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Abstract 

In this study, a generalized constitutive model, in which the yield and potential plastic surfaces do not need to be 

explicitly defined, is presented in the framework of the multilaminate method. In this framework, the constitutive 

relations are defined as the relationship between volumetric and deviatoric stresses and strains on several planes in 

different directions, called microplane. A new volumetric- deviatoric stress space is defined on the microplane, 

which has a volumetric component similar to the definition of mean stress. However, the deviatoric component is 

defined as the resultant of a normal deviatoric component and two shear components on the microplane. The use of 

the new innovative stress space facilitates the application of volumetric- deviatoric based constitutive models in the 

multilaminate framework. The results of the model for several types of clay and sand in drained and undrained 

conditions have been validated with experimental data and results presented by similar models and it was observed 

that the proposed model, in addition to the simplicity of the formulation, can correctly predict the behavior of sand 

and clay materials in different conditions. 
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1. Introduction 
The multi-plane theory has been used by many researchers. This framework was used by Zienkiewicz and Pande[1] 

to predict the behavior of jointed rocks. Also, Pande and Sharma[2] presented an elastoplastic model in clays based 

on the multilaminate theory. They numerically estimated the effect of rotation of the principal axes on volumetric 

and deviatoric plastic strains. Shiomi and Pietruszczak[3] used another elastoplastic model called the reflecting 

surface to predict the liquefaction of sand layers, in which the behavior of sand under isotropic conditions was 

predictable without considering the imposed anisotropy in the plastic strain process. Bažant and Oh[4] expanded the 

scope of this theory to the analysis of the fracture of concrete structures by providing a model called the microplane 

model. Another elastoplastic model based on multilaminate theory was presented by Sadrnejad and Pande[5] to 

predict sand behavior. Sadrnejad et al.[6] Presented a Multi-Line constitutive model using a multilaminate model for 

granular soils. Zreid and Kaliske[7] presented a microplane plasticity model based on the Drucker-Praeger yield 

criterion. Dashti et al.[8] used the constitutive model presented by Dafalias and Manzari[9] in the framework of a 

multilaminate model to simulate sand liquefaction. Malisetty et al.[10] presented a model using a multilaminate 

framework based on generalized plasticity and associated critical state concepts to describe the mechanical behavior 

of granular materials. Many other researches have been done on multilaminate models, such as[11–16]. 

In the literature, different stress spaces have been used on microplanes: Dashti et al.[17,18] have used the stress ratio 

space on the plane. There are three components on the deviatoric plane ( plane), which are the ratio of deviatoric 

stresses to normal stress. In some researches[10,12,19–22], the normal stress-shear stress space is used. 

Bayraktaroglu et al.[23] used the space of normal stress-shear stress, where normal stress consists of two 

components, volumetric and deviatoric. Bažant et al.[24] has used the stress space of volumetric- normal deviatoric- 

shear stress. Caner et al.[25] has used the stress space in terms of volumetric and deviatoric components of normal 

stress and two shear components. Cudny and Vermeer[26] have used a normal stress-shear stress space and used a 

yield surface whose cap part is according to Modified Cam Clay model. Since the stress space of shear stress-normal 
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stress is suitable for constitutive models similar to Mohr-Coulomb and for models developed in p q space such as 

Modified Cam Clay, it is better to use a stress space similar to p q on microplanes. Therefore, choosing a simple 

stress space compatible with the constitutive model that used on the microplane is necessary. 

In this article, a new volumetric- deviatoric stress space is presented on the microplanes, in which constitutive 

relations can be written algebraically and this simplifies calculations and increases the speed of analysis. Then, a 

generalized plasticity constitutive model is written in this new stress space, which can predict the behavior of sands 

and clays well. 

2. Multilaminate framework 

The basis of the multilaminate theory is to determine the numerical relationship between the two states of 

interparticle behavior (microscale behavior) and engineering mechanical properties (large-scale behavior) in the 

form of a constitutive equation. In other words, in this case, the material properties are obtained according to each of 

its components; and it could be possible to achieve the stress-strain relation of the soil by studying the interparticle 

behavior[6]. 

