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Abstract 

The decline phase of a high-tech product's life cycle often causes variations in production 

schedules due to over or under production. To address this challenge, we propose a 

production-inventory model that considers decreasing demand and prices during pandemics. 

Our model aims to optimize replenishment, dispatching, and backordering policies, ultimately 

maximizing total profit for high-tech industries. Our proposed solution procedure derives 
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optimal policies, taking into account the unique demands during the pandemics. We suggest 

adopting either a last-in-first-out (LIFO) or first-in-first-out (FIFO) backordering policy 

depending on whether profit or fairness is the primary concern. We have provided a numerical 

example and conducted a sensitivity analysis to demonstrate the practical application of the 

proposed model. By optimizing the replenishment, our model enables high-tech industries to 

maximize total profit, even in the face of declining demand and prices during the pandemics. 

Overall, our model represents a valuable tool for high-tech industries seeking to better manage 

production and inventory, and we believe it has the potential to increase product profitability 

during the declining phase of a product's life cycle. 

 

Key words: high-tech products; dispatching policies; decreasing demand; decreasing prices; 

backordering policies 

1. Introduction 

As high-tech products approach the end of their life cycle, it is common for prices and demand 

to decrease rapidly. This is due to the fast pace of technological progress, which causes the cost 

of components and selling prices to decline at a rate of approximately 1% per week (Sern, [1]). 

As a result, there has been a growing interest in research on varying price and demand in recent 

decades. 

Studies by Dave and Patel [2] and Hollier and Mak [3] have developed time-dependent models 

for perishable items that incorporate declining demand for fixed and variable restocking 

intervals. Mak [4] further established an optimal production-inventory policy with constant 

demand and partial backordering, while Wee et al. [5] proposed an EPQ model with a partial 

backordering mechanism and decision variables based on time intervals. 

Research by Lev and Weiss [6], Gascon [7], Wee et al. [8], and Yin and Kang [9] have focused 

on ordering policies with varying planning horizons for EPQ models. Wee and Widyadana [10] 

developed a production model for deteriorating items with stochastic preventive maintenance 

time and a rework process using the FIFO rule, while Öztürk et al. [11] proposed an 

EPQ-based model considering shortages, rework, and imperfect items. 

Recent studies have also explored continuous-time supplier-distributor manufacturing policies 

(Sato et al., [12]), corporate social responsibility supply chains (Zhao et al., [13]; Xie et al., 

[14]), supply chain coordination with price-sensitive stochastic demand (Wang et al., [15]) and 

revenue and sharing policies for uncertain demand in high-tech industries during the pandemic 

(Huang et al., [16]). 

Overall, these studies provide valuable insights into the challenges of managing production and 

inventory for high-tech products with decreasing demand and prices. By developing models 
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and procedures to optimize inventory replenishment and backordering policies, these studies 

offer practical solutions to help high-tech industries maximize their profitability. 

In their 2017 study, Shaikh et al. [17] developed an inventory model that considers 

non-instantaneous deterioration processes with fully backordered demand that is both price and 

stock dependent. Non-instantaneous deterioration occurs when the deterioration process begins 

after a certain period (Sana, [18]). In subsequent studies, Mashud et al. ([19], [20], [21], and 

[22]) and Wang et al. [15] expanded upon this model by incorporating additional factors such 

as different deteriorating rates, preservation technology, trade credit, and sustainable inventory 

management policies. 

Other researchers have also explored non-instantaneous deteriorating inventory models 

considering various effect factors (Lee [23], Raza and Faisal, [24], Buisman et al., [25], Chung, 

[26], Modak and Kelle, [27], and Becerra et al., [28]). Kazemi et al. [29] applied a genetic 

algorithm to develop an integrated production-distribution scheduling model, while Pooya et al. 

[30] proposed a systematic approach to determine the most appropriate lot-sizing policies in a 

material requirement planning system Aazami and Saidi-Mehrabad [31] proposed a 

mathematical model that integrated perishable products, time-varying demand, production 

capacity, and transportation constraints. Sarkar and Giri [32] proposed a mathematical model to 

optimize the supplier’s finite production capacity and retailer's ordering policy under uncertain 

demand and variable backorder cost. Khorshidvand et al. [33] developed a closed-loop supply 

chain network design to maximize profit and minimize CO2 emission under uncertain demand. 

