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 In this paper, we present an efficient form of Volterra’s equations of motion for both unconstrained and 
constrained multibody dynamical systems that include ignorable coordinates. The proposed method is 
applicable for systems with both holonomic and nonholonomic constraints. Firstly, based on the 
definition of ignorable coordinates, one of the motion constants (the generalized momentum vector 
corresponding to the ignorable coordinates) is considered as a constraint, which will be referred to as 
dynamical constraints. These constraints, along with ordinary constraints, namely kinematical 
constraints, are then used in the proposed method to derive motion equations. This approach gives the 
minimum number of equations needed to study the behavior of a dynamical system. Three simulation 
examples are provided to evaluate the proposed method and to compare it to existing methods. The first 
case study is a constrained dynamical system, which moves in two-dimensional space. The second one 
is an unconstrained multibody system including three connected rigid bodies. Finally, the last case study 
includes a cubic satellite that uses a deployable boom to move a mass to a desired location. The results 
of the numerical simulations are compared to the conventional methods and the better performance of 
the proposed method is demonstrated. 

 
 
 
1. Introduction  
Deriving the equations of motion governing dynamical 
systems is the foremost step in the analysis of their 
behavior. First attempts in deriving equations of motion via 
analytical approach trace back to 1788, when J. L. 
Lagrange introduced the notion of Generalized Coordinates 
(GCs). Lagrange categorized forces acting on a constrained 
dynamical system into two groups, that is, forces imposed 
by constraints and other external forces. Introducing GCs 
and using Lagrange multipliers, he derived equations of 
motion of a system [1,2]. Since the advent of the Lagrange 
equations, a variety of approaches emerged, all of which 
have their pros and cons [3]. Following Lagrange, 
Hamilton developed his well-known principle that could be 
used to derive equations of both discrete and continuous 
systems [4]. Using Hamiltonian, he transformed the 
second-order dynamical equations to first-order ones. In the 
1840’s, Jacobi developed the well-known Jacobi integral, 
which generalizes the energy of a mechanical system [5,6], 
based on which he proposed a new method of describing 
the motion of  a system [7].  In the late 19th, Routh developed 

 
an approach to eliminate the ignorable coordinates of an 
unconstrained mechanical system. Using the notion of 
generalized momentum and introducing the so-called 
Routhian function, he obtained the first-order form of the 
equations of motion [8]. Gibbs introduced the concept of 
quasi-velocities and used them to explore systems’ 
dynamics [9]. In the Gibbs method, a scalar function is 
used, which is based on the accelerations of the bodies in 
the system and could be interpreted as acceleration energy 
[9]. Based on the fundamental equations of motion, in 
1898, Volterra derived a special form of the equations of 
motion in which quasi-velocities were employed but, 
unlike the Gibbs approach, accelerations were not required 
to be calculated, therefore less computational effort was 
needed [10]. Maggi proposed a Lagrange-based method for 
deriving Ordinary Differential Equations (ODEs) 
governing a constrained system. Unlike the Lagrange 
method, these equations did not include Lagrange 
multipliers and therefore were simpler [11]. In the early 
20th, Hamel considered mechanical systems under 
nonlinear constraints [12]. In the late 20th, Kane [13,14] 
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and Zboinski [15] developed a new approach which, like 
Gibbs approach, was based on quasi-velocities [13-15]. 
Finally, the most recent approach was developed by Udwadia 
and Kalaba in 2007, in which no auxiliary variables were 
employed [16-18].Udwadia-Kalaba approach has recently 
been used in various applications, including robotic systems 
[19,20] and machine learning [21]. 

Since virtually all dynamical systems could be analyzed 
using Lagrange equations, other methods should be 
advantageous in some aspects to warrant interest. One 
prominent aspect of an approach is its performance during 
the numerical solution. When it comes to the numerical 
solution of the equations of constrained dynamical systems, 
two factors play key roles in assessing the performance of 
an approach, viz. numerical integration error, and the 
simulation time. The numerical error occurs because of the 
imprecise numerical integrating methods. Many researchers 
have tried to reduce the computational error [22-24]. The 
amount of numerical error pertains to two major factors. The 
first one is the order of equations of motion that should be 
integrated [25]. The differential-algebraic equations 
governing a dynamical system contain two parts: the ODEs, 
which are the structural subsystem description, and the 
algebraic equations, which are the system’s constraint 
equations. The constraints of a mechanical system are 
usually in a non-integrable velocity form, but many 
methods consider these equations in acceleration form [26]. 
That is, almost all traditional methods use constraint 
equations as a set of second-order equations along with 
second-order ODEs that are based on GCs and generalized 
velocities as motion variables. This is the first reason for 
the violation of system constraints and error accumulation. 
The second significant factor that contributes to the 
constraint (and other system’s constants) drift is the number 
and complexity of the ODEs in DAEs (differential-
algebraic equations). This is also the main determinant of 
CPU time.  

To deal with these issues, many attempts were made [27]. 
One breakthrough was achieved by Appell by introducing 
the quasi-velocity notion [28]. The quasi-velocities were 
introduced as a substitution of generalized velocities to 
reduce the complexity of the equations, as well as their 
order. Using the so-called Hamel coefficients, the 
Boltzmann-Hamel approach transforms motion equations 
from GC space into quasi-coordinate space [29]. However, 
calculation of Hamel coefficients can be computationally 
demanding, as it involves multiplication of high order 
tensors [30]. The concept of quasi-velocities was further 
studied and used to eliminate Lagrange multipliers from 
motion equations in [31]. The Gibbs-Appell method is still 
in the spotlight and has many subsequent variations. For 
instance, in [32], based on Gibss-Appell equations, an 
efficient formulation of motion equations is presented, in 
which there is no need to calculate Gibbs function. In [33] 
a concise and straightforward derivation of Gibbs-Appel 
equations of motion is presented. This type of system 
representation had a variety of benefits. Firstly, due to the 
flexibility of choosing the quasi-velocities, one can derive 

equations in a simpler form by correct selection of the 
quasi-velocities. Moreover, these dynamics equations use 
constraints equations in a velocity form, which leads to the 
reduction of the constraint’s violation error. Besides, these 
constraint equations are embedded with the dynamical 
equation, diminishing the computational error. The 
mentioned advantages caused further interest in 
advancing these types of approaches [34,35]. For 
instance, in [35], a canonical form of Kane method is 
developed for discrete dynamical systems. Also, there was 
an increase in the applications based on the mentioned 
approaches [36-39]. In [39], a snake robot is analyzed 
using Appell approach. Moreover, in [40], an efficient 
dynamic model for five-axis machine tools is provided in 
which there is no need to compute Lagrange multipliers. 
The method is proved to be 90% faster than existing 
methods. Despite order reduction and simplification of the 
equations, Kane and Appell-based approaches fail to give 
the minimum number of equations needed for analyzing a 
system including ignorable coordinates. 

