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Abstract. Given a set P of n points in the plane, the maximum triangle problem asks
for �nding a triangle with three vertices in P that encloses the maximum number of points
from P . While the problem is easily solvable in O(n3) time, it has been open whether a
subcubic solution is possible. In this paper, we show that the problem can be solved in o(n3)
time, using a reduction to min-plus matrix multiplication. We also provide some improved
approximation algorithms for the problem, including a 4-approximation algorithm running
in O(n logn log h) time, and a 3-approximation algorithm with O(nh logn+ nh2) runtime,
where h is the size of the convex hull of P .

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Let P be a set of n points in the plane. In the
maximum triangle problem, the objective is to �nd a
triangle with three vertices from P , so that the number
of points of P enclosed by the triangle is maximum
(for an illustration, see Figure 1). Eppstein et al. [1]
showed that the problem can be solved in O(n3) time.
They indeed solved a more general problem of �nding
a convex k-gon enclosing a maximum number of points
in O(kn3) time. They left this question open whether
the problem can be solved faster.

Dou��eb et al. [2] presented several approximation
algorithms for the maximum triangle problem. In
particular, they provided a 3-approximation algorithm
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running in O(nh2 logn) time, and a 4-approximation
algorithm with O(n log2 n) running time. They again
posed �nding an o(n3)-time exact algorithm as an open
problem.

1.1. Our results
In this paper, we revisit the maximum triangle prob-
lem, and provide several improved results, as described
below:

� We provide the �rst o(n3)-time exact algorithm for
the maximum triangle problem, thereby answering
an open problem posed by Eppstein et al. [1]. Our
algorithm is based on a reduction to the min-plus
matrix multiplication, for which slightly subcubic
algorithms are already known in the literature;

� We provide a 3-approximation algorithm for the
maximum triangle problem that runs inO(nh log n+
nh2) time, where h denotes the size of the convex
hull of the input point set. Our algorithm improves
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Figure 1. An example of the maximum triangle problem.

Table 1. Summary of the results for the maximum
triangle problem.

Runtime
Algorithm Previous [1,2] This work

Exact O(n3) n3=2
(
p

logn)

3-approximation O(nh2 logn) O(nh logn+ nh2)
4-approximation O(nh2 log h) O(nh log h+ h3)
4-approximation O(n log2 n) O(n log n log h)

by a factor of minflog n; hg the running time of a
previous 3-approximation algorithm due to Dou��eb
et al. [2] that runs in O(nh2 log n) time;

� We show how a 4-approximation to the maximum
triangle can be computed in O(nh log h+nh3) time,
improving upon a previous 4-approximation algo-
rithm of Dou��eb et al. [2] that runs in O(nh2 log h)
time. Our algorithm is faster by a factor of
minfh; (n=h) log hg in this case compared to the
previous existing algorithm;

� We present another 4-approximation algorithm with
a running time of O(n logn log h), improving upon
a previous 4-approximation algorithm of Dou��eb et
al. [2] that runs in O(n log2 n) time.

A summary of the results provided in this paper
and the previous work is presented in Table 1.

1.2. Related work
The problem of �nding a convex k-gon with vertices
from the input point set maximizing or minimizing
a particular function has been widely studied in the
literature. For the problem of �nding a maximum
area and a maximum perimeter convex k-gon, Boyce
et al. [3] provided an O(kn logn + n log2 n) time algo-
rithm, which was later improved to O(kn+ n logn) by
Aggarwal et al. [4] using a fast matrix search method.
Eppstein et al. [1] showed that a minimum area and a
minimum perimeter convex k-gon, as well as a convex
k-gon enclosing a minimum (or maximum) number of
points can be computed in O(kn3) time.

A related problem of counting the number of
triangles in a graph has received considerable attention

due to its applications in social network analysis,
community detection, and link prediction [5,6]. The
best known algorithm for this problem is based on
fast matrix multiplication with O(n!) time complexity,
where ! < 2:372 [7,8]. The problem is also studied in
other models of computation, including parallel and
data streaming [9{12]. See also Refs. [13{15] for some
recent work on the related triangle detection problem.

The min-plus matrix multiplication, also known
as distance product and tropical product, is extensively
studied in the literature, due to its connection to
several fundamental problems such as all-pairs shortest
paths, minimum cycles, and replacement paths [16].
For this problem, slightly subcubic algorithms are
known [17{19], the current best of which is due to Chan
and Williams [20] with O(n3=2

p
logn) time complexity.

In fact, it is widely believed that truly subcubic
algorithms with O(n3�") running time do not exist
for min-plus matrix multiplication, based on recent
�ndings in �ne-grained complexity [21].

2. Preliminaries

Let P be a set of n points in the plane. Throughout
this paper, we assume that the points are in general
position, i.e., no three points are co-linear, and no two
points have the same x-coordinate.