As known, soil materials are composed of an unlimited number of solid particles that interact with each other. The 

reaction between the particles is due to the contact force during their contact. The analysis of the behavior of the 

particles and their contact surfaces depends on the number, size, shape, roughness, and strength of the particles at 

these surfaces. Therefore, this approach is much more complex than assuming a continuous environment. On the 

other hand, in a simple approach, the behavior of the soil can be assumed to be a combination of the elastic behavior 

of the grains and the plastic slip at the boundaries between the grains. Thus, in an artificial state, the three-

dimensional behavior of soil materials can be explained by considering the numerous sample planes on which 

slipping occurs. These planes divide the soil mass into a set of polygonal pieces next to each other. In this case, 

similar to the slipping of real soil grains, slipping and deformation perpendicular to the contact planes of different 

parts is the basic method of creating a plastic strain[27]. 

2-1 Numerical concept of multilaminate theory 

The classical constitutive models represent invariant equations that directly relate
ij

 and
ij
 to the components of the 

stress and strain tensors and (the Latin indices refer to the Cartesian coordinate components ; 1,2,3ix i  ). A 

multilaminate constitutive model is defined by the relationship between stresses and strains applied to the plane. 

These planes are called microplane and have an arbitrary orientation that is denoted by its normal unit vector in [27]. 

The basis of this theory is the calculation of the numerical integration of a given mathematical function developed 

over a sphere surface having a radius of one. This mathematical function can express changes in physical properties 

at the sphere surface. The surface of a hypothetical sphere in numerical integration can be approximated by 

numerous numbers of flat planes that are tangent to different points of the sphere surface. Thus, each of the 

mentioned planes has a point of contact with the surface of the sphere; by limiting the number of these planes, the 

number of contact points or reference points can be defined, and in calculating the numerical integral, the value of 

the quantity spread on the surface of the sphere can be obtained at the points mentioned. Numerical integrals are 

obtained from the continuous function  , ,f x y z on the sphere's surface as the sum of the values of f at the 

reference points multiplied by the weight coefficients corresponding to these points. The number of sample points 

should be increased to decrease the error. In this case, it is proved that the application of 34 reference points reduces 

the error sufficiently[8]. According to symmetry, a hemisphere with 17 planes can be considered. Figure 1(a) shows 

the position of 34 points and the planes tangent to them, and Figure 1(b) shows the simulated shape of a sphere with 

planes for numerical integration. 

The relationship between the numerical integration and the ordinary integral is obtained as follows: 

   
1

, , , ,
N

A

f x y z dA f x y z dA


    


                          (1) 
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A



                                                       (2) 

According to Eq (1) and Eq. (2) we have:  

   
1

, , 4 , ,
N

A

f x y z dA W f x y z


    





                    (3) 

in which, A is the surface of the sphere, N is the number of points, W is the weight coefficient of the point  , and

 , ,f x y z    is the value of the function f at the point  . In this way, any change that occurs on the plane  is 

related to the point  . A plane is defined for each point in such a way that the direction cosines of the contact points 

are the same direction cosines perpendicular to the plane[6,20]. 

The basic hypothesis is that the strain vector N on the microplane (Figure 2) is the image  , meaning
iN ij jn  . 

The normal strain on the plane is equal to
iN j Nn  . It could be written as follows: 

N ij ijN                                                                          (4) 

Where ij i jN n n (repetition of subscripts referring to Cartesian coordinates iix , means summation over 1,2,3i  ). 