As mentioned earlier, Routh successfully tried to reduce 
the number of equations of an unconstrained system with 
ignorable coordinates. Assuming that the system has 𝑚𝑚 
number of GCs, 𝑝𝑝 DOF, 𝑟𝑟 constraints and 𝑠𝑠 ignorable 
coordinates, Routh derived 𝑚𝑚− 𝑠𝑠 number of first-order 
equations. Using the Lagrange approach, in [41], a 
modified form of Routh equations, which is based on GCs 
and generalized velocities, was derived for both 
constrained and unconstrained dynamical systems. In that 
paper, a definition of the ignorable coordinates was 
introduced, and accordingly, a set of 𝑝𝑝 − 𝑠𝑠 equations were 
derived in matrix form. In that research, the selection of the 
non-ignorable quasi-velocities was considered as a 
combination of only non-ignorable generalized velocities. 

In this paper, an efficient form of Volterra’s equations 
of motion for systems including ignorable coordinates is 
derived. This method is proved to be applicable for both 
constrained and unconstrained systems. In this approach, 
like the standard Volterra method, the quasi-velocity 
notation is used. Before derivation of the equations, based on 
the definition of the ignorable coordinates provided in [41], 
the notion of “Dynamical constraints” is introduced. These 
constraints, along with ordinary (kinematical) constraints, 
are then embedded with Volterra’s equations. The eventual 
equations are originally in the first-order form, and thus less 
effort is required to derive the efficient equations of motion. 
More importantly, in contrast to [41], the choice of non-
ignorable quasi velocities is not restricted to non-ignorable 
generalized velocities, which means one can choose a 
combination of both ignorable and non-ignorable 
generalized velocities as non-ignorable quasi-velocities. 
This flexibility, if used properly, will lead to simpler 
equations and less computational effort. In the end, this 
approach derives a set of 𝑝𝑝 − 𝑠𝑠 equations that are more 
satisfactory in terms of runtime and computational error 
than conventional methods. 

The remainder of this paper is organized as follows: the 
proposed approach is provided in Section 2. Three 
subsections are given in this section, that is, Subsection 
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2.1., which provides the prerequisites and standard Volterra 
approach, Subsection 2.2., which explains the concept and 
formulation of dynamical constraints, and Subsection 2.3., 
which deals with the modified form of Volterra’s equation. 
Moreover, a matrix notation of the proposed method is 
obtained, and a comparison (in terms of the number of 
equations among conventional methods is drawn in this 
section. Section 3 presents the results of three illustrative 
simulation examples and a brief discussion about them. In 
Section 4, conclusions are presented.  

2. The proposed method 
2.1. Preliminaries and the standard Volterra approach 
Consider a dynamical system with 𝒒𝒒 = [𝑞𝑞1 … 𝑞𝑞𝑚𝑚]⊤ as its 
GCs vector. Suppose that the system has 𝑟𝑟 number of 
nonholonomic constraints as: 

𝒂𝒂(𝑡𝑡;𝒒𝒒)�̇�𝒒 + 𝒃𝒃(𝑡𝑡;𝒒𝒒) = 𝟎𝟎, (1) 

in which 𝒂𝒂 ∈ ℝ𝑟𝑟×𝑚𝑚 is constraints’ Jacobian matrix, 𝒃𝒃 ∈ ℝ𝑟𝑟  
is constraints’ bias vector and �̇�𝒒 ∈ ℝ𝑚𝑚 is the generalized 
velocities vector. For a system with holonomic constraints 
(i.e., constraints that are defined on configuration) it is 
straightforward to achieve the form of Eq. (1) by simply 
differentiating the holonomic form. 

A special form of the fundamental equations of motion 
for a general multibody system is called Volterra’s equation 
of motion, which for a system with 𝑚𝑚 GCs and 𝑟𝑟 constraints 
(and therefore, 𝑝𝑝 = 𝑚𝑚 − 𝑟𝑟 DOFs is formulated as [10]: 

𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑗𝑗

� −��𝑷𝑷𝑖𝑖⊤
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

� + 𝑯𝑯𝐺𝐺𝑖𝑖
⊤ 𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝑢𝑢𝑗𝑗
��

𝑁𝑁

𝑖𝑖=1
= 𝑈𝑈𝑗𝑗 , 

𝑗𝑗 = 1, … ,𝑝𝑝 , (2) 

in which 𝑁𝑁 is the number of the bodies of the system. 
Furthermore, 𝜕𝜕 is the kinetic energy of the system, 𝑷𝑷𝒊𝒊 ∈ ℝ3 
and 𝑯𝑯𝑮𝑮𝒊𝒊 ∈ ℝ3 are the linear momentum and the angular 
momentum vectors of the i-th body of the system, 𝑽𝑽𝑮𝑮𝒊𝒊 ∈ ℝ3 
and 𝝎𝝎𝒊𝒊 ∈ ℝ3 are the linear and the angular velocities of the 
center of the mass of the i-th body of the system, 𝒖𝒖 ∈ ℝ𝑝𝑝 is 
the quasi-velocity vector and 𝑼𝑼 ∈ ℝ𝑝𝑝 is the generalized 
forces vector expressed in quasi-velocity space. 

The procedure of obtaining the equations of motion from 
Eq. (2) is as follows: firstly, one should choose 𝑝𝑝 number of 
quasi-velocities:  
𝒖𝒖 = 𝒀𝒀(𝑡𝑡;𝒒𝒒)�̇�𝒒 + 𝒁𝒁(𝑡𝑡;𝒒𝒒), (3) 

in which 𝒖𝒖 ∈ ℝ𝑝𝑝, �̇�𝒒 ∈ ℝ𝑚𝑚, 𝒁𝒁 ∈ ℝ𝑝𝑝 and 𝒀𝒀 ∈ ℝ𝑝𝑝×𝑚𝑚 are quasi-
velocities, generalized velocities, bias vectors, and Jacobian 
matrix of quasi-velocities, respectively. Augmenting Eq. (3) 
with Eq. (1), one has: 
�̇�𝒒 = 𝑾𝑾(𝑡𝑡;𝒒𝒒)𝒖𝒖 + 𝑿𝑿(𝑡𝑡;𝒒𝒒), (4) 

in which: 

�
𝑾𝑾 = �𝒀𝒀𝒂𝒂�

−1
�𝑰𝑰𝟎𝟎�

𝒙𝒙 = − �𝒀𝒀𝒂𝒂�
−1
�𝒁𝒁𝒃𝒃�

  . 
 
