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Abstract: In modern world, Fault prognosis play an essential role in the safe and reliable operation of wind turbines (WT). An efficient fault prognosis method will help in 
the earlier identification of WT faults and failures, thereby reducing WT maintenance costs and improving their operating time. WT’s are often controlled by Supervisory 
Control and Data Acquisition (SCADA), which, apart from controlling, provides very rich data pertaining to WT’s working parameters which could be used for fault 
prognosis of WT's. Most of the WT prognosis systems make use of Support Vector Machines (SVMs) in conjunction with SCADA data to predetermine the faults that might 
occur in the turbines in the near future. In these models, proper selection of SVM parameters is essential for precise fault classification. In this work, an optimised 
methodology using Artificial Bee Colony Optimisation (ABC) is proposed to find an optimal penalty factor and kernel function parameter that guarantees better 
classification accuracy for the SVM model. Based on the real time SCADA data availed from a wind farm, it is observed that the proposed ABC-SVM fault prognosis model 
has a quick convergence rate and good accuracy compared to the other GA-SVM, PSO-SVM, and ACO-SVM based models. 
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1    INTRODUCTION 
 

In recent years, the gradual depletion of fossil fuels and their environmental impact, as proposed by Tao Li [1], have 

led to a manifold increase in research efforts towards Renewable Energy Sources (RES) like Wind Energy Systems (WES), 

Photovoltaic Systems (PV), etc. Among the various RES systems, as proposed by Haas [2] and Wretling [3] - WES is 

considered an alternative to traditional fossil-based energy generation because of its clean nature and efficiency, and is 

gradually replacing fossil-based power sources. WES in general, Wind Turbines (WT) are thus gaining importance in 

recent days as the world is recognizing their significance in attaining the Paris Agreement's goal of limiting global warming 

to 1.5 degrees Celsius by 2100 [4]. 

This necessitates the development of more accessible and reliable wind energy solutions that provide guaranteed 

renewable energy generation. The remote and dispersed layout of WT’s, along with their persistent exposure to 

unpredictable situations, contributes to an increase in the frequency of WT failures. In order to assure continuous power 

generation and dependable operation from WT’s, various studies have focused on WT safety and preventive maintenance. 

Hossain [5] has proposed methodologies to assure a continuous and safe operation of WT’s. Liu [6] has proposed the need 

for preventive maintenance of WT rotors, gearboxes, blades, generator, etc. To optimize the preventive maintenance 

interval and to ensure that maintenance is carried out only when it is really necessary, real time Condition Monitoring (CM) 

of WT’s is necessary. 

As proposed by Wen [7], among the various CM techniques, condition monitoring based on sensor data and, in 

general, SCADA are drawing a lot of research interest. The ability to use SCADA data for fault diagnosis with no 

additional expense as opposed to other CM techniques has made SCADA data based CM an ideal choice for condition 

monitoring of WT’s. Though data analytic methods are proposed for WT Level and Wind Farm Level CM, WT level CM is 

commonly adopted as proposed by Jin [8].  

Sequeira et al. [9] demonstrated the correlation between SCADA data and turbine faults and have proposed methods to 

predict the WT fault based on the SCADA data.  Qiu [10] proposed a WT fault diagnosis model based on the Dempster–

Shafer evidence theory, which correlates and cross-correlates the available SCADA data like maintenance records and 

alarm data. Encalada [11] proposed the use of SCADA data alone for the fault prognosis of WT’s.   

However, the direct application of ML algorithms to the WT SCADA dataset is a little bit time consuming owing to 

the number of parameters/features stored in the SCADA dataset. To overcome the above difficulty, Velandia [12] and Wen 

[13] proposed the use of feature dimensionality reduction algorithms like PCA and Relief PCA to remove the unnecessary 

and irrelevant features from the dataset, thereby reducing the dataset's features, speeding up the calculation time, and 

providing an accurate result. 

As reviewed by Leite [14], SCADA based CM of WT’s are mainly centered on Artificial Neural Networks (ANNs) 

and support vector machines (SVMs) owing to their accuracies. Yue [15], Kong [16] and Xiang [17] have proposed an 

ANN and CNN based CM model for WT to detect the gearbox failure at an earlier stage using the SCADA data. ANN  and 

CNN besides its popularity in other applications finds a very limited application in WT - CM systems due to its complexity 

and increased training time with the increase in the number of samples and fault classes. 