The shear strains on each microplane are determined by their components in the M  and L directions given by 

orthogonal unit coordinate vectors m and l , shown by components im and il laying within the microplane. The vector

im can, for example, be selected perpendicular to the 3x axis, in which case  
1 2

2 2

1 2 1 2m n n n


   , 

 
1 2

2 2

2 1 1 2m n n n


   and 3 0m  , but 1 1m  and 2 3 0m m  if 1 2 0n n  . A vector im perpendicular to 1x or 2x can 

be obtained by converting the indices1,2 and 3 . The orthogonal unit vector is created as l m n  . The components 

of shear strain in the directions of m and l are equal to  M i ij jm n  and  L i ij jl n  , and with the symmetry 

property of the tensor ij  

,M ij ij L ij ijM L                                                (5) 

Where   2ij i j j iM m n m n   and   2ij i j j iL l n l n   [28,29]. 

The direction cosines of these 17 planes with their weight coefficients are shown in  

Table 1. 

Due to the kinematic constraint that relates the strains at the microlevel (microplane) and the macrolevel (continuum 

medium), the static equivalence (equilibrium) between the macro and micro levels can be applied only 

approximately. It is done by the principle of virtual work[30] written for the surface of a unit hemisphere. 

 
2

3
ij ij N N M M L L d


       



                     (6) 

This equation means that the virtual work of macro stresses (continuum stresses) on a unit sphere must be equal to 

the virtual work of micro stresses (microplane stress components) considered as traction on the surface of the 

sphere. The integral physically represents the homogenization of different contributions coming from planes with 

different orientations within the material, as shown in Figure 1(a) (for further physical justification, see[31]).  

Substituting N ij ijN  , M ij ijM   and L ij ijL  , and given that the last parametric equation must be held 

for each change ij the following fundamental equilibrium relation is obtained[30]: 
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 

1

3
6

2

N

ij ij ij

ij N ij M ij L ij

S d w S

S N M L










  

 

  

  

 
                                   (7) 

As shown, the integral in numerical calculations is approximated by an optimal Gaussian integration formula for a 

spherical surface[32,33], which represents the weighted sum on micro-planes with orientation  ; the weights w  

are normalized so that 1 2w  [32,34]. In the finite element analyses, integral (7) must be calculated at each 

point of integration of each finite element in each time step. The values of the direction cosines for all the 

microplanes are common to all the integration points for all the finite elements and are pre-calculated and stored. 

2-2 Application of multilaminate theory in constitutive modeling 

The most general explicit constitutive relationship in the multilaminate area can be written as follows: 

 

 

 

, ,

, ,

, ,

t

N M L

t

N M L

t

N M L

N

M

L

   

  

  











                                                    (8) 

where , and are functions of the strain history of the microplanes at time t . 

The normal strain component on microplanes consists of two parts, volumetric and deviatoric. 

, 3N D V v kk                                          (9) 

The volumetric strain (mean strain) is the same for all microplanes. Work-conjugate volumetric stress is used to 

obtain normal volumetric and deviatoric components of stress on microplanes. Therefore, the volumetric stress on 

the microplanes is defined by the following equation. 

 
2

3 3

kk
mm V V d


  



                                         (10) 

By substituting 3V kk  and considering 2d 


  for volumetric stress on the microplanes the following relation 

will be obtained 

3V kk                                                                         (11) 

Subtracting the Equation (10)  from (6): 

 
2

3 3

kk

ij ij ij D D D V V D M M L L d


            


 
         
 

  (12) 

where D N V    and D N V    . Noting that the deviatoric stress tensor  3D

ij ij kk ij     , and that

0D V V Dd d   
 

     , we have 

 
2

3

D

ij ij D D M M L L d


       


                     (13) 

Kinematic constraint means that the micro-strains (components of the strain tensor on the microplanes) are 

calculated as the strain tensor image (macro strains). Therefore, we have N ij ijN  results

 3D N V ij ij ijN         and M ij ijM   with L ij ijL  . By substituting these relations in Equation 

(13) the following result is obtained. 