 
 
(5) 

 
Now, the angular and linear velocities of the bodies of the 
system should be derived. It should be noted that originally 

these velocities are functions of time, GCs, and generalized 
velocities (𝑡𝑡,𝒒𝒒, �̇�𝒒), however, by using Eq. (4), one can 
transform these velocities into the form: 

�𝑽𝑽𝐺𝐺𝑖𝑖 = 𝑽𝑽𝐺𝐺𝑖𝑖(𝑡𝑡;𝒒𝒒;𝒖𝒖)
𝝎𝝎𝑖𝑖 = 𝝎𝝎𝑖𝑖(𝑡𝑡;𝒒𝒒;𝒖𝒖)   

(6) 

Now, it’s easy to calculate the kinetic energy: 

𝜕𝜕 = �
1
2

(𝑚𝑚𝑖𝑖𝑽𝑽𝐺𝐺𝑖𝑖 .𝑽𝑽𝐺𝐺𝑖𝑖 + 𝜔𝜔𝑖𝑖 . 𝑰𝑰𝐺𝐺𝑖𝑖𝜔𝜔𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

, 
 
(7) 

in which 𝑚𝑚𝑖𝑖 and 𝑰𝑰𝐺𝐺𝑖𝑖 ∈ ℝ3×3 are the mass and centroidal 
moment of inertia of the i-th body of the system, respectively. 
The next step is to calculate linear and angular momentums: 

�𝑷𝑷𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑽𝑽𝐺𝐺𝑖𝑖
𝑯𝑯𝐺𝐺𝑖𝑖 = 𝑰𝑰𝐺𝐺𝑖𝑖𝜔𝜔𝑖𝑖

  
(8) 

Then, the vector of all non-conservative and conservative 
generalized forces in the quasi-velocity space is to be 
determined as: 

𝑈𝑈𝑗𝑗 = �𝑭𝑭𝑖𝑖 . (
𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

)
𝜇𝜇

𝑖𝑖=1

+ �𝑴𝑴𝑖𝑖 .�
𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝑢𝑢𝑗𝑗
� ,

𝜆𝜆

𝑖𝑖=1

 
 
(9) 

in which 𝑭𝑭𝑖𝑖 is the i-th external force, 𝑴𝑴𝑖𝑖 is the i-th torque, 
𝜇𝜇 is the number of forces applied on the system, and 𝜆𝜆 is the 
number of torques acting on the system. 

Lastly, using Eq. (2) one can simply derive the equations 
of the motion. 
2.2. Formulating dynamical constraints 
Constraints of the form of Eq. (1) are imposed on a system 
due to the presence of some limiting elements or some 
inherent restrictions that come from the nature of the system. 
For instance, when a wheel is mounted on a body, assuming 
that there is no slip between the wheel and the underlying 
ground, a velocity constraint is imposed on the system 
(which is the case in the first simulation example in Section 
3.1). Another example of this constraint is when a particular 
body of a system is required to move along a specific path, 
which is common especially in linkage mechanisms. These 
constraints arise from the physical limitations, geometry, or 
configuration of the system and hence, can be deemed as 
kinematical constraints. For systems including ignorable 
coordinates, another set of constraints can be defined. 
Equations of these constraints are derived from the definition 
of the ignorable coordinates. The derivation procedure is to 
be explained hereunder. 

Suppose that a multibody system has 𝑠𝑠 number of 
ignorable coordinates (which will be defined later), and 
therefore, one can split the vector of GCs into two parts: 

𝒒𝒒 = [𝒒𝒒𝑁𝑁𝑁𝑁⊤  𝒒𝒒𝑁𝑁⊤]⊤, (10) 

in which 𝒒𝒒𝑁𝑁𝑁𝑁 ∈ ℝ𝑚𝑚−𝑠𝑠 and 𝒒𝒒𝑁𝑁 ∈ ℝ𝑠𝑠 are non-ignorable and 
ignorable GCs, respectively. The same division can be made for 
the constraints’ Jacobian and the vector of generalized forces: 

𝒂𝒂 = [𝒂𝒂1 𝒂𝒂2] , (11) 

𝑸𝑸 = [𝑸𝑸𝑁𝑁𝑁𝑁
⊤  𝑸𝑸𝑁𝑁

⊤]⊤, (12) 
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where 𝒂𝒂1 ∈ ℝ𝑟𝑟×(𝑚𝑚−𝑠𝑠), 𝒂𝒂1 ∈ ℝ𝑟𝑟×𝑠𝑠, 𝑸𝑸𝑁𝑁𝑁𝑁 ∈ ℝ(𝑚𝑚−𝑠𝑠) and 𝑸𝑸𝑁𝑁 ∈ ℝ𝑠𝑠. 
Note that 𝑸𝑸 ∈ ℝ𝑚𝑚 is the generalized forces vector expressed 
in the generalized velocity space, not in quasi-velocity space. 

Based on [41], ignorable coordinates can be defined as 
follows: 
Definition1. If the following conditions hold: 
• The last 𝑠𝑠 rows of q in Eq. (10) do not appear in 

Lagrangian function, which by definition is ℒ = 𝜕𝜕 − 𝑉𝑉, 
where 𝜕𝜕 and 𝑉𝑉 are kinetic and potential energies of the 
system, respectively; 

• The last 𝑠𝑠 columns of a in Eq. (11) are identically zero 
(i.e., 𝒂𝒂2 = 0); 

• The last 𝑠𝑠 components of Q in Eq. (12) are identically 
zero (i.e., 𝑸𝑸𝑁𝑁 = 0); 

Then, the 𝒒𝒒𝑁𝑁 is said to be the ignorable coordinates vector. 
Practical examples of ignorable coordinates are provided in 
Section 3. Eq. (7) can be rewritten in generalized velocity 
space as: 

𝜕𝜕(𝑡𝑡;𝒒𝒒; �̇�𝒒) =
1
2
�̇�𝒒⊤𝑴𝑴(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁)�̇�𝒒 + �̇�𝒒⊤𝑵𝑵(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁) 

                             +𝜕𝜕0(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁), 

 
 
(13) 

in which 𝑴𝑴 ∈ ℝ𝑚𝑚×𝑚𝑚, 𝑵𝑵 ∈ ℝ𝑚𝑚 and 𝜕𝜕0 ∈ ℝ. It is important to 
note that M is the system’s mass matrix, which is a 
symmetric positive definite matrix. Matrices M and N can be 
partitioned as: 