SVM-based CM as proposed by Hu [17] and Leahy [18] on the other hand is less complex and is highly preferred in 

CM of WT’s because of its low sample demand, strong generalization ability, and high diagnostic accuracy.  However, the 

performance of SVM based CM too depends on the proper selection of the kernel function and penalty factor "C". Several 

optimization methods, like Grid Search GS, Bio Inspired Algorithms like Particle Swarm Optimization (PSO), Ant Colony 

Optimisation (ACO), Sparrow Search Algorithm (SSA) & Genetic Algorithms (GA) have been proposed in the literature to 

aid in the optimal parameter selection for the SVM-based CM. 
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Li [19] proposed using GS to find the optimal tuning parameters for the SVM model. GS is an inch-by-inch search 

algorithm, that often opts for low-dimensional data and is often characterised by sluggish search rates, with parameter 

optimisation often depending on the user experience. PSO based parameter optimisation as proposed by Zhang [20], Yerui 

[21] and ACO based parameter optimisation as proposed by Li [22], Yanjun[23] on the other hand, have a sluggish 

convergence rate and often get trapped in local optimal points, failing to find an optimal parameter. To overcome the 

sluggish behaviour of PSO and ACO based parameter optimisation, Xue [24] and Tuerxun [25] has proposed an SSA based 

PSO parameter optimisation. SSA, apart from having a fast convergence rate, has a very meagre ability to search for a 

global optimum and often ends up at a local optimum.  

The Artificial Bee Colony Algorithm (ABC) is an evolutionary algorithm based on the foraging behavior of bees. As 

proposed by Karaboga [26], Yang [27], and Wang [28] unlike other metaheuristic algorithms, ABC considers both local and 

global optimums at each iteration. The aforesaid feature of ABC increases the likelihood of finding the ideal solution while 

substantially reducing precocity, which makes ABC preferable over other metaheuristic optimization algorithms. In this 

work, a SVM based fault prognosis model with SVM parameters optimized through the ABC algorithm is proposed. 

The rest of the manuscript is structured as follows: Section 2 provides a short introduction to the SVM model, ABC 

algorithm, and ABC based SVM parameter selection. Section 3 provides a short description of the dataset used and the pre-

processing techniques. Section 4 gives the experimental validation and feasibility of implementation of the proposed ABC-

SVM on real-time data, followed by the comparison of the results obtained with PSO-SVM, ACO- SVM and GS-SVM 

models. Finally, Section 5 concludes this manuscript with concluding remarks. 

 
2     ABC – SVM ALGORITHM 
  

2.1 SVM 
 
SVM tries to solve any classification problem by building an ideal hyper plane that categorizes fault data from normal 

data. SVM classifies both linear and nonlinear data. SVM tries identifying Support Vectors (SV) to plot the boundary line. 

SV are data points that lie on either side of the hyperplane and are closest to it. 

Consider a generalized training dataset T defined by 

 

𝑇 =

{
 

 
(𝑥
11,
𝑥12,. . . 𝑥1𝑑 ), 𝑦1

(𝑥
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…………………… . .

(𝑥
𝑛1,
𝑥𝑛2,. . . 𝑥𝑛𝑑 ), 𝑦𝑛

                   (1) 

 
where (xi1,xi2,. . . xid ) corresponds to the ith data point in the given dataset with its corresponding label denoted by yi.  

‘n’ and “d” represents the number of data points available in the dataset and the dimension or number of features available 

in the dataset. 

SVM tries to find an optimal hyperplane that classifies the fault data from normal data based on margin maximization, 

resulting in the formation of the following optimization problem.   