They proposed a new hybrid method using Lagrangian relaxation algorithm to solve a 

multi-objective nonlinear programming (NLP) model. AlAlaween et al. [34] proposed an 

artificial neural network to forecast the uncertainty of the demand and price in the   hyrrid 

electric cars’ spare parts. 

In November 2019, pneumonia of unknown cause broke out in Wuhan, China, and a new 

coronavirus emerged. In just over one year. The number of confirmed cases worldwide has 

exceeded 76 million, and the death toll is approaching 1.7 million. With the spread of the 

pandemics, global demand freezes sharply, and it affects the global economy. The uncertainty 

of the supply chain is aggravated by the fluctuations of price and demand. Haren and 

Simchi-Levi [35] in their study described the disrupted production due to the pandemics. Other authors 

discussed the recovery stage after the pandemics have subsided (Paul and Chowdhury, [36]; 

Mashud et al., [37], Jana, [38], and Pujawan and Bah, [39]).  

In contrast to previous studies, this study considers declining prices and demands 

during the pandemics and develops an integrated production-inventory policy with different 
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backordering strategies using an analytical formulation and optimization approach. Based on 

the economic production quantity (EPQ) concept, the study presents a production-inventory 

strategy for products with declining demand and price during pandemics. The model is 

formulated mathematically, and a heuristic solution procedure is used to compare the total 

profits for the last-in, first-out (LIFO) and first-in, first-out (FIFO) backordering policies.  

A real case numerical example (Source data comes from Yiming Industrial Co., Ltd.) is 

provided to illustrate the application of the model, and sensitivity analysis is conducted to 

highlight the differences between LIFO and FIFO policies.  

 

Note: Yiming Industrial Co., Ltd. was established in Taipei in 1979 and is affiliated to Taizhan 

Group. It has R&D and production bases in Neihu, Guangzhou, Kunshan and Ho Chi Minh 

City. Over the past 40 years, they focus on mold development and surface treatment 

technology, serving well-known brand customers from the machine tool industry, automobile 

industry, golf head industry, and medical equipment and 3C electronic products, providing 

them with various nameplates and metals solutions for plastic-look trim parts. They are the 

important supplier for notebook computer industry. 

 

2. Notation and Parameter Assumptions 

The following assumptions are used in the model development: 

(1) The component restocking rate is infinite. 

(2) The demand rate declines exponentially. 

(3) Component cost, production cost, and consumer purchasing price decrease in a continuous 

manner per unit time. The holding cost, backordering cost, and the set-up cost are assumed 

to be constant. 

(4) The planning horizon is deterministic. 

(5) The component’s restocking interval and production cycle time is constant. 

(6) Partial backordering is considered. 

(7) In the decline stage of product life cycle, two conditions are assumed during 2

it : either 

1 2   or 1 2 1   . 
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(8) LIFO and FIFO policies are considered during 2

it . 

LIFO (filled the incoming orders, then the backorders): when 1 2  ,  

FIFO (filled the backorders, then the incoming orders): when 1 2 1   . 

The followings are the related parameters. 

Parameters Description 

( )t  
Weekly demand rate, where 0( ) ( )et txp    , 𝜃0 is the scale parameter, and 

  is the sensitivity parameter of demand. 

( )u t  
Component cost per unit, 

0( ) (1 )tu t u    where 𝑢0 is the component cost 

per unit when t=0 and 𝛼 is the component cost’s weekly decrease rate... 

( )t  
Selling price per unit, 

0( ) (1 )tt    , where 0  is the selling price per 

unit when t = 0, and   is the weekly decrease rate of the consumer 

purchasing price. 

P Production rate. 

L Length (in weeks) of the production planning horizon.  

1C
 Set-up cost of each production cycle. 

2C
 

Set-up cost of each component replenishment. 

1H
 

Holding cost for products per unit per week. 

2H
 

Holding cost for component per dollar per week. 

3C
 

Weekly backordering cost per unit.  

4C  Unit lost sales cost, including loss of profit margin and goodwill. 