𝑴𝑴 = �𝑴𝑴11 𝑴𝑴12
𝑴𝑴21 𝑴𝑴22

�,  
(14) 

𝑵𝑵 = [𝑵𝑵1
⊤ 𝑵𝑵2

⊤], (15) 

where 𝑴𝑴11(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁) ∈ ℝ(𝑚𝑚−𝑠𝑠)×(𝑚𝑚−𝑠𝑠), 𝑴𝑴12(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁) ∈ ℝ(𝑚𝑚−𝑠𝑠)×𝑠𝑠, 
𝑴𝑴21(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁) ∈ ℝ𝑠𝑠×(𝑚𝑚−𝑠𝑠), 𝑴𝑴22(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁) ∈ ℝ𝑠𝑠×𝑠𝑠, 𝑵𝑵1(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁) ∈
ℝ(𝑚𝑚−𝑠𝑠) and 𝑵𝑵2(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁) ∈ ℝ𝑠𝑠. It should be noted that 𝑴𝑴21 =
𝑴𝑴12

⊤   due to symmetricity of the M. 
Using Eqs. (14) and (15), Eq. (13) can be rewritten as: 

𝜕𝜕(𝑡𝑡;𝒒𝒒;𝒒𝒒
.
) =

1
2
𝒒𝒒
.
𝑁𝑁𝑁𝑁
⊤𝑴𝑴11𝒒𝒒

.
𝑁𝑁𝑁𝑁 + 𝒒𝒒

.
𝑁𝑁𝑁𝑁
⊤𝑴𝑴12𝒒𝒒

.
𝑁𝑁

+
1
2
𝒒𝒒
.
𝑁𝑁
⊤𝑴𝑴22𝒒𝒒

.
𝑁𝑁 

                                           +𝒒𝒒
.
𝑁𝑁𝑁𝑁

⊤𝑵𝑵1 + 𝒒𝒒
.
𝑁𝑁
⊤𝑵𝑵2 + 𝑻𝑻0, 

 
 
(16) 

in which �̇�𝒒𝑁𝑁𝑁𝑁 ∈ ℝ𝑚𝑚−𝑠𝑠 and �̇�𝒒𝑁𝑁 ∈ ℝ𝑠𝑠 are non-ignorable and 
ignorable generalized velocities vectors, respectively. 
Lagrange equations for a constrained dynamical system can 
be written as: 

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕ℒ
𝜕𝜕𝒒𝒒

.
𝑗𝑗
� − �

𝜕𝜕ℒ
𝜕𝜕𝒒𝒒𝑗𝑗

� = 𝑸𝑸𝑗𝑗 + 𝒂𝒂⊤𝝀𝝀,  
 
(17) 

in which 𝝀𝝀 ∈ ℝ𝑟𝑟  is the Lagrange multipliers vector. The 
Lagrange equations can be written for ignorable and non-
ignorable coordinates, separately: 

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕ℒ
𝜕𝜕𝒒𝒒

.
𝑁𝑁𝑁𝑁
� − �

𝜕𝜕ℒ
𝜕𝜕𝒒𝒒𝑁𝑁𝑁𝑁

� = 𝑸𝑸𝑁𝑁𝑁𝑁 + 𝒂𝒂1⊤𝝀𝝀𝑁𝑁𝑁𝑁 , 
(18) 

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕ℒ
𝜕𝜕𝒒𝒒

.
𝐼𝐼
� − � 𝜕𝜕ℒ

𝜕𝜕𝒒𝒒𝐼𝐼
� = 𝑸𝑸𝑁𝑁 + 𝒂𝒂2⊤𝝀𝝀𝑁𝑁 . (19) 

By employing the definition of the ignorable coordinates 
provided in Definition 1, Eq. (19) can be simplified to: 

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕ℒ
𝜕𝜕𝒒𝒒�̇�𝑁

� = 0, 
 
(20) 

or: 

𝜕𝜕ℒ
𝜕𝜕𝒒𝒒�̇�𝑁

= 𝑮𝑮𝑁𝑁 = constant, 
 
(21) 

in which 𝑮𝑮𝑁𝑁 is a constant vector and is referred to as 
generalized momentum vector corresponding to the 
ignorable coordinates. Since ℒ = 𝜕𝜕 − 𝑉𝑉, and the potential 
energy is not function of the generalized velocities (i.e., 𝒒𝒒�̇�𝑁), 
Eq. (21) can be simplified to: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝒒𝒒�̇�𝑁

= 𝑮𝑮𝑁𝑁 = constant. 
 
(22) 

From Eq. (16) it’s easy to calculate the left-hand side of Eq. 
(22) as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝒒𝒒�̇�𝑁

= 𝑴𝑴21𝒒𝒒𝑁𝑁𝑁𝑁̇ + 𝑴𝑴22𝒒𝒒�̇�𝑁 + 𝑵𝑵2 , 
 
(23) 

or: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝒒𝒒�̇�𝑁

= 𝑴𝑴′�̇�𝒒 + 𝑵𝑵2 , 
 
(24) 

in which 𝑴𝑴′ = [𝑴𝑴21 𝑴𝑴22]. Using Eqs. (22) and (24) we 
have: 

𝑴𝑴′�̇�𝒒 + 𝑵𝑵′ = 𝟎𝟎, (25) 

in which 𝑵𝑵′ = 𝑵𝑵2 − 𝑮𝑮𝑁𝑁. Eq. (25) can be considered as the 
dynamical constraint of the system. This is because it has the 
regular form of constraints (same as Eq. (1)), but is 
associated with the dynamics of the system. In Eq. (25), 𝑴𝑴′ ∈
ℝ𝑠𝑠×𝑚𝑚 is constraint’s Jacobian matrix and 𝑵𝑵′ ∈ ℝ𝑠𝑠 is 
constraint’s bias vector. 

