Mathematical Model and Stability Analysis for Dusty-hybrid Nanofluid over a Curved Surface with Cattaneo–Christov Heat Flux and Fourier law with Slip Effect

Zeeshan¹, Waris Khan²*, Mariam Redn Almutiri³, Badria Almaz Ali Yousefivet, Abeer A. Shaaban⁵,⁶

¹Department of Mathematics and Statistics Bacha Khan University Charsadda, KP, Pakistan.
²Department of Mathematics and Statistics, Hazara University Mansehra 21120, Khyber Pakhtunkhwa, Pakistan
³Department of Mathematics, College of Science and Arts, Qassim University, Dariyah 58214, Saudi Arabia
⁴Department of Mathematics, College of Science and Arts, Qassim University, Unayzah 51911, Saudi Arabia
⁵Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt
⁶Department of Management Information Systems, College of Business Management, Qassim University, Ar Rass, Saudi Arabia

*Corresponding: dr.wariskhan@hu.edu.pk, wariskhan758@yahoo.com (Tel: +923028397271)

Abstract: The current study scrutinizes the influence of heat energy and slip effect using hybrid nanofluid suspended in the Ethylene–Glycol as a based liquid over the curved surface impinging Modified Fourier Law surrounding dust nanoparticles. The modeled mathematical equations in term of partial differential equations are transformed to convectional differential equations and are computed numerically via Finite Element Method. The flow characteristics are examined by assign numerical values to the physical parameters. The novelty of the problem is to examine the stability of dusty-hybrid nanofluid with slip effect. The hybrid nanofluid effectiveness is significantly higher compared to that exhibited by the traditional nanofluid. The consequences of the first-order slip variable, the curved variable, and the pulling force contribution on the velocity field, dust phase velocity, temperature field and dust phase temperature all increase with time. For different magnitudes of nanoparticles solid volume fraction, opposite behavior is observed for velocity field and dust phase velocity. The heat of the fluid drops in relation to the thermal relaxation coefficient. For the endorsement of the mathematical flow system error approximations has been computed. For the stability analysis a comparison of the current work is done with the published work.

Keywords: Cattaneo–Christov heat flux; Nanofluidics; Nanofluid and hybrid nanofluid; Curved surface; efficiency; Finite Element Method; Modified Fourier Law

1. Introduction

The study of nanofluid (NF) is significant in mathematics, engineering, physics, and materials discipline. Nanofluid refers to a type of fluid that contains tiny particles of a solid material, typically less than 100 nanometers in size, which are dispersed evenly throughout a liquid medium. These solid particles are often made of materials such as metals, oxides, or carbon-
based compounds, and they can enhance the thermal and mechanical properties of the fluid. The addition of nanoparticles to a fluid can increase its thermal performance, which is the ability to transfer heat, as well as its convective heat transfer coefficient, which measures the rate of heat transport through the fluid due to its motion. This makes NFs potentially useful in widespread applications, including heat transfer in electronic devices, conserving systems, and industrial processes. Nanofluids are still an vigorous area of investigation, and scientists are continuing to explore their properties and potential applications. However, challenges remain in terms of the cost of production, stability of the nanoparticles in the fluid, and potential health and safety concerns associated with handling nanoparticles.

The evolution of nanofluid (NF) innovation is a critical topic in arithmetic, manufacturing, physics, and environmental science. Engineers and researchers slog hard to effectively transmit applicable knowledge of the heat transport appliance in nanofluids for the bulk of actual uses. Chips, freezers, hybrid-power engines, food development, heat reservoirs, and more applications rely on NF. The notion of NF was initially established by Choi et al. [1]. Buongiorno [2] offered a theoretic form of the nanostructures and recognized that this vital mechanism sanctions us with massive flexibility in enlightening the thermal assets. Alzahrani et al. [3] investigated the influence of thermal and heaty analysis of Casson nanofluid subject to the suction through plane wall flow. Madhukesh et al. [4] studied the buoyancy effect in dual flow using titanium oxide, Ag, and Al_2O_3 using water as a host fluid over contracting sheet. The exponential flow of hybrid nanofluid with inters heat using Cattaneo–Christov heat model was inspected by Nagapavani et al. [5]. Haq et al. [6] explored the influence of hybrid nanofluid utilizing different geometries under the influence of homogeneous and heterogeneous reactions. Algehyne et al. [7] examined the Blasius and Sakiadis movement of Casson hybrid nanofluid across a moving plate. Ahn et al. [8] scrutinized the stability and convergence of hybrid nanofluid (HNF) over rotating disc. Similarly, the entropy generation using magnetic dipole Casson nanofluid with nonlinear thermal effect was reported by Ragupathi et al. [9]. Sandeep and Ashwinkumar [10] used Carreau fluid to investigate the magnetized motion of a stagnation point movement (SPM) including nano sized materials. Similarly, Sandeep et al. [11] reflected the consequence of HNF on heat energy. Samrat et al. [12] inspected the heat transmission rate (HTR) in HNF and provided concurrent solutions. Yasmin et al. [13] reported the stability of three-dimensional Sutterby nanofluid over contracting surface. Alqahtani et al. [14] investigated the MHD flow over surfed sheet with