3

2 3

D

ij ij V ij

ijD

ij D ij M ij L ijN M L d

   


   

 

 

  
  

        
  


                 (14) 
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By volumetric-deviatoric separation, elastic stress-strain relationships of microplanes can be written in the rate form 

as follows 

V V V

D D D

M T M

L T L

E

E

E

E

 

 

 

 









                                                                  (15) 

Where ,V DE E and TE are the elastic modulus of the microplanes and their relation to the macroscopic modulus of 

Young  E and the Poisson ratio   is equal to  1 2VE E   ,   5 2 3 1DE E        and T DE E  [28,29]. 

Here,   is a parameter to be selected and the best choice is 1  [31]. By choosing 1  and according to the 

macroscopic shear and volume modulus: 

3

2

V ev

D T es

E K

E E G



 
                                                            (16) 

where  0 0ev evK K p p and  0 0es esG G p p  [35]. Now, to define a generalized plasticity constitutive model 

on microplanes, a new stress space is defined and the following definitions are required. 

3

kk
V


                                                                               (17) 

2 2 2

Dev D M L                                                  (18) 

The volumetric strain component is similar to the previous definition and is the same for all microplanes. The 

deviatoric strain component is defined as the resultant of the normal strain component and the two shear 

components. Therefore, the stresses corresponding to the above strains are defined as follows: 

3

kk
V


                                                                          (19) 

2 2 2

Dev D M L                                                   (20) 

According to Equations (15) to (20), the stress- strain relationship on the microplanes in the newly defined stress 

space is as follows: 

   

   

1

1

e

V V

V

e

Dev Dev

T

d d
E

d d
E

 

 

 

 





                                                           (21) 

Soil plastic dilatation parameter for microplane
 
gd


is defined as follows: 

 
 

 

p

V
g p

Dev

d
d

d









                                                                (22) 

It can be seen that
 
gd


in each microplane has a linear relationship with the stress ratio of that plane. Therefore, the 

dilatation of the microplanes is defined as follows: 

           
 

 
1 , Dev

g g

V

d
d M

d


    




  


                       (23) 

Where
  and

 
gM


are the constants of the model. The rate of plastic strain on the microplane is defined as follows: 

       

 

   1
,

p T

gd n n d
H

     


                      (24) 
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According to Figure 3, the unit vector normal to the plastic potential surface
 
gn


, which shows the direction of 

plastic flow on the microplane   , is defined as follows: 

      

 
 

     

 

  

 
 

        

2 2 2

2 2 2

,

1

1

1

g g V g Dev

p
gV

g V
p p

V Dev g

p

Dev

g Dev
p p

V Dev g

n n n

dd
n

d d d

d
n

d d d

  




  




  



 



 

 







 

 

 

 

                     (25) 

In a similar manner, the unit vector normal to the yield surface
 
fn


is defined as follows: 

      

 
 

  
 

  

2

2

,

1

1

1

f f V f Dev

f

f V

f

f Dev

f

n n n

d
n

d

n

d

  











 















                                                    (26) 

         1f f fd M
   

                                             (27) 

where  
f


 and  

fM


are the model constants. Therefore, by substituting Equations (25) and (26) in 

Equation (24), the plastic strain components on the microplanes are defined as follows 

 

 

     

 

     

 

 

     

 

     

1 1

1 1

p

V g V f V V g V f Dev Dev

p

Dev g Dev f V V g Dev f Dev Dev

d n n d n n d
H H

d n n d n n d
H H

      

 

      

 

  

  

   

   

 

 

 (28) 

Plastic modulus  
H


of microplanes similar to the modulus used in the Pastor- Zienkiewicz model [35,36] for sand is 

defined as follows 

              

 
 

 

 

 

 

 
 

 

              

0

0 1 0

1
1 , 1

1

exp ,

V f v s DM

f f f

f f

v

g

p

s Dev

H H H H H H

H M

H
M

H d

      


  

 






      






 



     

 

   
   
            
   

 
 
    
 

   

                    (29) 

The coefficient
 
DMH


 is introduced to take into account the stress history in cyclic loading and in over-consolidated 

clays and is defined as follows. 