The constant 𝑮𝑮𝑁𝑁 can be easily computed using initial condition: 

𝑮𝑮𝑁𝑁 = 𝑴𝑴21 𝒒𝒒
.
𝑁𝑁𝑁𝑁(𝑡𝑡 = 0) + 𝑴𝑴22𝒒𝒒�̇�𝑁(𝑡𝑡 = 0)

+ 𝑵𝑵2(𝑡𝑡 = 0). 
(26) 

 
2.3. The modified form of Volterra’s equations 
For a system with m  GCs, 𝑠𝑠 ignorable coordinates, 𝑝𝑝 DOF, 
and 𝑟𝑟 number of kinematic constraints, the minimum number 
of motion equations needed is 𝑝𝑝 − 𝑠𝑠. However, the standard 
Volterra method gives 𝑝𝑝 number of equations. We now prove 
that the Volterra equation provided in Eq. (2), can be written 
for 𝑝𝑝 − 𝑠𝑠 number of quasi-velocities instead of for 𝑝𝑝 number 
of them. For a system consisting of 𝑁𝑁 particles, assuming 
that the D’Alembert’s principle applies, one can write: 

�(𝑭𝑭𝑖𝑖 − 𝑚𝑚𝑖𝑖𝒂𝒂𝑖𝑖). 𝛿𝛿𝒓𝒓𝑖𝑖 = 0 ,
𝑁𝑁

𝑖𝑖=1

 
 
 
(27) 
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in which 𝑭𝑭𝑖𝑖 is the resultant of forces applied on the i-th 
particle, 𝑚𝑚𝑖𝑖 is the mass of the i-th particle, 𝒂𝒂𝑖𝑖 is its 
acceleration and 𝛿𝛿𝒓𝒓𝑖𝑖 is its virtual displacement vector. We 
choose 𝑝𝑝 − 𝑠𝑠 number of quasi-velocities (equal to the 
minimum number of equations needed for motion analysis 
of the system). These quasi-velocities are regarded as non-
ignorable quasi-velocities. The velocity of the i-th particle 
can be written as: 

𝑽𝑽𝑖𝑖 = �𝑽𝑽𝑖𝑖𝑗𝑗𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗 + 𝑽𝑽𝑖𝑖𝑑𝑑 ,
𝑝𝑝−𝑠𝑠

𝑗𝑗=1

 
 
 
(28) 

in which 𝑽𝑽𝑖𝑖𝑗𝑗 is the partial velocity of the i-th particle and is 
defined as: 

𝑽𝑽𝑖𝑖𝑗𝑗 =
𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

,  𝑖𝑖 = 1, … ,𝑁𝑁,  𝑗𝑗 = 1, … , 𝑝𝑝 − 𝑠𝑠  ,  
(29) 

𝑉𝑉𝑖𝑖𝑑𝑑 can also be defined accordingly. The differential form of 
Eq. (28) is: 

𝑑𝑑𝒓𝒓𝑖𝑖 = �𝑽𝑽𝑖𝑖𝑗𝑗𝛾𝛾𝑁𝑁𝑁𝑁𝑗𝑗 + 𝑽𝑽𝑖𝑖𝑑𝑑𝑑𝑑𝑡𝑡
𝑝𝑝−𝑠𝑠

𝑗𝑗=1

 , 
 
(30) 

in which 𝛾𝛾𝑁𝑁𝑁𝑁𝑗𝑗 is the j-th quasi-coordinate. The variational 
form of Eq. (30) can be written as: 

𝛿𝛿𝒓𝒓𝑖𝑖 = �𝑽𝑽𝑖𝑖𝑗𝑗𝛿𝛿𝛾𝛾𝑁𝑁𝑁𝑁𝑗𝑗 = �
𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

𝛿𝛿𝛾𝛾𝑁𝑁𝑁𝑁𝑗𝑗  .
𝑝𝑝−𝑠𝑠

𝑗𝑗=1

𝑝𝑝−𝑠𝑠

𝑗𝑗=1

 
 
(31) 

Substituting Eq. (31) in Eq. (27) gives: 

���(𝑭𝑭𝑖𝑖 −𝑚𝑚𝑖𝑖𝒂𝒂𝑖𝑖).
𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

𝑁𝑁

𝑖𝑖=1

�
𝑝𝑝−𝑠𝑠

𝑗𝑗=1

𝛿𝛿𝛾𝛾𝑁𝑁𝑁𝑁𝑗𝑗 = 0 . 
 
(32) 

From Eq. (9), it is known that the generalized forces vector 
in the quasi-velocity space can be calculated through: 

𝑈𝑈𝑁𝑁𝑁𝑁𝑗𝑗 = �𝑭𝑭𝑖𝑖 .
𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

𝑁𝑁

𝑖𝑖=1

 . 
 
(33) 

Using Eq. (33), Eq. (32) can be rewritten as: 

���−𝑚𝑚𝑖𝑖𝒂𝒂𝑖𝑖 .
𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

𝑁𝑁

𝑖𝑖=1

+ 𝑈𝑈𝑁𝑁𝑁𝑁𝑗𝑗�
𝑝𝑝−𝑠𝑠

𝑗𝑗=1

𝛿𝛿𝛾𝛾𝑁𝑁𝑁𝑁𝑗𝑗 = 0, 
 
(34) 

Since quasi-coordinates are independent, one can conclude: 

�−𝑚𝑚𝑖𝑖𝒂𝒂𝑖𝑖 .
𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

+ 𝑈𝑈𝑁𝑁𝑁𝑁𝑗𝑗 = 0
𝑁𝑁

𝑖𝑖=1

 . 
 
(35) 

Similar to Eq. (7), the kinetic energy of the system of 
particles can be rewritten as: 

𝜕𝜕 = �
1
2

(𝑚𝑚𝑖𝑖𝑽𝑽𝑖𝑖 .𝑽𝑽𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

. 
 
(36) 

Using Eq. (36), we can calculate: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

= ��𝑚𝑚𝑖𝑖𝑽𝑽𝑖𝑖 .
𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

�
𝑁𝑁

𝑖𝑖=1

. 
 
(37) 

Differentiating Eq. (37) with respect to time gives us: 
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

� = ��𝑚𝑚𝑖𝑖𝒂𝒂𝑖𝑖 .
𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

+ 𝑚𝑚𝑖𝑖𝑽𝑽𝑖𝑖 .
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

��
𝑁𝑁

𝑖𝑖=1

, 
(38) 

or: 

�𝑚𝑚𝑖𝑖𝒂𝒂𝑖𝑖 .
𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

𝑁𝑁

𝑖𝑖=1

=
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

� −�𝑚𝑚𝑖𝑖𝑽𝑽𝑖𝑖 .
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

�
𝑁𝑁

𝑖𝑖=1

. 
 
(39) 

Using Eq. (35) and (39), we have: 
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

� −�𝑷𝑷𝑖𝑖 .
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝑽𝑽𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

�
𝑁𝑁

𝑖𝑖=1

= 𝑈𝑈𝑁𝑁𝑁𝑁𝑗𝑗 ,  

𝑗𝑗 = 1, … , 𝑝𝑝 − 𝑠𝑠 . 