1

it  Time length of stock-out without production during the production cycle i, i=1, 

2...J. 
2

it  Time length of stock-out with production during the production cycle i 

3

it  Time length of positive stock with production during the production cycle i. 

4

it  Time length of positive stock without production during the production cycle i. 

1  Fraction of stock-outs that will be backordered during 1

it  time.  

2  Fraction of stock-outs that will be backordered during 2

it  time.  

  Unit usage of component. 

ct  Component replenishment Time interval.  

TP  Total profit during the planning horizon. 

Decision Variables 

J Integral number of the production cycle in the planning horizon. 

K Integral number of component replenishment in the production cycle. 

T Production cycle time or length. 
 

  
Time percentage in every production cycle with positive inventories, defined 

as the level of service (i.e.  
1 2

1 i it t

T



  ). 
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3. Mathematical Model 

3.1 Model development 

Based on the EPQ concept, the products’ and components’ inventory model for production 

with decreasing price and demand is briefly described below. The total profits for the LIFO and 

FIFO backorder filling policies are compared. Figure 1 depicts a graphical representation of 

products’ and components’ inventory levels at the i
th

 production cycle which consists of four 

parts. In the first part at the 1

it  time interval, shortages happen without production. In the 

second part at the 2

it  time interval, production begins when shortages exist. In the third part at 

the 3

it time interval, production continues and there are positive stocks. In the last part of the 

4

it  time interval, there are positive stocks without production. The decision variables are 

derived to maximize the total net profit over the production planning horizon. The production 

cycle time is expressed as: 

 

[ Insert Figure 1] 

 

L
T

J
  (1) 

 

In Figure 1, at the 𝑡𝑖
1 time period, the products’ inventory level is depleted ry the demand rate 

multiplied by the backordered fraction, 𝛿1. The differential equation of products’ inventory 

level can be modeled as: 

 

1

1 1 0( ) ( ) ( )i

d
I t t exp t

dt
        , (2) 

 

with 𝐼𝑖
1(𝑡) = 0 at the boundary condition and 𝑡 = (𝑖 − 1)𝑇. The value of 𝛿1 is the fraction of 

shortages backordered, where 10 1   one can derive the inventory level as follows: 

 

1 ( ( 1) ( ) 1

1 0( ) ( ) / [ ],( 1) ( 1)i T t

i iI t e e i T t i T t             . (3) 
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At the 2

it  time period, the products’ inventory level is increased ry the production rate and 

depleted by the demand rate multiplied by the backordered fraction, 2 . The differential 

equation is expressed as:  

 

2

2 2 0( ) ( ) ( ),i

d
I t P t P exp t

dt
         (4) 

 

with 2 ( ) 0iI t  as the boundary condition, when ( )t i T  . Value of 2  is the fraction of 

shortages backordered, where 20 1  . One can derive the inventory level as follows: 

 

1)2 ( ) (2 0( )
( ) [ ], ( 1] [( ) ( ))

 t

i i

i n TI TP i T Ttt e e i t t i 




          (5) 

 

Subsequently, this inventory model discusses the conditional situations of the FIFO and LIFO 

backorder systems separately at the 𝑡𝑖
2 time period. For the FIFO backorder system, the first 

assumption is for the existing backorders to be replenished before any new demands are taken 

in; the second assumption is that only a fraction 𝛿2 of the shortage is backordered while the 

others are lost sales. In this case 1 2  . For the LIFO backorder system, the incoming 

demands are calculated before the backorders. In this case, 21 1   . 

 

At the 𝑡𝑖
3 time period, the products’ inventory level is increased ry the production rate and 

diminished ry the demand rate. The differential equation of products’ inventory level can re 

expressed as follows:  

 

3

0( ) ( ) ( ),i

d
I t P t P exp t

dt
        (6) 

 

with 𝐼𝑖
3(𝑡) = 0 as the boundary condition, and the condition 𝑡 = (𝑖 − 𝜂)𝑇. One can derive 

the stock level as follows: 

 

3 ( ( ) ) ( ) 30( ) [ ( ) ] [ ], ( ) ( ) .i T t

i iI t P t i T e e i T t i T t  
  



             (7) 
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At the 𝑡𝑖
4 time period, the products’ inventory level is diminished ry the demand rate only. 