Boundary layer flow is a phenomenon in fluid mechanics that follows when a fluid streams above a solid surface. In this type of flow, the fluid in direct contact with the solid surface moves at the same speed as the surface, while fluid flow acceleration fluid far away from the sheet steadily grows till it touches the free stream acceleration. The boundary-layer thickness (BLT) depends on numerous features, comprising the viscosity, density, fluid velocity, and the irregularity of the solid surface. In general, the BLT upsurges with distance from the sheet and can be classified into three regions: laminar, transitional, and turbulent. Boundary layer flow has significant uses in countless fields, including aerodynamics, hydro-dynamics, and heat transmission.

Carbonization, warming system development, nuclear reactor safety, diffusion heating systems, solar dams, photovoltaic energy collectors, photochemical processes, and numerous other industrial processes use convection boundary layer liquid over an expanded surface subjected to thermal energy. Many design tasks arise at extremely high temperatures, rendering knowledge of heat transport through radiation crucial for the development of associated tools. Nuclear energy plants, boilers, and other engine machinery for airliners, spaceship, satellites, and communications satellites are examples of such industrial fields. Many scholars explored the outcome of thermal non-linearity on the thermal characteristics of both Newtonian and non-Newtonian fluids across an extended sheet in the context of magnetized Jeffrey NF. Pantokratoras [27] examined the impact of the Rosseland theory on the naturally occurring convection along a vertically homogenous plate to the primary time in his work using an innovative radiation component termed film radioactivity factor. Cortell [28] studied the mobility of liquids and an erratic thermal radiation transport along an extended surface. Mushtaq et al. [29] examined solar-induced stochastic radioactive heat exchange in a Williamson fluid. Laxmi et al. [30, 31] inspected the outcome of radiating heat and a uniformly generated electric field on 3D NF movement with thermophoresis and Brownian motion stimuli. The free-slip criterion is unsatisfactory for a large number of dynamic fluids since some polymer melts commonly exhibit tiny wall slip that is governed by a quadratic and predictable relationship among slip velocity and
suction. When the fluid is particle, such as suspensions, suspensions, spumes, and polymeric purposes, partial slip might occur at the stretched sheet’s border. Slip characteristics can arise in a number of manufacturing procedures along the borders of tubes, walls, curved surfaces, and so on. The Navier velocity slip criteria is a popular way to investigate slide occurrences. A boundary layer slip flow problem develops when improving artificial cardiac valves and internal chambers. The authors have developed theoretical and computational methods for boundary layer motion and heat transfer generated by an extended surface. Aziz [32] investigated the magnetized mobility using NF passing through an absorbent layer having slip influence. Pantokratoras et al. [33] investigated the HNF in an irregular laminar, aluminium water-soluble micro-channel stream on a smooth surface using a 2D electrically conductive slippage action. Goyal et al. [34] conducted an in-depth investigation of the mixed-convective flow as well as heat transfer of a UCMF (Upper-Convected Maxwell Fluid) passing through an absorbing flexible plane. Nadeem et al. [35] used Lie group transformations and computational methodologies to study the inspiration of slip in magnetohydrodynamic natural convection flow of tiny particles fluid over a moveable surface.

Many investigations have been directed to explore the parameters that control the nanoparticle's conflict to heat transport by convection. It is interested to footnote that FL (Fourier law) was deliberated as a usual for heat distribution but after that it is pragmatic, it is not lawful in various phenomena owing to early disturbance which overcomes during the practice. Nanoparticles movement is stimulated by Brownian motion and thermophoresis. Frequent studies appeared to reveal that the development of the motile microbes in nanofluid movement [36]. The FL model is implemented to analyse the dispute of heat diffusion, whereby was tough to understand. Subsequently, Cattaneo's and Later Christov, a improved version of the FL was produced and functional to deliberate and scrutinize the matter of heat transmission over a extending sheet [37–41]. The unsteady slip stream of nanofluid beside a flat cylinder reveals that incentive energy has a momentous influence on nanoparticle motion inside the conventional liquids [39-41]. Temperature and concentration characteristics are unaffected via bio-convection factor [42- 46], whereas the buoyancy parameter has an impact on the density and velocity of fluid. As a result of the mass slip, enhances the density, temperature, fluid flow, whereas it modestly lowers the particle concentration [47]. The topic of this research is the bio-convection tool through a contracted cylinder. Recent research on the mechanics of nanofluids in various configurations,
Cattaneo used the thermal moderation in the Fourier model. This is monitored by Christov who suggested replacing the Oldroyd Upper Convective Derivatives (OUCD) with time. The Maxwell nanofluid flow through a stretched surface with C–C using homotopy analysis method (HAM) method.

