, uν) in-

tersects R(sα, u). From the previous paragraph we know that Rs′α
(sα, u) intersects

R(s′ν+1, LV
B(uν+1, BC)). Therefore, R(sν+1, uν) and R(s′ν+1, LV

B(uν+1, BC))

will intersect at a point within S. Since we put uν+1 at this intersection point, as

the induction step, assume that ui−1 lies inside S where i > ν+1. Then, R(si, ui−1)

intersects R(sα, u).

5. Analysis
In the previous sections, we proved several properties on the visibility graph of a

pseudo-triangle and proposed an algorithm that constructs a pseudo-triangle for

a given pair of the visibility graph G(V,E) and Hamiltonian cycle H when this

pair supports these properties. In this section, we analyze the running-time of algo-

rithms required to check these properties and the running time of the reconstruction

algorithm.



18 S. Mehrpour, A. Zarei

To check Property 1, we need a linear time trace on vertices of G according to

their order in H. This is done in O(n) time, where n = |V |. If two corners are

identified in this way, the existence of a tower polygon corresponding to the pair

of G and H can also be verified in linear time [21]. Property 2 can be verified in

O(|E|) time by a simple trace of the edge list of the visibility graph. Precisely, for

each vertex u ∈ AB we maintain the minimum index, maximum index, and number

of vertices of the other side-chains AC and BC which are visible from u. After

finishing this trace, from these triple of parameters (minimum index, maximum

index, number of visible vertices) the Property 2 is checked in O(n) time. To verify

the rest of the properties, it is required to know the visible subchains from each

vertex. These subchains are obtained as by-products using the method proposed

for checking Property 2. Having these subchains for each vertex, Property 3 can be

verified in O(n) time.

In Property 4, for each pair (AB,AC) of side-chains, we must find all pairs of

visible vertices (u ∈ AB, v ∈ AC) such that (NA(u), v) and (u,NA(v)) are invisible.

Having the visible subchains for each vertex, this check is done in constant time for

each edge (u, v) ∈ E. Therefore, all pairs of vertices (u ∈ AB, v ∈ AC) satisfying

the assumption of this property can be obtained in O(|E|) time. Then, for each pair,

the three necessary conditions are checked in constant time using the maintained

visible subchains of u and v vertices. Checking properties 5, 6 and 7 can be done

in O(n) time by simple trace on the side-chains. Therefore, all properties can be

verified in O(|E|) time.

To complete the analysis, we compute the running time of the reconstruction

algorithm presented in Section 4. Assume that G satisfies all of the properties intro-

duced in Section 3 and we know the visible subchains of each vertex according to

their order inH. The side-chains of the target pseudo-triangle are identified in linear

time according to the algorithm described in the proof of Lemma 1. Reconstructing

X is done using the tower reconstruction algorithm whose running time is linear in

terms of the number of edges in the visibility graph reduced to X . To reconstruct

Y, the algorithm needs to determine the floating edges of AB and AC which can be

done in constant time. Computing the W -type regions (for each vertex wi ∈ BC)

and determining the vertices wN∗ and wM∗ needs O(n) time. If the conditions of

Lemma 2 are not satisfied, the floating edges of AB and AC must be extended

which is done in O(1) time: A lower bound for the increase in floating edges can

be computed by using Thales’ theorem and trigonometric functions. Locating each

vertex of Y is also done in constant time. Finally, placing each vertex of Z and Z ′

takes constant time, as well. Therefore, the total running time of the algorithm is

O(|E|) time. We can combine all results as:

Theorem 2. The visibility graph and the boundary vertices of a pseudo-triangle

satisfy properties 1 to 7, and conversely, for any pair of graph G and Hamiltonian

cycle H satisfying these properties, there is a pseudo-triangle P whose visibility

graph and boundary vertices are respectively isomorphic to G and H. Checking these
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properties and reconstructing such a polygon can be done in O(|E|) time.

6. Conclusion

In this paper, we considered properties of the visibility graph of a pseudo-triangle

and obtained a set of necessary and sufficient conditions that such graphs must have.