The differential equation of products’ inventory level can re modeled as: 

 

4

0( ) ( ) ( ),i

d
I t t exp t

dt
        (8) 

 

With 𝐼𝑖
4(𝑡) = 0 as the boundary condition and the condition 𝑡 = 𝑖𝑇. One can derive the 

inventory level as follows: 

 

4 ( ) ( ) 30( ) [ ], ( ) .t iT

i iI t e e i T t t iT 




        (9) 

 

As in Figure 1, the components’ inventory level, 𝐼𝑖𝑗(𝑡), in which the production cycle i and the 

components’ replenishment cycle j are depleted by the production rate multiplied by the unit 

usage rate. The differential equation can be expressed as follows: 

 

1 1( ) , ( 1) ( 1) ( 1) ,i j i c i c

d
I t P i T t j t t i T t jt

dt
            (10) 

 

with boundary condition, 𝐼𝑖𝑗(𝑡) = 0 , and the condition  𝑡 = (𝑖 − 1)𝑇 + 𝑡𝑖
1 + 𝑗𝑡𝑐 . The 

component replenishment time interval 𝑡𝑐 can be derived as follows: 

 

2 31
( ).c i it t t

K
   (11) 

 

One can derive the component inventory level as: 

 

1( ) { [( 1) ]}.i j i cI t P t i T t jt       (12) 

 

For the boundary condition, 𝐼𝑖
1(𝑡) = 𝐼𝑖

2(𝑡), and the condition 𝑡 = (𝑖 − 1)𝑇 + 𝑡𝑖
1, one can 

derive a closed form of 𝑡𝑖
1 as follows:  
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1 2 0

( 1)

1 2 0

(1 ) ( )
.

[( ] )

iT T T

i i T

P T e e e
t

e P

 



  

   

 

 

  


 
 (13) 

 

For 𝑡𝑖
2 =

𝐿

𝐽
(1 − 𝜂) − 𝑡𝑖

1 , one can derive the value of 𝑡𝑖
2 . Using the boundary condition 

 𝐼𝑖
3(𝑡) = 𝐼𝑖

4(𝑡) and the condition 𝑡 = (𝑖 − 𝜂)𝑇 + 𝑡𝑖
3, one can derive: 

 

3 0 ( 1)iT T

i

e e
t

P

 



 
 . (14) 

  

From (1) through (14), one can derive the sales revenue and related costs as follows: 

The product sales revenue, REV, is: 

 

1

1

( 1) ( )

1 2
( 1) ( 1) ( )

1

) ( ) ) .( ( ) )( ( ( )
i

i

TJ i i T iT

i T i T i

t

t
i

T
REV t dt t dt t tt t dt




       

  

   


 
  

  
    (15) 

 

The product backordering cost, BC, at time periods 𝑡𝑖
1 and 𝑡𝑖

2 is: 

 

1

1

( 1) ( )
2

)

1

3
(

1
1 ( 1)

( ) ( ) .
i

i

i T i T

i T i

J t

i
t

i
T

iBC C I t dt I t dt
  

  


 
 

  
   (16) 

 

The product lost sales cost, LS, at time periods 𝑡𝑖
1 and 𝑡𝑖

2 is: 

 

1

1

( )

1 2
( 1)

( 1)

4
( 1)

1

(1 ( ) (1 ( ) .) )
i

i

i T

i T

J i T t

i T t
i

LS C t dt t dt


   


 








 
   

  
    (17) 

 

The product holding cost, HP, at time periods 𝑡𝑖
3 and 𝑡𝑖

4 is: 

 

3

3

( )
3 4

1
( ) ( )

1

( ) ( ) ,
i

i

j
i T t iT

i i
i T i T t

i

HP H I t dt I t dt


 

 

  


 
 

  
    (18) 

 

where 2 1(1 ) .i it T t    

 

The product set-up cost, SP, is: 
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SP = 𝐽𝐶1. (19) 

 

The component purchase cost, PC, is: 

 

1( 1) ( 1)