Grounded on the specified literature, in the existing study, this study investigates the HN movement past a stretched curve enclosing heat transfer. Nanoparticles like Cu and CuO are emerged in EG using a base fluid. At the boundary the slip effect is observed using Modified Fourier Law (MFL). The flow characteristics are examined by assign numerical values to the physical parameters. The novelty of the problem is to examine the stability of dusty-hybrid nanofluid with slip effect. The leading equations are converted to ODEs through appropriate transformation and numerically computed via Runge-Kutta order four method (RK4) method. The influences of the factors are deliberated graphically. Additionally, for confirmation the present work is compared with the previous.

2. Mathematical Modulation

Consider two-dimensional movement of an incompressible nanofluid and HNF with magnetic influence through exponentially extended curved surface with non-linear heat radiation. Laminar, time-independent fluid motion is observed. Let, \((r,s)\) is the frame of reference in which \(r\)-axis is normal to flow and \(s\)-axis is parallel to the flow direction. Let \(d\) signifies the radius of the circle. The mentioned geometry is stretched with a rate of \(u = a_1 e^{s/l}\) alongside the surface way \((a_i, l > 1)\) where \(A\) and \(L\) are initial stretching rate and reference length, respectively. As shown in Fig. 1, the magnetic effect is taken in radial direction. The MFL is applied to analyses the heat mechanism.

The basic flow equations for the current models are explained below [47]:

2.1 For nanoliquid:

\[
\frac{\partial}{\partial r} \left\{(R + r)v\right\} + R \frac{\partial u}{\partial s} = 0, \tag{1}
\]

\[
\frac{u^2}{r + R} = \frac{1}{\rho_{nf}} \frac{\partial p}{\partial r}, \tag{2}
\]
\[
\frac{\partial u}{\partial r} + \left(\frac{Ru}{r+R} \right) \frac{\partial u}{\partial s} + \frac{uv}{r+R} = -\left(\frac{1}{\rho_{\text{hfn}}} \frac{R}{r+R} \right) \frac{\partial p}{\partial s} + K_{\text{nf}} (u_p - u),
\]

(3)

\[
\left(\rho C_p \right)_{\text{nf}} \left(\frac{\partial T}{\partial r} + \frac{Ru}{r+R} \frac{\partial T}{\partial s} \right) = -\nabla q + \frac{\rho p C_p}{\tau_T} (T_p - T) + \frac{\rho p C_p}{\tau_v} (u_p - u)^2,
\]

(4)

\[
q + \kappa_r \left(V \nabla q - q \nabla V + (\nabla V) \right) = K^* \nabla T.
\]

(5)

For incompressible flow

\[\nabla V = 0\]

(6)

Eq. (5) becomes:

\[q + \kappa_r \left(V \nabla q - q \nabla V \right) = K^* \nabla T\]

(7)

Heat equations becomes:

\[
\begin{align*}
\frac{\partial T}{\partial t} + \frac{Ru}{r+R} \frac{\partial T}{\partial s} &= \frac{K^*}{\left(\rho C_p \right)_{\text{nf}}} \kappa_T \left(\frac{u^2}{r+R} \frac{\partial^2 T}{\partial s^2} + v^2 \frac{\partial^2 T}{\partial r^2} + \left(\frac{u}{r+R} \right)^2 \frac{\partial^2 T}{\partial s^2} \right) + v \frac{\partial^2 T}{\partial s^2} + \left(\frac{v}{r+R} \frac{\partial^2 T}{\partial r} \frac{\partial T}{\partial r} \right) \\
&+ \frac{1}{r+R} \frac{\partial u}{\partial s} \frac{\partial u}{\partial s} + \frac{R}{r+R} \frac{\partial u}{\partial s} - \frac{R}{r+R} \frac{\partial u}{\partial s} + \frac{2v}{r+R} \frac{\partial^2 T}{\partial s^2} + \frac{R}{r+R} \frac{\partial u}{\partial s} + \frac{R}{r+R} \frac{\partial T}{\partial r} \frac{\partial u}{\partial s} + \frac{\rho p C_p}{\tau_T} (T_p - T) + \frac{\rho p C_p}{\tau_v} (u_p - u)^2
\end{align*}
\]