 
 

 

 

Max

DMH













 
 
 
  
 

                                                         (30) 

The parameter
  for the microplanes is defined as follows[37] 
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   
 

 

 

 

 
1

1
1

f
f

V

f fM

  
 

 

 
 




  
  
         

                          (31) 

For clays, the plastic modulus is defined as follows 

       
 

 
    

0 V DMH H f g H
    

                          (32) 

 
 

 

 

    

  

 

 

      

2

0

2

0

1

1 1

1

1

d

f sign
M M

d

d M





 



 


  

 




 
          

     
            

  

 

 (33) 

 
        

   
 

 0

exp

1
Max

g
   


 



   


 



 

 
 

  
  
 

                                            (34) 

And the plastic modulus during unloading is obtained from the following equation 

   
 

 

 

 

 

   
 

 

0

0

1

1

u

g g

u u

u u

g

u u

u

M M
H H for

M
H H for




 

 

 



 



 



 
 
    
 

 

                          (35) 

where
 
u


 represents the stress ratio of microplane  from which unloading has begun. 

         
0 0 1, , , ,H
    
     and

 
u


 are the model constants. 

The total strain rate for each microplane is equal to the sum of the elastic strain rate and the plastic strain rate. Thus, 

it could be written by adding Equations (21) and (28) as: 

     

 

     

 

     

     

 

     

 

     

1 1 1

1 1 1

e p

V V V g V f V V g V f Dev Dev

V

e p

Dev Dev Dev g Dev f V V g Dev f Dev Dev

T

d d d n n d n n d
E H H

d d d n n d n n d
EH H

        

 

        

 

    

    

   

   

 
 

      
 

 
 

      
 

 (36) 

Now,  
Vd


 and
 
Devd


  are obtained by solving the system of Equation (36) for each microplane. q is a factor of

 
Devd


 . 

 
   

     
2 2 2

.Dev D

D

D M L

d q
d

q q q



  


  

 


       

            (37) 

 
   

     
2 2 2

.Dev M

M

D M L

d q
d

q q q



  


  

 


       

           (38) 

 
   

     
2 2 2

.Dev L

L

D M L

d q
d

q q q



  


  

 


       

           (39) 
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.
ij ijD D

ij

ij

S
N

q q q

 



 
 

  
                                                (40) 

.
ij ijM M

ij

ij

S
M

q q q

 



 
 

  
                                               (41) 

.
ij ijL L

ij

ij

S
L

q q q

 



 
 

  
                                              (42) 

In which, ijS  is the deviatoric stress tensor, 23q J , and 2J is the second invariant of stress tensor. Now, 

using Equations (7), (14) and (37) to (42), the stress tensor in the Cartesian space can be obtained. 

3. Determination of the model constants  

In general, model constants for different microplanes can have different values due to their strain history. Due to the 

lack of tests conducted on the 17 microplanes, all of them are assumed to have identical constants. These constants 

are determined using a sensitivity analysis [8]. In fact, the same value for each parameter is a weighted average of 

the value of that parameter on all planes. The constants used here for Banding sand and a sand represented by 

Taylor[38] at different relative densities are shown in  

Table 2. Also, the constants of Bangkok clay and Weald clay are shown in  

Table 3.  

4. Simulations and results 

In order to validate the performance of the proposed model, the results were compared with results predicted by 

generalized plasticity constitutive model[35] and laboratory data for several types of clay and sand in drained and 

undrained conditions. Two types of clay and two types of sand have been studied. 

4-1 Bangkok clay 

A series of tests have been carried out by Balasubramaniam and Chaudry[39] for undisturbed specimens of soft 

Bangkok clay. The undisturbed samples were taken at a depth of 5.5 6m . The average index properties and natural 

water content are as follows: (1) Natural water content 112% 130%  ; (2) liquid limit 118% 2%  ; (3) plastic 

limit 43% 2%  ; and (4) plasticity index 75% 4%  . An undrained test was carried out on specimen 

isotropically consolidated to stress of 415kPa and a drained test was carried out on specimen isotropically 

consolidated to stress of 138kPa . These specimens were subsequently sheared with increasing axial stress and 

under constant cell pressure.  