 

𝑤,∈,𝑏
𝑚𝑖𝑛 1

2
‖𝑤‖2 + 𝐶 ∑ ∈𝑗

𝑛
𝑗=1           (2) 

subject to the condition  

𝑦𝑗 ((𝑤. 𝜎(𝑥𝑗)) + 𝑏) > 1 − 𝜖𝑗        (3)  

𝜖𝑗 ≥ 0, 𝑖 = 1,2,… . 𝑛          (4) 
 

     where “w” and “b” are the normal support vector and offset Value that correspond to the separating hyperplane. “C” is 

the penalty factor for the error term ϵ and it corresponds to the interval size and classification accuracy weight.  σ(. ) is the 

mapping function that maps any given input sample xj onto a  higher dimensional space. Equation 2 to Equation 4 could be 

translated to  
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Subject to the condition given by Equation 6 

  
∑ 𝑦𝑖𝛼𝑖 = 0
𝑛
𝑖=1                                       (6) 

 

Solving Equation 5 & Equation 6 results in the formation of the classification decission function which is given by 

Equation 7  

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖 (𝜎(𝑥𝑖). 𝜎(𝑥𝑗)) + 𝑏
𝑛
𝑖=1 )        (7) 



3 

 

where k = (σ(xi). σ(xj)) forms the kernel function. Among the various kernel functions, radial basis kernel function 

provides a wide adaptable range and hence the radial basis kernel function given by Equation 8 is used  

 

𝑘 (𝜎(𝑥𝑖). 𝜎(𝑥𝑗)) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝛿2
) , 𝛿 > 0    (8) 

 

From the Equation 8, it is evident that the accuracy of SVM depends on the selection of Kernel Function type “k”, 

Kernel Function Parameter “𝛿”, and penalty factor “C”.  

Penalty factor “C” on approaching “0”, results in lower classification accuracy and in under fitting. Though the 

classification accuracy increases with the increasing value of C, higher values of C on the other hand, result in over fitting. 

Similarly, a smaller value of “𝛿” results in over fitting and a higher value results in under fitting.   

An optimal selection of kernel function Type “k”, kernel function parameter “δ”, and penalty factor “C” will mutually 

improve the classification accuracy of SVM model. To aid in the selection of optimal parameters for SVM, and thereby 

improve the model classification accuracy, an ABC algorithm based optimisation of SVM parameters (penalty factor “C”, 

kernel function parameter “𝛿”) is proposed in the upcoming sections. 

 

2.2 Artificial Bee Colony Algorithm 
 
ABC algorithm an evolutionary algorithm based on the foraging behaviour of bees, tries to arrive at an optimal 

solution for any given problem by finding the fitness value (amount of food source and nectar in that specific source or 

solution) at each possible source or solution and iteratively trying to find the best optimal source or solution based on the 

foraging behaviour of bees. 

ABC makes use of the foraging behavior of Employee, Onlooker and Scout bees to find the optimum food source. In 

the ABC algorithm, employee bees are assigned the task of finding food resources and sharing information with other bees. 

Onlooker bees are assigned the task of honey collection based on the information shared by the employee bees. Scout bees 

are assigned the task of finding a new food source after the existing one is depleted. 

Like any other swarm algorithm, the ABC algorithm is iterative. The optimisation process starts with the initialization 

of the number of bees in each category and the location of the food source. The foraging behaviour of the employee, scout, 

and onlooker bee is iteratively carried out to find the optimal food source or solution to the problem. 

In the ABC algorithm, each potential solution is given by the position of each nectar source, and its fitness value is 

represented by the amount of nectar present in the particular source. Like any other swarm optimization algorithm, ABC 

algorithm starts with the initialization phase given by Equation 9, 

 

𝑥𝑖,𝑗 = 𝑙𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1)[𝑙𝑚𝑎𝑥,𝑗 − 𝑙𝑚𝑖𝑛,𝑗]             𝑖 = 1,2,3, …… .𝑁𝐵          (9) 

 

where NB is the Scout bee population.  lmax,j and lmin,j are the lower and upper bounds of 𝑥𝑖,𝑗. Each food source defined 

by 𝑥∗,𝑗 is a potential solution vector having “n” variables that needs to be optimized to find the optimal solution. 

After the initialization process, the employee bees forage randomly for nectar or food sources, and the foraging 

behaviour is given by Equation 10. 