(8)

1.1. For dusty liquid [47]:

\[
\frac{1}{r} \frac{\partial}{\partial r} \left((R + r) v_p \right) + \frac{\partial u_p}{\partial s} = 0,
\]

(9)

\[
\frac{v_p}{r} \frac{\partial u_p}{\partial r} + \frac{R u_p}{r+R} \frac{\partial u_p}{\partial s} + \frac{u_p v_p}{r+R} = \frac{KS}{\rho_p} (u_p - u),
\]

(10)

\[
\frac{v_p}{r} \frac{\partial T_p}{\partial r} + \frac{R u_p}{r+R} \frac{\partial T_p}{\partial s} = \frac{C_p}{C_n \tau_T} (T_p - T),
\]

(11)

Owing to constraints
\[
\begin{align*}
\left. u \right|_{r=0} &= a_r e^z + \kappa_1 \left(\frac{u}{r + R} - \frac{\partial u}{\partial r} \right) \bigg|_{r=0} + \left(\kappa_2 \frac{\partial^2 u}{\partial r^2} \right) \bigg|_{r=0} - \frac{u}{(r + R)^2} + \frac{1}{r + R} \frac{\partial u}{\partial r} \bigg|_{r=0}, \quad (12) \\
\left. T \right|_{r=0} &= T_m, k_{\text{haf}} \frac{\partial T}{\partial r} \bigg|_{r=0} = \rho_{\text{haf}} (\kappa + C_s) (T_m - T_o) v(s, 0), \quad (13) \\
\left. u \right|_{r \to \infty} &\to 0, \left. u_p \right|_{r \to \infty} \to 0, \left. v \right|_{r \to \infty} \to v, \frac{\partial u}{\partial r} \bigg|_{r \to \infty} \to 0, T \bigg|_{r \to \infty} \to T \infty
\end{align*}
\]

The thermal physical features for NF are
\[
\mu_{\text{nf}} = \frac{\mu_f}{(1 - \phi)^{2.5}} a_{\text{nf}} = \frac{k_{\text{nf}}}{(\rho C_p)_{\text{nf}}}, \quad (14)
\]
\[
\rho_{\text{nf}} = (1 - \phi) \rho_f + \phi \rho_s, \left(\rho C_p \right)_{\text{nf}} = (1 - \phi) \left(\rho C_p \right)_f + \phi \left(\rho C_p \right)_s, \quad (15)
\]
\[
k_{\text{nf}} = \frac{k_f (n - 1) + k_{s2} - (n - 1) [k_{\text{nf}} - k_{s2}] \phi_2}{k_f + k_{s2} + [k_{\text{bf}} - k_{s2}] \phi_2}, \quad (16)
\]

The HNF thermo-physical features are followed as:
\[
\mu_{\text{nf}} = \mu_f (1 - \phi_1)^{-2.5} (1 - \phi_2)^{-2.5}, \quad (17)
\]
\[
D_4 = \left(\rho C_p \right)_{\text{haf}} = \left(\rho C_p \right)_{\text{hs}} (\phi_2 - 1) \left\{ (1 - \phi_1) \left(\rho C_p \right)_f + (\rho C_p)_{s1} \phi_1 \right\}. \quad (18)
\]
\[
\rho_{\text{haf}} = (1 - \phi_2) \left\{ (1 - \phi_1) \rho_f + \phi_1 \rho_{s1} \right\} + \rho_{s2} \phi_2, \quad (19)
\]
\[
k_{\text{bf}} = k_f (n - 1) + k_{s2} - (n - 1) [k_{\text{bf}} - k_{s2}] \phi_2, \quad k_{\text{bf}} + k_{s2} + [k_{\text{bf}} - k_{s2}] \phi_2, \quad (20)
\]
\[
k_{\text{bf}} = k_{s1} + (n - 1) k_f - (n - 1) [k_f - k_{s1}] \phi_1, \quad k_{s1} + (n - 1) k_f + [k_f - k_{s1}] \phi_1.
\]