Predictions of the drained and undrained triaxial compression tests, together with experimental results, and results 

presented by Pastor- Zienkiewicz (PZ) model[35] are shown in Figure 4 and Figure 5 respectively. 
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4-2 Weald clay 

A series of triaxial compression tests on remoulded Weald clay was carried out by Henkel[40]. Weald clay is an 

estuarine deposit of the Cretaceous period, in the natural state heavily overconsolidated, with index properties 

43%LL  , 18%PL  , 25%PI   and 40%  fraction of clay minerals[40]. 

The results predicted by the model for both undrained and drained tests on normally consolidated specimens are 

compared with the data from the standard triaxial test under confining pressure of 30 psi  and results presented by 

Pastor- Zienkiewicz (PZ) model are shown in Figure 6.  

For comparison, the results obtained on heavily overconsolidated specimens of Weald Clay, with an 

overconsolidation ratio of 24  under test cell pressure of 5 psi , are shown in Figure 7. 

4-3 Banding sand 

The results of a series of undrained triaxial tests on Bending sand are presented by Castro[41]. Four samples with 

relative densities of 64% , 47% , 44%  and 29% , with initial void ratios of 0.639 , 0.707 , 0.719  and 0.786  

respectively, were loaded with confining pressure of 392kPa  in undrained conditions. The comparison of the 

predictions of the proposed model with the experimental data and the results provided by the PZ model[35] are 

shown in Figure 8. 

4-4 Fort Peck sand 

The experimental results of a sand in drained conditions and in two dense and loose states are presented by 

Taylor[38]. The triaxial drained test has been performed on two specimens with relative densities of 100%  and 

20% , with initial void ratios of 0.605  and 0.834 , respectively, with confining pressure of 207kPa . 

The results of the proposed model together with the experimental data and the results of the PZ model are presented 

in Figure 9. 

5. Conclusion 

Philosophies of multilaminate approach and finite element combine well. While finite elements present a spatial 

discretization (with respect to distance), the multilaminate approach can be considered an angular discretization 

(related to the direction of different planes). In both methods, the principle of virtual work is used in similar ways, 

suitable for explicit temporal integration. 

In this work, a new volumetric- deviatoric stress space is presented on the microplanes. In this stress space, the 

inherent simplicity of the model facilitates understanding and intuition in terms of the concept that is achieved by 

working with the stress and strain components on the microplanes instead of the tensors and their variables. It is 

important because it makes modeling complex materials easier. Using a multilaminate model causes the constitutive 

law to be written algebraically on the planes without using tensors. The stress tensor in the continuum is obtained by 

summing the effects of different planes. This model also avoids some of the other complexities associated with 

classical plasticity models, including that the yield and potential plastic surfaces are not explicitly defined. Despite 

the conceptual simplicity, it can be seen that this model has presented good predictions of material behavior for 

different materials and in different conditions. 

The constitutive model presented in this paper can easily simulate the behavior of anisotropic materials using a 

multilaminate approach. In different directions where there is anisotropy, it is enough to use different model 

parameters or weight functions for planes related to the same directions. 