Given three points p; q; r 2 P , we call �pqr a
triangle of P , and denote by j�pqrj the number of
points enclosed by �pqr, i.e., the number of points
contained in the interior or on the boundary of �pqr.
A triangle �pqr with maximum j�pqrj is called a
maximum triangle of P , or in short, an optimal triangle.

3. A subcubic exact algorithm

In this section, we show how the maximum triangle
problem can be solved in o(n3) time, using matrix
multiplication over the (min;+)-semiring, for which
slightly subcubic algorithms are available. Recall that
the min-plus product of two n � n matrices A and B
is de�ned as:

(A�B)i;j = min
1�k�nfAi;k +Bk;jg: (1)

Theorem 1. Let P be a set of n points in the plane. A
maximum triangle of P can be found in O(n2 + T (n))
time, where T (n) is the time needed for computing the
min-sum product of two n�nmatrices, the best current
algorithm for which has n3=2
(

p
logn) runtime.

Proof. For each pair of points p; q 2 P , we denote by
npq the number of points from P in the vertical slab
(strictly) below the line segment pq (see Figure 2). The
value of npq for all pairs p; q 2 P can be computed in
O(n2) time [1]. For any two points p; q 2 P , we set
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Figure 2. Points below the line segment pq.

n ~pq = npq + 1 if the vector ~pq is directed from left to
right, and set n ~pq = �npq otherwise.

Now, for any triangle �pqr with three vertices
p; q, and r in clockwise order, the number of points
enclosed by �pqr can be written as:

j�pqrj = n ~pq + n ~qr + n ~rp + 1: (2)

Note that Eq. (2) correctly captures the number of
points enclosed by the triangle �pqr, no matter if
the triangle is upward or downward (see Figure 3).
Moreover, for computing the maximum triangle, we
only need to consider the points in clockwise order,
as the value of n ~pq + n ~qr + n ~rp for any three points
p; q, and r in counter-clockwise order is smaller than
the corresponding value in clockwise order.

Let A be a n � n matrix with Ap;q = �n ~pq, and
let B = A� (A�A). By the de�nition of the min-plus
product, we have:

Bp;p = min
q;r2PfAp;q +Aq;r +Ar;pg; (3)

for all p 2 P . Therefore, to obtain a maximum triangle,
we just need to check the n values on the main diagonal
of the matrix B for the smallest (negative) number,
whose absolute value corresponds to the number of
points enclosed by a maximum triangle. The optimal
triangle itself can be easily found in O(n2) time by

enumerating all O(n2) triangles with one vertex on the
point realizing the smallest value in the diagonal. The
whole runtime of the algorithm is therefore bounded by
that of computing the min-plus product. �

Our algorithm can be generalized to work for
point sets not in general position as well. Let tpq denote
the number of points lying on the line segment pq,
including p and q, themselves. The value of tpq for
all pairs p; q 2 P can be computed in O(n2) time [1].
Now, in the proof of Theorem 1, it just su�ces to set
n ~pq = npq + tpq� 1 if the vector ~pq is directed from left
to right. The rest of the proof remains unchanged.

4. Improved approximation algorithms

Dou��eb et al. [2] proposed several subcubic approxi-
mation algorithms for the maximum triangle problem.
The main idea behind their algorithms is to reduce the
number of enumerated triangles by �xing 1, 2, or 3
vertices of the optimal triangle on the convex hull of the
input points. They also used this simple observation
that if the surface of an optimal triangle is covered by
c triangles (for an integer c � 1), then one of these
triangles is a c-approximation of the optimal triangle.

In this section, we improve the runtime of the ap-
proximation algorithms proposed by Dou��eb et al. [2],
using faster methods for counting the number of points
in the enumerated triangles.

In the remaining of this section, we assume that
P is a set of n points in general position in the plane,
H is the convex hull of P , and h = jHj. We will use the
following two auxiliary lemmas from Dou��eb et al. [2].

Lemma 1 [2]. Among all triangles in P with k vertices
on the convex hull (1 � k � 3), there exists a triangle
that (k + 1)-approximates an optimal triangle.

Lemma 2 [2]. Given two points p; q 2 H, the value of
j�pqrj for all r 2 P can be computed in O(n logn)
time. Furthermore, j�pqrj for all r 2 H can be
computed in O(n log h) time.

Now, we prove three lemmas which are the main

Figure 3. The two possible con�gurations for the triangle �pqr.
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Figure 4. Triangles formed by four points on the convex
hull.

ingredients of our improved approximation algorithms.

Lemma 3. Given a point p 2 H, the value of j�pqrj
for all q; r 2 H can be computed in O(nh log h) time.
Furthermore, j�pqrj for all q 2 P and r 2 H can be
computed in O(nh logn) time.