3. **Introducing new transformation**

4. The equivalent PDEs for DNF and DHNF are altered to ODEs by presenting the succeeding transformation [47]:

7
\[
\eta = \sqrt{\frac{a_1}{2l} r e^{\eta/2l}}, \quad p = \rho_f a_1^2 e^{2\eta l} P(\eta), \quad \theta(\eta) = \frac{T - T_m}{T_x - T_m}, \quad \theta_p(\eta) = \frac{T_p - T_m}{T_x - T_m},
\]

\[
u = a_1 e^{\eta l} f'(\eta), \quad \nu = -\frac{R}{r + R} \sqrt{\frac{a_1}{2l} r e^{\eta/2l}} \left(f'(\eta) + \eta f''(\eta) \right),
\]

\[
u_p = a_1 e^{\eta l} f'(\eta), \quad \nu = -\frac{R}{r + R} \sqrt{\frac{a_1}{2l} r e^{\eta/2l}} \left(f'(\eta) + \eta f''(\eta) \right),
\]

4.1 For nanoparticles fluid

\[
\frac{\rho_f}{\rho_{nf}} P' = \frac{f''}{\eta + K_p}
\]

\[
\frac{\rho_f}{\rho_{nf}} - 2k \frac{P}{\eta + k} = \frac{\mu_{nf}}{\rho_f} \frac{\mu_f}{\eta + k} \left(f'' - \frac{f'}{(K_p + \eta)^2} + \frac{f'}{\eta + K_p} \right) - \frac{K_p f''}{\eta + K_p} + \frac{K_p f'}{K_p + \eta}
\]

\[
\frac{1}{P_r K_p} \left(\theta + \frac{1}{\eta + K_p} \theta \right) + D_4 \left[\frac{K_p}{\eta + K_p} f \theta - \epsilon_{\text{ther}} \left(\frac{K_p^2}{(\eta + K_p)^2} \left(f \theta + f f' \theta \right) - K_p^2 f' \theta \right) \right] +
\]

\[
M_d B \gamma (\theta_p - \theta) + M_d B E C (F' - f') = 0.
\]

1.1 For Dusty fluid flow:

\[
\frac{K_p}{K_p + \eta} F' - \frac{K_p}{\eta + K_p} F^2 + \frac{K_p}{(\eta + K_p)^2} F F + B \gamma (\theta_p - \theta) = 0,
\]

Corresponding to the altered boundary conditions:

\[
D_z P r f(0) + \frac{k_{nf}}{k} M \theta(0) = 0, \quad f'(0) - 1 - L_b \left(f'(0) - \frac{f(0)}{K_p} \right) - L_1 \left(f'(0) - \frac{f'(0)}{(\eta + K_p)^2} \right) = 0.
\]

\[
\theta(0) = 1, \theta(\eta) \rightarrow 0, \theta_p(\eta) \rightarrow 0, \text{as } \eta \rightarrow \infty.
\]

Involved parameters are expressed as
\[K_p = R \sqrt{\frac{a}{2v_f}} , B_v = \frac{1}{a_f T_v} , Pr = \frac{\nu f}{a_f} , B_p = \frac{1}{a_l T_p} , \varepsilon_{\text{ther}} = a_l \lambda , M = \frac{C_p (T_m - T_0)}{\lambda + C_s (T_m - T_0)} \]

\[E_c = \frac{a_2 e^{2z/2 \lambda}}{C_p (T_m - T_0)} , M_d = \frac{mS}{\rho_p} , Sc = \frac{V_f}{D} , L_0 = \lambda_1 \sqrt{\frac{a_1}{2v_j l}} , L_1 = \lambda_2 \sqrt{\frac{a_2}{2v_j l}} \]

From equations (22) and (23) \[47\]

\[f^r + \frac{2f^r}{\eta + K_p} - \frac{f^r}{(\eta + K_p)} + \frac{f^r}{(\eta + K_p)} + D M_d B_v + \frac{1}{(\eta + K_p)} (F - f^r) \]

\[+ D D_s \left\{ \frac{K_p}{(\eta + K_p)} \left(f^r - f f^r \right) - \frac{K_p}{(\eta + K_p)} \left(f^r f^r - f f^r \right) - \frac{K_p}{(\eta + K_p)} f f^r \right\} = 0, \]

The surface drag force \(C_f \),

\[C_f = \frac{T_{ex}}{\frac{1}{2} \rho q^2 w} \]

where,

\[T_{ex} = \mu_{ef} \left(\frac{\partial u}{\partial r} - \frac{u}{r + R} \right) \]

After Simplification we get,

\[C_f \sqrt{\text{Re}_s} = \frac{1}{D_i} \left(f^r (0) - \frac{f^r (0)}{K_p} \right). \]

Here, \(\text{Re}_s \) denotes the local Reynolds Number (LRN).