0

1 1

(1 ) ,i c

J K
i T t j t

c

i j

PC P t u     

 

  
     

        

(20) 

 

Where 2 31
( ).c i it t t

K
   

 

 

The component holding cost, HM, is: 

 

1
1

1

( 1)
1) ( 1)(

2 m 0
( 1) ( 1)

1 1

I ( ) (1 )
i

i c

i c

J K i T t j
i T t j t

ij
i T t j t

i j

HM H t u dt



  

   

   
 

   . (21) 

 

The component set-up cost, SM, is: 

 

SM = 𝐽𝐾𝐶2. (22) 

 

The total profit of the production-inventory model 𝑇𝑃 is the sales revenue minus the 

product and the component related costs, which includes the product backordering cost,  

product lost sales cost, product holding cost, product set-up cost, component purchase cost, 

component holding cost, and component set-up cost. The problem is to optimize the following 

constrained total profit function with three independent variables (J, K, and 𝜂) as follows:  

 

 Max0≤𝜂≤1   𝑇𝑃(𝐽, 𝐾, 𝜂) = REV − (BC + LS + HP + SP) − (PC + HM + SM), (23) 

 

 subject to (1), (11), (13), and (14); with positive integers J and K. 

 

3.2 Solution Procedure 

The goal of the study is to maximize the overall net profit through the formulation of a 

heuristic solution using the decision variables in the finite planning horizon. The heuristic 

solution procedure is presented as follows: 
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(1) Assume a set of positive integral values of (J, K).  

(2) Using Maple-soft, plot the illustration of the function TP when   is between 0 ≤ 𝜂 ≤ 1.  

(2.1) If TP is mono-increasing between 0 ≤ 𝜂 ≤ 1 (refer to Figure 2), set 𝜂 =1 and go to 

(3). 

(2.2) If TP is mono-decreasing between  0 ≤ 𝜂 ≤ 1 (refer to Figure 3), set 𝜂 =0 and go 

to (3). 

(2.3) If mono-increasing or mono-decreasing does not happen to TP (refer to Figure 4), set 

TP =the first derivatives of 𝜂 and equate it to zero, and then calculate 𝜂. If the TP 

function fulfills the following condition for 0 ≤ 𝜂 ≤ 1, go to (3); otherwise, the 

solution is infeasible. 

 

2

2

( | , )
0

d TP J K

d




  (24) 

 

(3) Calculate TP.  

(4) For various sets of (J, K, ), from procedures (1) through (3), the optimal solution of 

(𝐽∗, 𝐾∗, 𝜂∗) must simultaneously satisfy the following conditions: 

 

* * * * * * * * *( 1, , ) ( , , ) ( 1, , )TP J K TP J K TP J K       (25) 

 

and 

 

* * * * * * * * *( , 1, ) ( , , ) ( , 1, ).TP J K TP J K TP J K       (26) 

 

[ Insert Figure 2] 

[ Insert Figure 3] 

[ Insert Figure 4] 

 

4. Numerical Results 
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The model can be demonstrated by the following real case numerical example. (Source data 

comes from Yiming Industrial Co., Ltd.) With the following parameters, 𝛿1=𝛿2=0.95, P=500 

units per week, L=78 weeks, ζ=1, C1=$600, H1=$0.4 per unit per week, C3=$0.7 per unit per 

week, C4=$0.75 per unit, 𝑢0=$50, 𝛼 =0.01 per week, 𝜌0=$100, 𝛽 =0.01 per week, 𝜃0=200, 

𝜃 =0.01, H2=$0.004 per dollar per week, and C2=$200.  

 

Using the solution procedure in Section 3, the computational result is shown in Table 1. The 

optimal solution is J=15, K=2, 𝜂 =0.77, and TP=$366,174. Each optimal value of (𝑡𝑖
1, 𝑡𝑖

2, 𝑡𝑖
3 

and 𝑡𝑖
4) is given in Table 2. One can see that 𝑡𝑖

2 and 𝑡𝑖
3 decrease simultaneously due to 

decreasing demand. The various costs for the optimal solution are given in Table 3. 