 

𝑣𝑖𝑛 = 𝑥𝑖𝑛 + ∅(𝑥𝑖𝑛 − 𝑥𝑘𝑛)                          (10)  

 

where 𝑣𝑖𝑛 corresponds to the food source value corresponding to the ith iteration and “n” is the selected dimension or 

the number of optimisation parameters, 𝑥𝑘𝑛 denotes the neighbouring nectar source.  

After the foraging process, the nectar source fitness of each employee bee is calculated using the Equation 11. 

  

𝑓𝑖𝑡𝑖 = {

1

1+𝑓𝑖
,     𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   (11) 

 

where fi is the fitness value of the ith nectar source, the objective function value that needs to be optimised. When the 

new nectar source fitness vi = [vi1, vi2, …, vid] is better than xi, greedy selection method is used to replace xi with vi  

After the completion of the foraging process, the entire employee bee population shares the nectar information with the 

onlooker bees, along with the amount of nectar. Onlooker bees in turn evaluate the employee bee’s nectar information and 

select a nectar source that needs to be foraged with a probability of Pi using Equation 12 the selection probability for each 

solution.   

 

𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑚
𝑆𝑚
𝑚=1

                      (12) 
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The Scout Bee phase gets started when nectar source updation is not happening with successive iterations. The scout 

bee then selects a random food source using Equation 13, thereby replacing and abandoning the current food source.  

 

𝑥𝑖𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑛

𝑚𝑎𝑥 − 𝑥𝑛
𝑚𝑖𝑛)                 (13) 

 

2.3 ABC based SVM Model: 
 

The steps to find the optimal parameters for the SVM model using the ABC algorithm is given as a flow chart in 

Figure 1, and the steps are narrated below. 
 

Step 1: Import the SCADA data and perform common pre-processing like data normalisation and outlier removal. 

Step 2:  Using PCA, reduce the dimensionality or the number of features available in the data to speed up the 

computation and to prevent over fitting. 

The optimal number of parameters for PCA reduction is derived from the SCREE plot of the given dataset. 

Step 3: Split the given dataset into training and test data sets, with 70% of the data used as the training data set and 

30% as the test data set  

Step 4: Initialize the SVM and ABC algorithm parameters  

Initialize the SVM parameters - penalty factor “C”, kernel function Parameter “δ” that need to be optimized by ABC 

with some initial values. Also initialise the ABC algorithm parameters like bee population, lower and upper limit of 

solutions and dimension. 

Step 5: Calculate the new optimal nectar source/solution using the ABC algorithm and compute the fitness value of the 

new nectar source. The current fitness value corresponds to the SVM classification accuracy and is updated in real time 

with the maximum fitness value as the iterations progress. 

If the current fitness value of a nectar source is greater than the previous nectar source, the original fitness value is 

replaced with the current value. Once an optimal nectar source is found, the combination of parameters (C, 𝛿) that 

corresponds to the current optimal nectar value is saved. 

Step 6: Save and pass on the corresponding SVM parameter (C, 𝛿) for SVM model fitting. Calculate the classification 

accuracy. If the accuracy is met, save the model and exit; else go to step 5 until an optimal SVM parameter (C, 𝛿) that 

guarantees the desired classification accuracy is found.  

3     DATASET DESCRIPTION  
  

3.1 Dataset Description  
 
The experimental data used in this work is obtained from a single bearing, 3 blade, 2 Megawatt WT located in the 

southern part of Tamil Nadu, India. The SCADA unit deployed to control the WT collects data at a 10-minute interval, and 

the data from January 2022 to December 2022 is utilized for this work.  

The dataset encompasses normal data along with the data for 4 different faults that occurred during the aforementioned 

period. Because of data security and a non-disclosure agreement, the names of faults and the exact location of the WT are 

not disclosed here. The frequency of occurrence of each fault type during the period is given in Table 1. 
 

3.2 Dataset Pre-Processing 
 

Initial SCADA data received from the WT had 185 parameters with numerical and non-numerical data like relay and 

switch positions. In general, a larger number of features drastically increases the computation time and might result in 

overfitting of the data. 

To overcome the above difficulty, as a first step in feature dimension reduction, all non-numeric features like relay and 

safety switch positions and parameters which don’t carry much information and are of little use, are removed. After the 

removal of the non-salient features, 72 useful parameters were left, and the same are used further in this work. 