5. Error analysis

The results produced by the Finite Element Method (FEM) are generally quite accurate with regard to most differential equations. However, since its outcomes are founded on numeric error assessments, considerable error is exceptionally small. It is frequently helpful to scrutinize conclusions by concerning an explanation that was generated with Work Precision (WP) greater than the Default Machine Precision (DMP). For this purpose, estimations is done through FEM procedure with the DWP, and the error is figured out using FEM via WP-22. Since, errors are normally minor, therefore it is beneficial to evaluate them on scale [10] (logarithmic scale).

We intended the error approaches to various physical variables involved in the suggest problem via graphically. We carried out an evaluation of errors to confirm the validity of the procedure before performing physical measurements. Figures 2-8 were created for this analysis. The lowest possible error rate (10–30) is preserved throughout each calculation in the FEM process. reducing the total mean squared residual error by utilizing the FEM tool in Mathematica. To
detect error for different orders of estimate, several iterations is done for the different magnitude of Kp, pi and ϕ_2 fixing $L_0 = 1.2, L_1 = 1.2, B_v = 1.3, M = 0.2$ and $M_d = 1.3$. Figures 2-4 demonstrate the maximum ASQE for numerous values of Kp by several estimate orders. It is perceived that the designated values of Kp to display the inspiration on DPV and DPT is noteworthy. MSRE and TMSRE are displayed in Fig. 5, when $\phi_2 = 0.2$ the TASRE and ASRE drop as the instruction of approximation upsurges, but for $\phi_2 = 0$, the error is melodramatically abridged as associated with the situation for $\phi_2 = 0.2$, as realized in Fig. 5. Thus, when $\phi_2 = 1$, the imprecision growths as demonstrated in Figure 8.

6. Analysis and results

In this research, we look at the NF and HN across a surface that curves with dust particles to illustrate how melting heat and SoS at the border affect the results. The modeled PDEs are similarly transformed into convectional ordinary differential equations and subsequently solved computationally with FEM utilizing MATHEMATICA SOFTWARE. This section uses graphs and tables to examine the effects of different dimensionless factors on the flow field, dust phase velocity (DPV), heat field, DPT, and physical measurements of concern like SF. Also confirmation is debated with the earlier work. The link between the fluid's DPV and the curve of the surface that curves (CCS) is examined in Figure 9. It should be noted that once the CCS is raised, the fluid's DPV is improved. As a consequence, decreasing curved sheeting radius comes across a smaller surface area of interaction, and flowing participation eventually entails the least conflict. The higher liquid speed is evident as a result. Figure 10 illustrates a different tendency because of the DPT in an analogous way. As opposed to a movement in CCS, the rate of heat conduction within the liquid via the sheet is slightly slower. As an outcome, the DPT is thought to be declining. It is crucial to understand that HN produces outcomes that are superior to nano-liquid streams.

The purpose of Figures 11 and 12 is to examine the impact of the volume of a solid fraction ϕ_2 to the liquid's velocity for both phases $f'(\eta)$ and $F'(\eta)$. It is noted that the fluid's motion $f'(\eta)$ exhibits improved efficiency near to the surface while reducing ability farther from the border is shown for greater assessments of ϕ_2. For dust liquid $F'(\eta)$, boosting events are also seen (Figure 12). Again, this demonstrates the HNF potential.
The heat transmission increases as a consequence of a rise in the ability to conduct the heat of nanotechnology particles, which in turn raises the fluid's temperature (Figure 13) across both HN and NF. In Figure 14, the liquid's DPT $\theta_p(\eta)$ is depicted for various ϕ_2 values. It is noted that the $\theta_p(\eta)$ decreases. In addition, it was evident that, in comparison to the HN, the measured percentages of tiny material that were present had the least impact on the copper-containing nanofluid owing to the lower estimated densities of the nanofluid. Additionally, the inclusion has the least impact on the copper-containing nanofluid.

The efficiency of the liquid dust stage heat for differentiating solid volumetric fraction data is shown in Figure 14. The ambient temperature of the fluid at the dust stage is thought to be dropping. Because of the lowered density predictions of the copper-based EG. It was also found that the EG NF was only marginally influenced by the penetration of ϕ_2 compared to the (CuCuO)-HN. The variance in $f'(\eta)$ for various values of the variables L_0 (first) and L_1 (second) is shown in Figures 15 and 16. This research shows that under both situations, there are increases in L_0, signs of a descending acceleration magnitude $f'(\eta)$, and increases in L_1 the velocity of the fluid.