 

[ Insert Table 1] 

[ Insert Table 2] 

[ Insert Table 3] 

 

5. Comment on Sensitivity Analysis 

The heuristic solution of {𝐽, 𝐾, 𝜂} is derived when one of the backordering-policies 

parameter sets in 𝛷 = {𝛿1, 𝛿2, 𝐶4, 𝐻1} is changed. The computational results are given in 

Tables 4-7. 

Some observations are given as follows. 

 Smaller values of 𝛿1 and 𝛿2 denote greater penalty costs. The service levels and the 

number of production cycles have to be increased to reduce the penalty cost when the 

values of 𝛿1 and 𝛿2 decrease (Table 4). In a monopolistic market, the service level (𝜂) 

might remain low because all backorders will be filled (i.e. 𝛿1=𝛿2=1). In an imperfectly 

competitive market, the higher value of service-level should be maintained in order to 

decrease the loss in penalty cost. This is because partial backorders will benefit other 
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competitors (i.e. 𝛿1<1 and 𝛿2<1). 

 When the unit cost of lost sales increases, the service level rises to thwart the penalty cost 

(refer to Table 6).  

 Service levels decrease to reduce inventory levels when product holding cost increases 

(Table 7). For example, in order to reduce the holding cost, the service level in a large-scale 

furniture market is kept low.  

 The sensitivity of PPI to all parameters is ranked as follows: (refer to Table 8) 

P, 𝜃: -30% to 30% 

𝜌0: -18% to 18% 

𝑢0, 𝛽: 3% to -6% 

𝛼, 𝜃0: -4% to 5% 

C1, C2: 1% to -1% 

𝛿1, 𝛿2: -1% ~ 2% 

C3, C4, H1, H2: 0.003% to -0.003% 

 Following observations are made (refer to Table 9). (i) When 0 ≤ 𝛿1 ≤ 0.92, the total 

profit for the LIFO case is equal to that of the FIFO case due to an identical optimal 

solution when 𝐽 =20, 𝐾 =1, 𝜂 =1. (ii) When 𝛿1=1, the total profit for the LIFO case is 

equal to that of the FIFO case due to an identical optimal solution when 𝐽 =10, 𝐾 =4, 𝜂 

=0.32. (iii) When 0.93 ≤ 𝛿1 ≤ 0.99, the total profit for the LIFO case is greater than that 

of the FIFO case due to the smaller service level. (iv) When 0.93 ≤ 𝛿1 ≤ 0.99, the 

percentage of total profit difference between the LIFO case and the FIFO case varies from 

0.14% to 0.59%.  

 When 𝛿1 ranges from 93% to 99%, it is obvious that the LIFO policy is better; otherwise, 

one may adopt the FIFO policy when fairness and freshness are the main priorities. This 

provides insight for managers to decide whether to use the LIFO or the FIFO policies 

(Figure 5). 
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[ Insert Table 4] 

[ Insert Table 5] 

[ Insert Table 6] 

[ Insert Table 7] 

[ Insert Table 8] 

[ Insert Table 9] 

[ Insert Figure 5] 

 

6. Summary and Conclusions 

This study presents a production-inventory model for hi-tech industries that offer 3C 

products that experience rapid obsolescence. The partial backordering model takes into account 

the decreasing price and demand rate during pandemics. The model is derived using 

constrained nonlinear differential equations, and sensitivity analysis is performed for varying 

parameters. The study reveals that increasing the number of production cycles leads to higher 

service-level which needs to be increased to counteract the loss of penalty cost. The main 

contribution of the article is to develop a partial backordering production-inventory model for 

hi-tech industries that accounts for the decreasing price and demand rate during pandemics. 

The study provides significant insights for managerial decision-making. Decreasing 

service-level reduces the inventory levels when product holding cost increases. Moreover, 

adopting a LIFO or FIFO backordering policy depends on the backordering rate and the 

priority of service or profit. It is noted that LIFO is preferred when the backordering rate is 

above 0.92, while FIFO is preferred below 0.92. The decision making for various backordering 

rates are given in Table 10. 