   

3.3 PCA based Dimensionality Reduction  
 
To further reduce the number of features and thereby improve the computation time, Relieff-PCA-based feature 

dimension reduction is carried out. Relief PCA combines the principles of ReliefF and Principal Component Analysis 

(PCA) to reduce the data dimension and complexity. The relevance and information value of each feature is calculated 

using the ReliefF algorithm and once the relevance and information value of each feature has been calculated, Relief PCA 

uses PCA to select the features that are most relevant and thereby making the selected features linearly non-correlated.  The 

feature with the highest data variance forms the first principal component, and the feature with the next largest variance 

forms the second principal component, and the process repeats until the desired number of principal components is found. 

A Scree plot, which gives the proportion of variance with respect to the number of parameters, is used to select the optimal 

number of parameters. 

Figure 2 and Figure 3 give the SCREE plot between cumulative variance vs. number of parameters and Eigen value vs. 

number of parameters for the dataset considered. 
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Based on the SCREE plots, it is found that a total of 23 parameters seem to be an ideal threshold choice for PCA 

reduction, and is PCA is used to further reduce the SCADA dataset dimension to 23 principle features. Table 2 gives the 

list of principal features selected from the given dataset that would be used for the experimental model verification process. 

4     EXPERIMENTAL VERIFICATION 
  

4.1 Performance Metrics  
 
To evaluate the classification accuracy of the proposed ABC-SVM fault diagnosis model, computational experiments 

are carried out on the real time SCADA data using the proposed ABC-SVM model, and its performance is compared with 

the effectiveness of GA-SVM, PSO-SVM, and ACO-SVM based models. 

To evaluate the performance of the proposed algorithm with respect to other models, the following performance 

metrics are used 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
             

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃+𝐹𝑃
               

𝑅𝑒𝑐𝑎𝑙𝑙      =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

           (12) 

 

Where  

TP = True Positive, number of correct predictions of   a particular Fault 

FP = False Positive, number of wrong predictions of the particular Fault 

FN = False Negative, incorrect false prediction of positive Faults 

TN = Total score excluding the other three values TP,TN & FP. 

 

The above performance metrics are selected as they provide different perspectives of the model performance in 

identifying and classifying faults. Precision, a metric that corresponds to the actual correct positive predictions is 

considered to minimize false positives as false positives can lead to unnecessary downtime and maintenance costs. Recall 

indicating the proportion of actual positive is considered to minimize false negatives as false negatives might lead to safety 

risks and financial losses. F1 score a harmonic mean of precision and recall, providing an equal weightage to precision and 

recall is considered here as it indicates model’s ability to identify both upcoming faults and avoid predicting unnecessary 

maintenance, thereby reducing the overall cost of maintaining WT’s. 

 

4.2 Selection of SVM Activation Function   
 

The classification accuracy and rate of convergence of SVM models are highly dependent on the activation function 

used. SVM models commonly employ the Sigmoid, Tanh or Relu as the activation function. 

To select an optimal activation function for the classification problem considered, the loss function value of the SVM 

model with the aforesaid three activation functions is calculated and plotted. Figure 4 shows the plot of the loss function for 

the different activation functions vs. iterations. 

From Figure 4, it is clear that the SVM model with Sigmoid activation functions converges very slowly to a loss value 

of 0.32 under the 70th iteration, which is much larger than the other two activation functions. Though the loss curve under 

Tanh and ReLU activation functions remains almost similar, the convergence rate of the ReLU activation function is little 

bit faster. Also, the SVM model with the Relu activation function converges to a loss value of 0.18 within 20 iterations, 

with the final loss value reaching out to 0.11, which is far better than the loss value obtained through the other activation 

functions. Hence, a ReLU based activation function is used in the SVM model, which is proposed in the upcoming 

sections. 

 

4.3 Initialization Parameters  
 
Any metaheuristic optimization algorithm like PSO, ACO, and ABC starts with the initialization of parameters like 

herd size, number of iterations, and tuning parameters. Table 3 gives the initialization parameters that are used in this study 

for PSO, ACO, and ABC-based model optimization methods. 