The main limitation of the proposed model is that, similar to the PZ model[35], it does not enter the state parameter 

of the void ratio into constitutive relations, and the constants of the model are different for each initial void ratio. Of 

course, the model can be developed to consider state parameters, such as[37,42,43]. 
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List of figure captions: 

Figure 1. (a) The position of the planes on the sphere (b) simulation of the sphere with planes[16,18] 

Figure 2. components of strain on the microplane[24] 

Figure 3. Typical yield and plastic potential surfaces of defined stress space on microplane and their unit normal vectors of them 

Figure 4. Drained compression test on normally consolidated samples of Bangkok clay. Experimental data by Balasubramaniam 

and Chaudry[39] compared with predictions by the proposed and PZ[35] models 

Figure 5. Undrained compression test on normally consolidated samples of Bangkok clay. Experimental data by 

Balasubramaniam and Chaudry[39] compared with predictions by the proposed and PZ[35] models 

Figure 6. Drained and undrained compression tests on normally consolidated samples of Weald clay. Experimental data by 

Henke[40] compared with predictions by the proposed and PZ[35] models 

Figure 7. Drained and undrained compression tests on overconsolidated samples with OCR=24 of Weald clay. Experimental data 

by Henkel[40] compared with predictions by the proposed and PZ[35] models 

Figure 8. Undrained triaxial tests on Banding sand and their representation by the proposed and PZ[35] models. Experimental 

data from Castro[41] 

Figure 9 Drained triaxial tests on a sand represented by Taylor[38] compared with predictions by the proposed and PZ[35] 

models 
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Figure 9. 

Table 1. 

Plane 

no. 

 
1n


  
2n


  
3n


  
1m


  
2m


  
3m


  
1l


  
2l


  
3l


  
W


 

1 1 3  1 3  1 3  1 2  1 2  0 1 6  1 6  2 3  0.020277985 

2 1 3  1 3  1 3  1 2  1 2  0 1 6  1 6  2 3  0.020277985 

3 1 3  1 3  1 3  1 2  1 2  0 1 6  1 6  2 3  0.020277985 

4 1 3  1 3  1 3  1 2  1 2  0 1 6  1 6  2 3  0.020277985 

5 1 2  1 2  0 1 2  1 2  0 0 0 1 0.058130468 

6 1 2  1 2  0 1 2  1 2  0 0 0 1 0.058130468 

7 1 2  0 1 2  0 -1 0 1 2  0 1 2  0.030091134 

8 1 2  0 1 2  0 1 0 1 2  0 1 2  0.030091134 

9 0 1 2  1 2  1 0 0 0 1 2  1 2  0.030091134 

10 0 1 2  1 2  -1 0 0 0 1 2  1 2  0.030091134 

11 1 0 0 0 -1 0 0 0 1 0.038296881 

12 0 1 0 1 0 0 0 0 1 0.038296881 

13 0 0 1 1 0 0 0 -1 0 0.0293006 

14 1 6  1 6  2 3  1 2  1 2  0 1 3  1 3  1 3  0.019070616 

15 1 6  1 6  2 3  1 2  1 2  0 1 3  1 3  1 3  0.019070616 

16 1 6  1 6  2 3  1 2  1 2  0 1 3  1 3  1 3  0.019070616 

17 1 6  1 6  2 3  1 2  1 2  0 1 3  1 3  1 3  0.019070616 
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from Taylor 

 20%Dr   

from Taylor 

 100%Dr   

Banding sand 

 29%Dr   

Banding sand 

 44%Dr   

Banding sand 

 47%Dr   

Banding sand 

 64%Dr   

   0evK kPa


 30000  30000  35000 35000 35000 35000  

   0esG kPa


 50000  50000  52500  52500  52500  65000  

 
fM


 0.26 0.36 0.217 0.255 0.264 0.333 

 
gM


 0.69 0.65 0.661 0.6 0.518 0.476 

 
0H


 4000 16000 350 350 350 350 

 
0


  0.133 0.133 0.133 0.133 0.133 0.133 

 
1


  3.39 3.39 6.326 6.326 6.326 6.326 

   0.45 0.45 0.45 0.44 0.50 0.56 

 Weald clay Bangkok clay 

 
0evK


 766 (psi) 12420 (kPa) 

 
0esG


 800 (psi) 15000 (kPa) 

 
M


 0.46 0.53 

 
0H


 165 6.6 

   3 2 

 
0


  0.1 - 

   0.4 - 

   0.45 1.1 
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