The outcome of melting heat factor M on the flow field is seen in Figure 17. It follows that the number of liquid molecules with fluid dust speeds ascends towards larger M. This is due to the particle motion is more anchored, which eventually aids the fluid's speed. HN properties have a big role. Figures 18 and 19 show how different amounts of B_v and M_d on $F'(\eta)$ correspondingly. It is inspected that the DPV showing the declining behaviour with enhancing B_v and M_d.

Figure 20 is created for a range of values of $\varepsilon_{\text{Ther}}$ (thermal relaxation time) on heat. A change in $\varepsilon_{\text{Ther}}$ estimates indicate a lower temperature. The fluid's temperature has decreased as a result of the confinement type, which is shown by larger approximation of $\varepsilon_{\text{Ther}}$.

Figure 21 shows the significance of factors γ on DPT. The internal heat of the fluid rises with increasing values of γ. The outcome of the Eckert number Ec on the heat for conventional nanofluids and hybrid nanofluids is seen in Figure 22. A large heat change is seen with rising Ec values. Frictional heating brought on by an improvement in Ec is the cause of this heat buildup.

Thermo physical characteristics values for base fluid and Nanomaterial are given in Table1. Table 2 details the rationale of our results that are currently accessible. This table makes clear that the current results and the published study accord superbly [47]. Skin Friction (SF) variation is shown in Table 3 for analytical estimations of various parameters. According to growing estimates of ϕ_2, L_0, and K_p, SF appears to grow. In contrast, an opposite trend is endorsed in the cases of L_1 and M in the numerical simulations of NF and HN, respectively.

7. **Concluding remarks**

This study involves the introduction of dust grains that are enclosed in Cu/EG (NF) and Cu-CuO/EG (HN) approaching modified FL via a curving surface having a slip mechanism. The statistical issue is resolved through the FEM approach, and the impacts of various components are illustrated against relevant profiles and in a structured manner in diagrams. The ND-Solve technique is used to validate the FEM. The comparison of the current work to earlier work and error assessment serves to corroborate the theoretical framework. When K_p is increased, it is seen that the $F'(\eta)$ is enhanced. For different values of ϕ_2, the behavior shown by $f'(\eta)$ and $F'(\eta)$ is reversed. The heat of the fluid drops in relation to the thermal relaxation coefficient. Comparable increasing and declining patterns can be seen in the velocity and thermal curves versus the curvature variable for both the liquids and dusty phases. The HN effectiveness is significantly higher compared to that exhibited by the traditional NF. The consequences of the first-order slip variable, the curved variable, and the pulling force contribution on the flow field, DPV, heat, and DPT all increase with time.
Data Availability statement: All the data is available within the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

Engineer, 45(4), pp.1176-83 (2014).

Biographies

Zeeshan earned his M.Sc. and M.phil degree from Quaid-e-Azam University, Islamabad and the Ph.D. degree from Abdul Wali Khan university, Mardan, KP, Pakistan. He is currently an Assistant Professor in mathematics with Bacha Khan UniversityCharsadda, KP, Pakistan. He has published 90 articles in good impact factor journals and has participated in national conference. His research interests include magnetohydrodynamic, nano fluid, heat transfer, hall effect, electrohydrodynamic, thin film, and heat exchangers.

WARIS KHAN received his educational degrees as follows: M.Sc. degree from Quaid-e-Azam University, Islamabad, Pakistan. M.S. degree from COMSATS University Abbottabad, KP, Pakistan. Ph.D. degree from Islamia College University, Peshawar, KP, Pakistan. He currently holds the position of Lecturer of Mathematics at Hazara University, Mansehra, KP, Pakistan. He has a prolific academic record with 94 articles published in high-impact factor journals, along with active participation in national conferences. His research expertise spans various areas including magnetohydrodynamics, nanofluids, heat transfer, hall effect, electrohydrodynamics, thin films, and heat exchangers.

Maryam Redn ALmutiri received the MSc. degree from the Faculty of Science, Qassim University, Saudi Arabia. She is recently attached with the Department of Mathematics, College of Science and Arts, Qassim University, Dariyah, Saudi Arabia, for research projects. She has two publications in SCI journals. Her research interests include Pure & Applied Mathematics.

Badria Almaz Ali Yousif received the Ph.D. degree from the Faculty of Science, Baghat Alruda University, Sudan. She is recently attached with the Department of Mathematics, College of Science and Arts, Qassim University, Buraydah, Saudi Arabia, for research projects. She has published more than 10 publications in SCI journals. Her research interests include Game Theory, and Multi-objective Programming.