The optimal range for the penalty factor C and kernel function parameter σ is set as [0.001, 100] for all the above 

metaheuristic algorithms.  

 

4.4 ABC – SVM Diagnostic Model Performance Comparison 
 

Each metaheuristic algorithm is iteratively tuned for a fixed number of iterations on the test data to find the optimal 

hyper parameter. The hyper parameter, which provides the best optimal fitness value, is used along with the SVM model 

for fault detection and classification. Figure 5 gives the plot of fitness value achieved by each of the models considered 

(GA-SVM, PSO-SVM, ACO-SVM, and ABC-SVM) with respect to the number of iterations. 
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From Figure 5, it is clear that compared to the other models, the ABC-SVM model reached the best fitness value, 

thereby providing an optimal parameter value for the SVM model in a very less number of iterations. For the SCADA data 

considered, the proposed ABC-SVM model reached the optimal parameter by the 20th iteration, whereas the other 

counterparts reached the optimal parameters by the 30th iteration. Also, for the data considered, the ABC-SVM model was 

able to provide a better fitness value of nearly 97% compared to the other models. A better fitness value, in turn, improves 

the performance of the SVM classifier. 

For further performance visualization of the proposed ABC-SVM model, the confusion matrix for the models 

considered is generated and provided in Table 4. From a total of 410 reported faults, ABC-SVM was able to classify 405 

faults accurately, with an accuracy of 98.6%. The ABC-SVM classification accuracy is relatively higher compared to the 

classification accuracy of other models like PSO-SVM, which has an accuracy of 94.4%. 

Table 5 gives the consolidated performance metrics of the ABC-SVM model along with those of the GS-SVM, GA-

SVM, PSO-SVM, and ACO-SVM models considered. From the results obtained, it is evident that the classification 

accuracy and overall performance metrics of the proposed ABC-SVM model are better than those of its counterpart models. 

The F1 score for ABC-SVM stands at 99.38%, which indicates the ABC-SVM model's ability to accurately classify the 

faults even with an unbalanced dataset. 

Figure 6 gives the classification accuracy of the proposed ABC-SVM model and other models considered, considering 

only a single type of fault exists at a time in the dataset provided. From Figure 6, it is evident that the ABC-SVM model 

classification accuracy remains almost constant irrespective of their frequency of occurrence, even in an unbalanced data. 

ABC- SVM model is able to classify faults with an accuracy of 99%, irrespective of the faults considered, which is far 

better compared to the other models considered. 

Figure 7 gives the classification accuracy of the proposed ABC-SVM model and other models, considering multiple 

faults at a time. From the Figure 7, it is evident that the classification accuracy of the models drops considerably with the 

increase in fault number; on the other hand, the proposed ABC-SVM model accuracy almost remains constant at around 

98%, irrespective of the number of faults considered. 

To ensure the generalization ability of the proposed model and due to the limited public availability of WT fault data, 

5-fold Cross validation is carried out on the available fault data as proposed by Tiwari [29]. The dataset is divided into five 

parts with four parts used for training while the remaining one part is used as a validation data and carrying out the process 

over 5 iterations as shown in Figure 8.  

Table 6 gives the performance indices of the proposed ABC-SVM model across each fold of cross-validation. From 

Table 6, it is evident that the proposed ABC-SVM model almost provides a consistent accuracy with the each fold 

validation accuracies given by 98.31%, 98.17%, 98.03%, 98.01%, and 97.92%, with an average cross-validation accuracy 

of 98.09% ensuring the generalization ability of the proposed ABC-SVM. 

From above the analysis, compared to the Grid Search algorithm (GS), the Genetic Algorithm (GA) and other 

metaheuristic algorithms like Particle Swarm Optimization (PCO), Ant Colony Optimization (ACO) Algorithm, in 

Artificial Bee Colony optimization (ABC) both global search and local search takes place at each iteration, thus greatly 

increasing the probability to find the optimal hyper parameter for the SVM model which guarantees the best classification 

accuracy and results in a more robust classification model.  