 
 
(40) 

Eq. (40) is the reduced form of Volterra’s equations of motion 
for a system including 𝑁𝑁 particles. It is straightforward to 
obtain the same equation for a multibody system including 
rigid bodies. Via the same procedure, we have: 

𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

� −��𝑷𝑷𝑖𝑖 .
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

�+ 𝑯𝑯𝐺𝐺𝑖𝑖 .
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗
��

𝑁𝑁

𝑖𝑖=1

 

= 𝑈𝑈𝑁𝑁𝑁𝑁𝑗𝑗 ,  j = 1, … , p − s , 

 

 

(41) 

Eq. (41) is the reduced form of Volterra’s equations of motion 
for a multibody system including ignorable coordinates, 
which leads to 𝑝𝑝 − 𝑠𝑠 number of equations (i.e., the minimal 
number of equations). 

In the remainder of this section, after obtaining the matrix 
notation of the proposed method, we will draw a comparison, 
in terms of the number of equations, among the proposed 
method and other conventional methods. Now, the matrix 
form of the Eq. (41) is to be obtained. First, the Lagrangian 
function should be formed, and using the definition of the 
ignorable coordinates, the dynamical constraint’s equation 
(Eq. (25)) should be derived. Then, 𝑝𝑝 − 𝑠𝑠 number of quasi-
velocities should be selected. As mentioned earlier, unlike 
[41], the choices in this approach are not limited to the non-
ignorable generalized velocities: 

𝒖𝒖𝑁𝑁𝑁𝑁 = 𝒀𝒀𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒)�̇�𝒒 + 𝒁𝒁𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒), (42) 

in which 𝒖𝒖𝑁𝑁𝑁𝑁 ∈ ℝ𝑝𝑝−𝑠𝑠, �̇�𝒒 ∈ ℝ𝑚𝑚, 𝒁𝒁𝑁𝑁𝑁𝑁 ∈ ℝ𝑝𝑝−𝑠𝑠 and 𝒀𝒀𝑁𝑁𝑁𝑁 ∈
ℝ(𝑝𝑝−𝑠𝑠)×𝑚𝑚 are non-ignorable quasi-velocities, generalized 
velocities, bias vectors and Jacobian matrix, respectively. 
Augmenting Eq. (42) with kinematic constraints (Eq. (1)) 
and dynamical constraint (Eq. (25)), we have: 

�̇�𝒒 = 𝑾𝑾𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒)𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑿𝑿𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒), (43) 

in which: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑾𝑾𝑁𝑁𝑁𝑁 = �

𝒀𝒀𝑁𝑁𝑁𝑁
𝑀𝑀′
𝒂𝒂

�
−1

�
𝑰𝑰(𝑝𝑝−𝑠𝑠)
𝟎𝟎𝑠𝑠×(𝑝𝑝−𝑠𝑠)
𝟎𝟎𝑟𝑟×(𝑝𝑝−𝑠𝑠)

�

𝑿𝑿𝑁𝑁𝑁𝑁 = −�
𝒀𝒀𝑁𝑁𝑁𝑁
𝑴𝑴′
𝒂𝒂

�
−1

�
𝒁𝒁𝑁𝑁𝑁𝑁
𝑵𝑵′
𝒃𝒃

�

, 

 

 

(44) 

Eq. (41) can be rewritten as: 

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

� −��
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗

�
⊤

𝑷𝑷𝑖𝑖 +
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝑢𝑢𝑁𝑁𝑁𝑁𝑗𝑗
�
⊤

𝑯𝑯𝐺𝐺𝑖𝑖�

= 𝑼𝑼𝑁𝑁𝑁𝑁 .

𝑁𝑁

𝑖𝑖=1

 
(45) 

It is desired to obtain the matrix form of each term of Eq. 
(45). We start with the first expression in the left-hand side 
of the equation. Using Eq. (13) and Eq. (43), we have: 

𝜕𝜕(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁) =
1
2𝒖𝒖𝑁𝑁𝑁𝑁

⊤𝑴𝑴𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒)𝒖𝒖𝑁𝑁𝑁𝑁 + 𝒖𝒖𝑁𝑁𝑁𝑁⊤𝑵𝑵𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒) 
+𝜕𝜕0,𝑁𝑁𝑁𝑁(𝑡𝑡; 𝑞𝑞), 

 
 

(46) 

in which 𝑴𝑴𝑁𝑁𝑁𝑁 ∈ ℝ(𝑝𝑝−𝑠𝑠)×(𝑝𝑝−𝑠𝑠), 𝑵𝑵𝑁𝑁𝑁𝑁 ∈ ℝ𝑝𝑝−𝑠𝑠, 𝜕𝜕0,𝑁𝑁𝑁𝑁 ∈ ℝ. 
Additionally: 
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𝑴𝑴𝑁𝑁𝑁𝑁 = 𝑾𝑾𝑁𝑁𝑁𝑁
⊤𝑴𝑴𝑾𝑾𝑁𝑁𝑁𝑁  , (47) 

𝑵𝑵𝑁𝑁𝑁𝑁 = 𝑾𝑾𝑁𝑁𝑁𝑁
⊤(𝑴𝑴𝑿𝑿𝑁𝑁𝑁𝑁 + 𝑵𝑵) , (48) 

𝜕𝜕0,𝑁𝑁𝑁𝑁 =
1
2𝑿𝑿𝑁𝑁𝑁𝑁

⊤𝑴𝑴𝑿𝑿𝑁𝑁𝑁𝑁 + 𝑿𝑿𝑁𝑁𝑁𝑁⊤𝑵𝑵 + 𝜕𝜕0, (49) 

and other parameters are defined previously. Differentiating 
Eq. (46) with respect to 𝒖𝒖𝑁𝑁𝑁𝑁 gives: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

= 𝑴𝑴𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑵𝑵𝑁𝑁𝑁𝑁 . (50) 

Likewise, by differentiating Eq. (50) with respect to time one 
has: 

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

� = 𝑴𝑴𝑁𝑁𝑁𝑁𝒖𝒖
.
𝑁𝑁𝑁𝑁 + 𝑨𝑨𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁), (51) 

in which 𝑨𝑨𝑁𝑁𝑁𝑁 ∈ ℝ𝑝𝑝−𝑠𝑠, and using Eq. (43) it is defined as: 

𝑨𝑨𝑁𝑁𝑁𝑁 =
𝜕𝜕
𝜕𝜕𝑡𝑡
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

� +
𝜕𝜕
𝜕𝜕𝒒𝒒

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

� (𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑿𝑿𝑁𝑁𝑁𝑁). (52)