 

[Insert Table 10] 
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The study provides managerial insights to help high-tech enterprise in decision-making 

during the pandemics. The backordering rate can help to identify whether profit or fairness is 

the first priority. That is, a higher backordering rate signifies a better service–level. While the 

research is limited to deterministic model, future research should investigate stochastic model 

as well as considering other criteria such as carbon emissions and multi-products. 
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Figure 1. Products and components inventory levels in the production cycle i 

 

 

 

 

 
Figure 2. TP is mono-increasing vs. 𝜂 in the feasible range 0 ≤ 𝜂 ≤ 1 
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Figure 3. TP is mono-decreasing vs. η in the feasible range 0 ≤ 𝜂 ≤ 1 

 

 

 

 
Figure 4. TP is neither mono-increasing nor mono-decreasing in the feasible range 0 ≤ 𝜂 ≤ 1 
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Figure 5. TP and PTPI vs. backordering rates (δ1 and δ2) with LIFO and FIFO backordering 

policies 
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Table 1. Computational result of various values of (J, K, , TP) 

J K   TP 

15 1 0.77 365491 

15 2 0.77   366174* 

15 3 0.78 365398 

14 2 0.75 366170 

16 2 0.81 366118 

                    Note: * the optimal value. 

 

Table 2. Optimal values of (𝑡𝑖
1,𝑡𝑖

2,𝑡𝑖
3, and 𝑡𝑖

4) 

i 𝑡𝑖
1 𝑡𝑖

2 𝑡𝑖
3 𝑡𝑖

4 

1 0.744227 0.451773 1.551295 2.452705 

2 0.767119 0.428881 1.472689 2.531311 

3 0.788851 0.407149 1.398066 2.605934 

4 0.809481 0.386519 1.327224 2.676776 

5 0.829067 0.366933 1.259973 2.744027 

6 0.847660 0.348340 1.196128 2.807872 

7 0.865310 0.330690 1.135519 2.868481 

8 0.882067 0.313933 1.077981 2.926019 

9 0.897974 0.298026 1.023359 2.980641 

10 0.913076 0.282924 0.971504 3.032496 

11 0.927412 0.268588 0.922277 3.081723 

12 0.941021 0.254979 0.875544 3.128456 

13 0.953941 0.242059 0.831179 3.172821 

14 0.966207 0.229793 0.789062 3.214938 

15 0.977851 0.218149 0.749080 3.254920 

 

Table 3. Costs for the optimal solution 

J 15 

K 2 

  0.777 

REV 779,670.5 

BC 685.0 

LS 92.5 

HP 4,752.6 

SP 9,000.0 

PC 395,327.4 

HM 619.7 

SM 3,000.0 

TP 366,174.3 
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Table 4.  Sensitivity analysis of 𝛿1 and 𝛿2 (FIFO policy) 

𝛿1, 𝛿2 0-0.94 {0.95} 0.96 0.97 1 

J 20 15 13 12 10 

K 1 2 2 2 4 
  1 0.77 0.63 0.53 0.32 

TP 365737 366174 367447 369167 375699 

PPI(%) -0.12 0.00 0.35 0.82 2.60 

Note: PPI: percentage profit increasing = (TP-TPDefault ) / TP Default. 

 

Table 5. Sensitivity analysis of 𝛿1 and 𝛿2 (LIFO policy) 

𝛿1, 𝛿2 0-0.94 {0.95} 0.96 0.97 1 

J 13 12 12 12 10 

K 2 2 2 2 4 
  0.65 0.58 0.52 0.48 0.32 

TP 367147 368267 369590 371017 375699 

PPI(%) -0.30 0.00 0.36 0.75 2.02 

Note: PPI: percentage profit increasing = (TP-TPDefault ) / TP Default. 

  

 

Table 6. Sensitivity analysis of unit lost penalty cost 𝐶4=0.75±10%, ±20%, ±30%  

when (𝛿1=𝛿2=0.95) 

𝐶4 0.525 0.600 0.675 {0.750} 0.825 0.900 0.975 

J 14 15 15 15 15 15 15 

K 2 2 2 2 2 2 2 

𝜂 0.77379 0.77478 0.77576 0.77675 0.77773 0.77872 0.77971 

TP 366202 366193 366179 366174 366164 366154 366145 

PPI(%) 0.007647 0.005189 0.001365 0 -0.00273 -0.00546 -0.00792 

 Note: PPI: percentage profit increasing = (TP-TPDefault ) / TP Default. 