 

5 CONCLUSION 
The gradual depletion of fossil fuels and their environmental impacts has led to a manifold increase in the use of 

renewable energy sources and, in general, wind energy systems. The increased use of WT’s necessitates the need for 

continuous condition monitoring and troubleshooting of WT’s so as to assure continuous power generation and dependable 

operation from WT. As SVM-based classification model is commonly deployed for the fault diagnosis of WT’s, an ABC 

algorithm-based optimal parameter selection for the SVM model is proposed in this paper. 

The proposed model's effectiveness is verified by comparing the performance metrics of the proposed model with 

those of traditional models like GS-SVM, GA-SVM, PSO-SVM, and ACO-SVM on an experimental SCADA dataset 

provided by a WT. On comparing the results, the ABC-SVM based model is capable of accurately classifying multiple 

faults with an accuracy of 98.6%, which is better when compared with the other models. F1 Score of the proposed ABC-

SVM model is around 99.38%, which indicates its ability to classify the faults though the data is unbalanced. Also, the 

classification accuracy of the proposed model remains almost constant, thus providing an opportunity to deploy the 

proposed ABC-SVM model for multiple fault classification without losing accuracy. Though the data considered in this 

study were obtained from a single WT, the proposed approach is transferable and generalizable to multiple wind farms.  
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Figure 1 ABC – SVM Model Flow Chart 
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Figure 3 Feature Eigen Value Distributions 

 
 
 

 
Figure 4 Loss Function under various Activation Function  

 
 
 

 
Figure 5 Fitness Value Vs Iterations 

 
 

 
Figure 6 Model Performances under Single Faults 
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Figure 7 Model Performance under Multiple Faults 
 
 
 

 
Figure 8 K fold Cross Validation 

 

 

 
Table 1 Frequency of Fault Occurrence  

S.No Fault Number Frequency of Occurrence 

1 Fault_1 80 

2 Fault_2 92 

3 Fault_3 116 

4 Fault_4 121 

 
 
 

Table 2 Principle Features 

 Parameter Description 

1.  Inverter_Current Inverter Line Current (A) 

2.  Blade_1_Motor_Current Blade 1 Motor Current (A) 

3.  Blade_1_Motor_Temp Blade 1Temperature (oC) 

4.  Blade_2_Motor_Current Blade 2 Motor Current (A) 

5.  Blade_2_Motor_Temp Blade 2 Temperature (oC) 

6.  Blade_3_Motor_Current Blade 3 Motor Current (A) 

7.  Blade_3_Motor_Temp Blade 3 Temperature (oC) 

8.  Bearing_Temperature Temperature of Bearing (oC)  

9.  Hub_Temperature Hub Temperature (oC) 

10.  Amb_Temperature Atmospheric Temperature (oC) 

11.  Inv_Temperature Inverter Temperature (oC) 

12.  Pitch  Rotor Pitch 

13.  Rotor_Acceleration Rotor Acceleration (m/sec2) 

14.  Pitch_Speed Actual Pitch Speed 

15.  Current_RPM Current Speed of Wind Turbine  

16.  Nacelle_Temperature Nacelle Temperature (oC) 

17.  Vibration_Longitudinal Longitudinal Axis Vibration  

18.  Vibration_Transversal Vibration along Transversal Axis 

19.  Windspeed Current Wind Speed (m/sec) 

20.  Voltage  Grid Voltage (Volt) 

21.  Current Grid Current (A) 

22.  Grid_Power Grid Power (kW) 

23.  Reactive Power Generated Reactive Power (kVAR) 
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Table 3 Initialization Parameters  

PSO 

Number of Birds 50 

Moment of Inertia, 𝜔 0.8 

Maximum Number of Iterations 100 

Tuning Parameters 
𝐶1 0.2 

𝐶2 2.0 

 

ACO 

Number of Ants 50 

Maximum Number of Iterations 100 

Pheromone Evaporation Ratio 0.5 

Tuning Parameters 
𝛼 0.9 

𝛽 0.1 

 

ABC 

Bee Colony Size 100 

Number of Employee Bees 50 

Number of Onlooker Bees 50 

Scout Bee Ratio 0.5 

Maximum Number of Iterations 100 

Tuning Parameters 
𝛼 0.9 

𝛽 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5 Performance Metrics of Models  