Proof. Fix a point q on H. By Lemma 2, j�pqrj for all
r 2 H can be computed in O(n log h) time. Since there
are h � 1 option for choosing q, computing j�pqrj for
all q; r 2 H takes O(nh log h) time in total. Similarly,
if we �x q 2 P , the algorithm takes O(nh logn) time by
Lemma 2. �

Lemma 4. The value of j�pqrj for all three points
p; q; r 2 H can be computed in O(nh log h+ h3) time.

Proof. Let p; q; r, and s be four points on H in
clockwise order. The value of j�pqrj can be written as
j�spqj+ j�sqrj � j�sprj (see Figure 4). By Lemma 3
we can compute the number of points enclosed by
all triangles on H whose one vertex is �xed on s in
O(nh log n) time. Therefore, after this preprocessing
step, we can compute the value of j�pqrj for each
p; q; r 2 H in O(1) time. Since there are O(h3) such
triangles, the whole process takes O(nh log h+h3) time
in total. �

Lemma 5. For all p; q 2 H and r 2 P , the value
of j�pqrj can be computed in O(nh log n + nh2) total
time.

Proof. For a �xed point s on H, we compute the
number of points enclosed by all triangles with one
vertex on s, and the other two vertices freely chosen one
from P and the other from H in O(nh logn) time using
Lemma 3. Now, for any triangle �pqr with p; q 2 H
and r 2 P , we compute j�pqrj as follows:

(i) If rp crosses sq, then j�pqrj = j�pqsj+ j�qrsj �
j�prsj;

(ii) If rq crosses sp, then j�pqrj = j�pqsj+ j�prsj �
j�qrsj;

(iii) If rs crosses pq, then j�pqrj = j�prsj+ j�qrsj �
j�pqsj;

(iv) If r lies inside �pqs, then j�pqrj = j�pqsj �
j�prsj � j�qrsj+ 5.

In any of the above cases, j�pqrj can be computed
in O(1) time. Since there are O(nh2) di�erent triangles
�pqr with p; q 2 H and r 2 P , we can compute j�pqrj
for all such triangles in O(nh logn + nh2) total time.
�

Now, Lemmas 4 and 5 together with Lemma 1
yield the following theorem.

Theorem 2. A 3-approximation of an optimal triangle
can be computed in O(nh log n + nh2) time. Further-
more, a 4-approximation of an optimal triangle can be
found in O(nh log h+ h3) time.

Remark 1. Eppstein et al. [1] proved that P can
be preprocessed in O(n2) time, so that for any query
triangle �pqr in P , j�pqrj can be reported in O(1)
time. Using this as an alternative way for counting
the number of points in the enumerated triangles,
we can rewrite the time bounds in Theorem 2 as
O(min(n2; nh logn) + nh2) for the 3-approximation,
and O(min(n2; nh log h) + h3) for the 4-approximation
algorithm.

In the following theorem, we present an alterna-
tive 4-approximation algorithm for the problem.

Theorem 3. An optimal triangle can be approximated
within a factor of 4 in O(n log n log h) time.

Proof. Let t1; t2; : : : ; th be the vertices of H in
clockwise order, and let m = bh=2c + 1. We partition
H into two convex polygons H1 = t1; t2; : : : ; tm and
H2 = tm; : : : ; th; t1. Let P1 and P2 be the points of P
enclosed by H1 and H2, respectively. We use Lemma 2
to compute j�t1tmpj for all p 2 P in O(n logn) time.
We then recurse on P1 and P2, and return a triangle
found containing a maximum number of points.

To prove correctness, we �rst recall that there ex-
ists a triangle �t1pq with p; q 2 P that 2-approximates
an optimal triangle [2]. If t1tm crosses pq, then the two
triangles �t1tmp and �t1tmq cover �t1pq, and hence,
one of them is a 2-approximation of �t1pq, which is in
turn, a 4-approximation of an optimal triangle. On the
other hand, if pq lies in one side of t1tm, the recursive
call on that side returns a 2-approximation.

Let T (n; h) be the time required by the algorithm
on a point set of size n whose convex hull has size h.
Then, T (n; h) = T (n1; h1) + T (n2; h2) + O(n log n),
where n1 + n2 = n + 2, h1 = bh=2c + 1, and h2 =
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dh=2e + 1. The recurrence tree for this relation has
height O(log h), and yields T (n; h) = O(n log n log h).�

5. Conclusions

In this paper, we presented a slightly subcubic al-
gorithm for the maximum triangle problem, and im-
proved the running time of several approximation algo-
rithms available for the problem. A main question that
remains open is whether a truly subcubic algorithm
with O(n3�") time is possible for the problem. It is
also interesting to study the generalized maximum k-
gon problem, for k � 4.
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