ABEER A. SHAABAN received the Ph.D. degree from the Faculty of Education, Ain Shams University, Cairo, Egypt. She is a Teacher in Mathematical Subjects (Computational Fluids). She is recently attached with the Mathematics Department the Faculty of Education, Ain Shams University, Cairo, Egypt, as Lecturer. She is also attached with the Department of Management Information Systems, College of Business Management, Qassim University, Ar Rass, Saudi Arabia, as Assistance Professor. Her research interests include, Fluid Flow, Computational Fluid Dynamics, Fluid Mechanics, Heat & Mass Transfer, Nano-fluids, Numerical Simulation, Numerical Analysis.
Figure 1. Flow geometry.
Figure 2(a-b). Error estimation for $K_p = 2$.
Figure 3(a-b). Error estimation for $K_p = 3$
Figure 4(a-b). Error estimation for $K_p = 5$
Figure 5(a-b). Error estimation for $\phi_2 = 0.2$
Figure 6(a-b). Error estimation for $\phi_2 = 0.0$
Figure 7(a-b). Error estimation for $\phi_2 = 0.1$
Figure 8(a-b). Error estimation for $\phi_2 = 1.0$.

(a) $\phi_2 = 1.0$

(b) $\phi_2 = 1.0$
Residue Error
Figure 9. Motivation of K_p via DPV.

Figure 10. Motivation of K_p via DPT.
Figure 11. Influence of ϕ_2 via velocity field.

Figure 12. Influence of ϕ_2 via DPV.
Figure 13. Influence of ϕ_2 via with temperature field.

Figure 14. Influence of ϕ_2 via DPT.
Figure 15. Influence of L_0 via with velocity field.

Figure 16. Influence of L_1 via velocity field.
Figure 17. Influence of M via velocity field.

Figure 18. Influence of B_t via DPV.
Figure 19. Influence of M_d via DPV.

Figure 20. Influence of $\varepsilon_{\text{ther}}$ via temperature field.
Figure 21. Influence of γ via DPT.

Figure 22. Influence of Ec via temperature field.
Table 1. Thermo characteristics are given below [46, 47].

<table>
<thead>
<tr>
<th>Base fluid/ Nanomaterial</th>
<th>C_p (J/kg K)</th>
<th>$\rho \left(\frac{Kg}{m^3}\right)z$</th>
<th>K(W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_2H_6O_2$</td>
<td>2430</td>
<td>1115</td>
<td>0.253</td>
</tr>
<tr>
<td>CuO</td>
<td>531.8</td>
<td>6320.0</td>
<td>76.5</td>
</tr>
<tr>
<td>Cu</td>
<td>385</td>
<td>8933</td>
<td>401</td>
</tr>
</tbody>
</table>

Table 2: Assessment of present study to the previous $C_f\sqrt{Re}$ by varying a_i when $B_v = L_0 = 0 = L_1 = M = \phi_1 = \phi_2 = 0$.

<table>
<thead>
<tr>
<th>K_p</th>
<th>Present work [47]</th>
<th>Published work</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.307800</td>
<td>1.307801</td>
</tr>
<tr>
<td>10</td>
<td>1.245511</td>
<td>1.245512</td>
</tr>
<tr>
<td>20</td>
<td>1.202502</td>
<td>1.202503</td>
</tr>
<tr>
<td>30</td>
<td>1.201700</td>
<td>1.201712</td>
</tr>
<tr>
<td>50</td>
<td>1.186401</td>
<td>1.186400</td>
</tr>
<tr>
<td>15</td>
<td>1.183311</td>
<td>1.183310</td>
</tr>
<tr>
<td>20</td>
<td>1.177013</td>
<td>1.177013</td>
</tr>
</tbody>
</table>

Table 3: SF for different parameters fixing $Pr = 5, B_v = 0.5, M_a = 10$ fixed.

<table>
<thead>
<tr>
<th>ϕ_2</th>
<th>L_0</th>
<th>L_1</th>
<th>K_p</th>
<th>M</th>
<th>Nanofluid</th>
<th>Hybrid nanofluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>1.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.32633</td>
<td>0.47279</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.45774</td>
<td>0.50715</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.48215</td>
<td>0.54461</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.51600</td>
<td>0.57181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.57313</td>
<td>0.63671</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td>0.57313</td>
<td>0.63671</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td>0.64374</td>
<td>0.72053</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>1.18620</td>
<td>1.38050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td>0.68188</td>
<td>0.76388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td>0.42330</td>
<td>0.47278</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.68447</td>
<td>0.78638</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.82715</td>
<td>0.80522</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.82688</td>
<td>0.8818</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.34740</td>
<td>0.38360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.31613</td>
<td>0.32224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.31527</td>
<td>0.31664</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>