Model 
Evaluation 

Metrics 

Fault Types 

Fault_1 Fault_2 Fault_3 Fault_4 

A
B

C
-S

V
M

 Precision 100% 97.85% 98.28% 99.17% 

Recall 98.77% 100% 98.28% 98.35% 

F1 - Score 99.38% 100% 99.13% 99.17% 

Overall Accuracy : 98.60% 

 

G
S

-S
V

M
 Precision 95.23% 93.52% 91.18% 92.27% 

Recall 96.13% 94.8% 92.28% 92.25% 

F1 - Score 97.38% 96.12% 95.13% 95.11% 

Overall Accuracy : 92.60% 

 

P
S

O
 –

 S
V

M
 Precision 96.3% 93.62% 93.86% 94.17% 

Recall 97.50% 95.65% 92.24% 93.39% 

F1 - Score 98.73% 97.78% 95.96% 96.58% 

Overall Accuracy : 94.40% 

 

A
C

O
 –

 S
V

M
 

Precision 98.73% 96.70% 95.65% 94.35% 

Recall 97.50% 95.65% 94.83% 96.69% 

F1 - Score 98.11% 97.17% 96.74% 97.70% 

Overall Accuracy : 96.10% 
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G
A

-S
V

M
 Precision 98.73% 96.81% 98.25% 95.90% 

Recall 97.50% 98.91% 96.55% 96.69% 

F1 – Score 98.11% 98.82% 97.63% 97.70% 

Overall Accuracy : 97.30% 

 
Table 4 Confusion Matrix of Models  

A
B

C
-S

V
M

 

 
Fault

_1 

Fault

_2 

Fault

_3 

Fault

_4 

Precision 

 

P
S

O
 -

 S
V

M
 

 
Fault

_1 

Fault

_2 

Fault

_3 

Fault

_4 
Precision 

Fault_1 80 0 0 0 100.00% Fault_1 78 0 3 0 96.30% 

Fault_2 0 92 2 0 97.85% Fault_2 0 88 2 4 93.62% 

Fault_3 0 0 114 2 98.28% Fault_3 0 3 107 4 93.86% 

Fault_4 1 0 0 119 99.17% Fault_4 2 1 4 113 94.17% 

Recall 

% 
98.77 100 98.28 98.35 

98.6% 

Recall 

% 
97.50 95.65 92.24 93.39 

94.40% F1Score 

% 
99.38 100 99.13 99.17 

F1Score 

% 
98.73 97.78 95.96 96.58 

Overall Accuracy Overall Accuracy 

      

A
C

O
-S

V
M

 

 
Fault

_1 

Fault

_2 

Fault

_3 

Fault

_4 
Precision 

G
A

-S
V

M
 

 
Fault

_1 

Fault

_2 

Fault

_3 

Fault

_4 
Precision 

Fault_1 78 0 0 1 98.73% Fault_1 78 0 0 1 98.73% 

Fault_2 0 88 2 1 96.70% Fault_2 0 91 2 1 96.81% 

Fault_3 0 3 110 2 95.65% Fault_3 0 0 112 2 98.25% 

Fault_4 2 1 4 117 94.35% Fault_4 2 1 2 117 95.90% 

Recall 97.50 95.65 94.83 96.69 

96.10% 

Recall 97.50 98.91 96.55 96.69 

97.30% 
F1-

Score 
98.11 97.17 96.74 97.70 

F1-

Score 
98.11 98.82 97.63 97.70 

Overall Accuracy Overall Accuracy 

 

 
Table 6 Performance Metrics of ABC-SVC across 5 Folds  

 Training Scores in % Validation Scores in % 
Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy 

Fold I 99.32 98.67 98.8 98.91 98.14 98.27 98.82 98.31 

Fold II 98.85 99.23 99.41 98.63 98.13 99.21 99.31 98.17 

Fold III 98.18 98.38 99.13 98.43 97.88 97.81 98.23 98.03 

Fold IV 98.92 98.25 98.67 98.69 98.47 97.92 98.34 98.01 

Fold V 98.93 98.91 99.2 98.42 98.23 98.02 98.72 97.92 

Average 98.84 98.68 99.04 98.62 98.17 98.25 98.67 98.09 
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