Now, we consider the terms appeared in the sum in Eq. (45) 
and extract a matrix form for them. Similar to what was 
mentioned earlier, linear and angular velocities of the bodies 
of the system including ignorable coordinates, are initially of 
the form: 

�𝑽𝑽𝐺𝐺𝑖𝑖 = 𝑽𝑽𝐺𝐺𝑖𝑖(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁; �̇�𝒒)
𝝎𝝎𝑖𝑖 = 𝝎𝝎𝑖𝑖(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁; �̇�𝒒)  (53) 

or: 

�𝑽𝑽𝐺𝐺𝑖𝑖 = 𝑩𝑩𝑖𝑖(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁)�̇�𝒒 + 𝑪𝑪𝑖𝑖(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁)
𝝎𝝎𝑖𝑖 = 𝑫𝑫𝑖𝑖(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁)�̇�𝒒 + 𝑬𝑬𝑖𝑖(𝑡𝑡;𝒒𝒒𝑁𝑁𝑁𝑁)

 (54) 

in which 𝑩𝑩𝑖𝑖 ∈ ℝ3×𝑚𝑚 and 𝑫𝑫𝑖𝑖 ∈ ℝ3×𝑚𝑚 are Jacobian matrices 
of linear and angular velocities of the i-th body of the system, 
respectively. Similarly, 𝐶𝐶𝑖𝑖 ∈ ℝ3 and 𝑬𝑬𝑖𝑖 ∈ ℝ3 can be called 
bias matrices of velocities of the bodies of the system. 

By using Eq. (43) one can transform the Eq. (54) into the 
quasi-velocity space: 

�𝑽𝑽𝐺𝐺𝑖𝑖 = 𝑩𝑩𝑖𝑖𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑩𝑩𝑖𝑖𝑿𝑿𝑁𝑁𝑁𝑁 + 𝑪𝑪𝑖𝑖
𝝎𝝎𝑖𝑖 = 𝑫𝑫𝑖𝑖𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑫𝑫𝑖𝑖𝑿𝑿𝑁𝑁𝑁𝑁 + 𝑬𝑬𝑖𝑖

 (55) 

Differentiating Eq. (55) with respect to 𝑢𝑢𝑁𝑁𝑁𝑁 leads to: 

⎩
⎨

⎧
𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

= 𝑩𝑩𝑖𝑖𝑾𝑾𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒)

𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁
= 𝑫𝑫𝑖𝑖𝑾𝑾𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒)

(56) 

Likewise, differentiating Eq. (56) with respect to time results in: 

⎩
⎨

⎧
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

� = 𝑩𝑩𝑁𝑁𝑁𝑁𝑖𝑖(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁)

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁
� = 𝑪𝑪𝑁𝑁𝑁𝑁𝑖𝑖(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁)

(57) 

in which 𝐵𝐵𝑁𝑁𝑁𝑁 ∈ ℝ3×(𝑝𝑝−𝑠𝑠) and 𝐶𝐶𝑁𝑁𝑁𝑁 ∈ ℝ3×(𝑝𝑝−𝑠𝑠). These matrices 
are calculated and shown in Box Ⅰ.  

Using Eqs. (8) and (55), it is straightforward to write: 

�𝑷𝑷𝑖𝑖 = 𝑚𝑚𝑖𝑖(𝑩𝑩𝑖𝑖𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑩𝑩𝑖𝑖𝑿𝑿𝑁𝑁𝑁𝑁 + 𝑪𝑪𝑖𝑖)
𝑯𝑯𝐺𝐺𝑖𝑖 = 𝑰𝑰𝐺𝐺𝑖𝑖(𝑫𝑫𝑖𝑖𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑫𝑫𝑖𝑖𝑿𝑿𝑁𝑁𝑁𝑁 + 𝑬𝑬𝑖𝑖)

  
(59) 

By using Eq. (57) and Eq. (59), it is easy to obtain the second 
term in the left-hand side of Eq. (45) as: 

��
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

�
⊤

𝑷𝑷𝑖𝑖 +
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁
�
⊤

𝑯𝑯𝐺𝐺𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

 

= ��𝑭𝑭𝑁𝑁𝑁𝑁𝑖𝑖(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁) + 𝑱𝑱𝑁𝑁𝑁𝑁𝑖𝑖(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁�
𝑁𝑁

𝑖𝑖=1

, 

(60) 

in which: 

� 
𝑭𝑭𝑁𝑁𝑁𝑁𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑩𝑩𝑁𝑁𝑁𝑁𝑖𝑖

⊤(𝑩𝑩𝑖𝑖𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑩𝑩𝑖𝑖𝑿𝑿𝑁𝑁𝑁𝑁 + 𝑪𝑪𝑖𝑖)
𝑱𝑱𝑁𝑁𝑁𝑁𝑖𝑖 = 𝑫𝑫𝑁𝑁𝑁𝑁𝑖𝑖

⊤𝑰𝑰𝐺𝐺𝑖𝑖(𝑫𝑫𝑖𝑖𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑫𝑫𝑖𝑖𝑿𝑿𝑁𝑁𝑁𝑁 + 𝑬𝑬𝑖𝑖)
 

(61) 

Eq. (60) can be reworked as: 

��
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

�
⊤

𝑷𝑷𝑖𝑖 +
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁
�
⊤

𝑯𝑯𝐺𝐺𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

= 𝑲𝑲𝑁𝑁𝑁𝑁 , (62) 

in which  𝑲𝑲𝑁𝑁𝑁𝑁 ∈ ℝ𝑝𝑝−𝑠𝑠, and is defined as: 

𝑲𝑲𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁) = ��𝑭𝑭𝑁𝑁𝑁𝑁𝑖𝑖(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁)
𝑁𝑁

𝑖𝑖=1
+ 𝑱𝑱𝑁𝑁𝑁𝑁𝑖𝑖(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁�, 

(63) 

Using Eq. (62) and Eq. (51) in Eq. (45) gives us the matrix 
form of reduced Volterra’s equations: 

𝑴𝑴𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒)𝒖𝒖𝑁𝑁𝑁𝑁̇ = 𝑳𝑳𝑵𝑵𝑰𝑰(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁), (64) 

in which 𝐿𝐿𝑁𝑁𝑁𝑁 ∈ ℝ𝑝𝑝−𝑠𝑠, and is defined as: 

𝑳𝑳𝑁𝑁𝑁𝑁 = 𝑼𝑼𝑁𝑁𝑁𝑁 + 𝑭𝑭𝑁𝑁𝑁𝑁 − 𝑨𝑨𝑁𝑁𝑁𝑁 . (65) 