 

Table 7. Sensitivity analysis of product holding cost H1 =0.40±10%, ±20%, ±30%  

H1 0.28 0.32 0.36 {0.40} 0.44 0.48 0.52 

J 15 15 15 15 14 14 14 

K 2 2 2 2 2 2 2 

𝜂 0.87 0.84 0.80 0.77 0.73 0.70 0.66 

TP 367782 367201 366668 366174 365717 365300 364908 

PPI(%) 0.439135 0.280468 0.134909 0 -0.1248 -0.23868 -0.34574 

Note: PPI: percentage profit increasing = (TP-TPDefault ) / TP Default. 
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Table 8. The sensitivity analysis of PPI 

Parameter Changed % 

-30% -20% -10% +10% +20% +30% 

P -29% -19% -9% 9% 19% 28% 

C1 1.113% 1.002% 0.723% -0.653% -0.855% -1.021% 

C2 1.070% 0.972% 0.654% -0.457% -0.740% -0.919% 

H1 0.430% 0.343% 0.107% -0.094% -0.257% -0.340% 

H2 0.221% 0.094% 0.080% -0.008% -0.117% -0.200% 

C3 0.003% 0.001% 0.000% -0.000% -0.001% -0.003% 

C4 0.007% 0.001% 0.000% -0.000% -0.001% -0.007% 

    𝛿1 -1.0% -0.4% -0.1% 0.4% 1.0% 2.0% 

   𝛿2 -1.0% -0.4% -0.1% 0.4% 1.0% 2.0% 

   𝑢0 5% 3% 2% -2% -3% -5% 

   𝜌0 -18% -12% -6% 6% 12% 18% 

   𝛼 -2% -1% -1% 1% 1% 3% 

𝛽 3% 3% 2% -2% -4% -6% 

 𝜃0 -4% -3% -2% 2% 3% 5% 

  𝜃 -30% -20% -10% 10% 21% 32% 

    Note: PPI: percentage profit increasing = (TP-TPDefault ) / TP Default. 
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Table 9. Computational result with LIFO and FIFO backordering policies 

LIFO 
𝛿1 

(𝛿2 = 1) 
0-0.92 0.93 0.94 0.95 0.955 0.96 0.97 0.98 0.99 1 

J 20 14 13 12 12 12 12 11 11 10 

K 1 2 2 2 2 2 2 2 2 4 

  1 0.77 0.65 0.58 0.54 0.52 0.48 0.41 0.37 0.32 

TP 365737 366261 367147 368267 368917 369590 371017 372645 374364 375699 

FIFO 
𝛿1, 𝛿2 

(𝛿1 = 𝛿2) 
0-0.92 0.93 0.94 0.95 0.955 0.96 0.97 0.98 0.99 1 

J 20 20 20 15 14 13 12 12 11 10 

K 1 1 1 2 2 2 2 2 2 4 

𝜂 1 1 1 0.77 0.69 0.63 0.53 0.46 0.38 0.32 

TP 365737 365737 365737 366174 366744 367447 369165 371223 373574 375699 

𝑃𝑇𝑃𝐼 0% 0.14% 0.39% 0.57% 0.59% 0.58% 0.50% 0.38% 0.21% 0% 

Notes: TP (LIFO): Total profit in the case of the LIFO policy; TP (FIFO): Total profit in the 

case of the FIFO policy; percentage total profit increase (PTPI) is defined as 

𝑃𝑇𝑃𝐼 =
𝑇𝑃(𝐿𝐼𝐹𝑂) − 𝑇𝑃(𝐹𝐼𝐹𝑂)

𝑇𝑃(𝐹𝐼𝐹𝑂)
 

 

Table 10. Decision making for various backordering rates. 

Priority consideration 𝛿1 ≤ 0.92 𝛿1>0.92 

(Scenario 1) 

1
st
: fairness 

2
nd

: total profit 

FIFO FIFO 

(Scenario 2) 

1
st
: total profit 

2
nd

: fairness 

FIFO LIFO 
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