Then, we propose an algorithm to reconstruct a polygon from a given visibility graph

which supports these properties. This characterizing and reconstructing problem,

despite its long history, is still at the start of its way to be solved for all polygons.
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Figures

Fig. 1: (a) A Spiral polygon, (b) a tower polygon, and (c) a pseudo-triangle.

Fig. 2: Constructing a tower polygon.

Fig. 3: Notation used for vertices.

Fig. 4: A pseudo-triangle with B and C as its detectable corners.

Fig. 5: Interpreting a pseudo-triangle as a tower polygon: (a) initial pseudo-

triangle, (b) equivalent tower polygon.

Fig. 6: (a) Property 3: PA(v) and FV A(v,AB) see each other, (b) Corollary 1:

FV A(v′, AB) cannot be closer to A than FV A(v,AB).

Fig. 7: (a) Corollary 3: PA(u, 2) and PA(v) must see each other, (b) Corollary 4:

u and NA(v) see each other, (c) Corollary 5: Visible vertices of AC from

NA(u, k) are also visible to NA(u, k − 1).

Fig. 8: (a) Property 4(a): u and v must see common vertices on mW , (b) Prop-

erty 4(b): w′ is not closer to B than LV B(NA(u), BC), Property 4(c):

FV B(NA(v), BC) is not closer to B than LV B(NA(u), BC).

Fig. 9: Property 5: FV A(w,AB) and FV A(w,AC) must see each other.

Fig. 10: Different cases of Property 6.

Fig. 11: Corollary 7: ui (resp. vi) is not closer to A than uj (resp. vj).

Fig. 12: The partitions of the initial polygon in reconstruction algorithm: the light-

gray region is X , the dark-gray is Y and the white parts are Z and Z ′.
Fig. 13: W j

i,l is the shaded region.

Fig. 14: Points s(·), s′(·), r(·), r
′
(·), and t′(·).

Fig. 15: The rays R(sα, u), Rs′α
(sα, u), R(rδ, v), and Rr′δ

(rδ, v).

Fig. 16: Restricting W N∗
.

Fig. 17: (a) Determining ui, (b) Determining wj .



22 S. Mehrpour, A. Zarei

A

C
B BC

ACAB

(c)(b)(a)

Fig. 1: (a) A Spiral polygon, (b) a tower polygon, and (c) a pseudo-triangle.
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Fig. 2: Constructing a tower polygon.

A

u
PA(u)

NA(u,−2)

NA(u)

FV A(u,AC)
LV A(u,AC)

B C

Fig. 3: Notation used for vertices.
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Fig. 4: A pseudo-triangle with B and C as its detectable corners.
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Fig. 5: Interpreting a pseudo-triangle as a tower polygon: (a) initial pseudo-triangle,

(b) equivalent tower polygon.
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Fig. 6: (a) Property 3: PA(v) and FV A(v,AB) see each other, (b) Corollary 1:

FV A(v′, AB) cannot be closer to A than FV A(v,AB).
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Fig. 7: (a) Corollary 3: PA(u, 2) and PA(v) must see each other, (b) Corollary 4:

u and NA(v) see each other, (c) Corollary 5: Visible vertices of AC from NA(u, k)

are also visible to NA(u, k − 1).
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Fig. 8: (a) Property 4(a): u and v must see common vertices on mW , (b)

Property 4(b): w′ is not closer to B than LV B(NA(u), BC), Property 4(c):

FV B(NA(v), BC) is not closer to B than LV B(NA(u), BC).
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Fig. 9: Property 5: FV A(w,AB) and FV A(w,AC) must see each other.
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Fig. 10: Different cases of Property 6.
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Fig. 11: Corollary 7: ui (resp. vi) is not closer to A than uj (resp. vj).
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Fig. 12: The partitions of the initial polygon in reconstruction algorithm: the light-

gray region is X , the dark-gray is Y and the white parts are Z and Z ′.
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Fig. 14: Points s(·), s′(·), r(·), r
′
(·), and t′(·).
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Fig. 15: The rays R(sα, u), Rs′α
(sα, u), R(rδ, v), and Rr′δ

(rδ, v).
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Fig. 16: Restricting W N∗
.
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Fig. 17: (a) Determining ui, (b) Determining wj .
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