In order to use the reduced form of Volterra’s equations of 
motion, the state variables vector should be chosen as:

⎩
⎪
⎨

⎪
⎧𝑩𝑩𝑁𝑁𝑁𝑁𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑡𝑡
�
𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁

� + �
𝜕𝜕
𝜕𝜕𝒒𝒒

�
𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁1

� (𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑿𝑿𝑁𝑁𝑁𝑁) …
𝜕𝜕
𝜕𝜕𝒒𝒒

�
𝜕𝜕𝑽𝑽𝐺𝐺𝑖𝑖
𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁𝑝𝑝−𝑠𝑠

� (𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑿𝑿𝑁𝑁𝑁𝑁)�

𝑪𝑪𝑁𝑁𝑁𝑁𝑖𝑖 =
𝜕𝜕
𝜕𝜕𝑡𝑡
�
𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁
� + �

𝜕𝜕
𝜕𝜕𝒒𝒒

�
𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁1
� (𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑿𝑿𝑁𝑁𝑁𝑁) …

𝜕𝜕
𝜕𝜕𝒒𝒒

�
𝜕𝜕𝝎𝝎𝑖𝑖

𝜕𝜕𝒖𝒖𝑁𝑁𝑁𝑁𝑝𝑝−𝑠𝑠
� (𝑾𝑾𝑁𝑁𝑁𝑁𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑿𝑿𝑁𝑁𝑁𝑁)� (58) 

Box Ⅰ. 
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Table 1. Comparison of various analytical methods in terms of number of equations. 

Method Lagrange Maggi Udwadia 
Boltzmann-

Hamel 
Volterra 

Kane (Gibbs-
Appell) 

Routh 
Proposed 

(efficeint Volta) 
Number of 
equations 

𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑝𝑝 𝑝𝑝 𝑝𝑝 𝑚𝑚 − 𝑠𝑠 𝑝𝑝 − 𝑠𝑠 

𝒛𝒛⊤ = [𝒒𝒒⊤ 𝒖𝒖𝑁𝑁𝑁𝑁⊤]. (66) 

Then, using Eqs. (43) and (64), the time derivative of the 
state variables vector is easily obtained: 

�̇�𝒛 = �
𝑾𝑾𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒)𝒖𝒖𝑁𝑁𝑁𝑁 + 𝑿𝑿𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒)
𝑴𝑴𝑁𝑁𝑁𝑁

−1(𝑡𝑡;𝒒𝒒)𝑳𝑳𝑁𝑁𝑁𝑁(𝑡𝑡;𝒒𝒒;𝒖𝒖𝑁𝑁𝑁𝑁)
� (67) 

Eq. (67) is the state-space representation of the efficient form 
of Volterra’s equations of motion for a multibody system 
including ignorable coordinates. As can be understood from 
Eq. (67), the matrix whose inverse must be calculated (i.e., 
the 𝑴𝑴𝑁𝑁𝑁𝑁) is a square matrix of the size 𝑝𝑝 − 𝑠𝑠. Comparing Eq. 
(14) to Eq. (46), one can understand the resemblance 
between the mass matrix 𝑴𝑴 and this matrix 𝑴𝑴𝑁𝑁𝑁𝑁. Therefore, 
we can call this matrix the reduced mass matrix of the 
system. Using the same procedure which was carried out to 
derive the state-space representation for the reduced Volterra 
method, it is straightforward to obtain the same 
representation for the standard Volterra method. After 
deriving such formulation, it could be easily seen that the 
matrix whose inverse should be computed is the system’s 
mass matrix (i.e., 𝑴𝑴). As a result, since in the standard 
Volterra method the inverse matrix of the size 𝑚𝑚 should be 
calculated, but in the reduced Volterra method the inverse of 
a 𝑝𝑝 − 𝑠𝑠 by 𝑝𝑝 − 𝑠𝑠 matrix should be computed, the 
computation time and error associated with the efficient 
Volterra method is expected to be less than the standard 
Volterra method. 

 Moreover, compared to other conventional methods, the 
number of the equations in the proposed method is 
minimum. More precisely, basic methods such as Lagrange 
and Maggi, which work based on the GCs, give 𝑚𝑚 number 
of equations. Although other common methods, like Kane 
(or Gibbs-Appell) which use the concept of quasi-velocity, 
omit 𝑟𝑟 unnecessary equations (associated with constraints) 
and thus reduce the number of equations to 𝑝𝑝 = 𝑚𝑚 − 𝑟𝑟, they 
do not produce the minimum number of equations, since they 
still include the 𝑠𝑠 redundant equations (associated with the 
ignorable coordinates). A comparison of some common 
analytical approaches for deriving motion equations is 
provided in Table 1. 

3. Simulation results and discussion
In this section three multibody systems which include 
ignorable coordinates are considered to analyze the 
performance of the proposed method and compare it to other 
conventional methods. Codes used to generate the 
simulations can be found here: 
https://github.com/mhyoosefian/Volterra-paper. 
3.1. A cart with a 2-DOF pendulum (constrained system) 
The system shown in Figure 1, consisting of a cart (with 𝐺𝐺 
as its center of mass), a 2-DOF pendulum, and a 

Figure 1. First simulation example: a cart with a 2-DOF pendulum. 

motor mounted on point 𝐵𝐵, is to be considered as the first 
case study. The vector of GCs is chosen as: 

𝒒𝒒 = [𝜃𝜃1 𝜃𝜃2 𝑥𝑥]⊤ , (68) 

in which 𝑥𝑥 is measured from the left side of the cart at the 
rest point. As shown in Figure 1, there is a wheel mounted 
on point 𝐶𝐶 aligned with the bar 𝐵𝐵𝐶𝐶. This wheel imposes a 
velocity constraint on the system, that is, the velocity of point 
𝐶𝐶 relative to the cart should be along the direction of the bar 
𝐵𝐵𝐶𝐶. Mathematically, this constraint can be written as: 

[𝑙𝑙 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃1 − 𝜃𝜃2) 𝑙𝑙 0]�
�̇�𝜃1
�̇�𝜃2
�̇�𝑥
� = 0, 

(69) 

𝑸𝑸 = �
𝜏𝜏
−𝜏𝜏
0
�. (70) 

For methods which require 𝑝𝑝 number of quasi-velocities, the 
quasi-velocity vector is chosen as: 

𝒖𝒖 = ��̇�𝜃1 − �̇�𝜃2
�̇�𝑥

�. (71) 

After calculating the Lagrangian function, it can be easily 
seen that it is not a function of 𝑥𝑥. Moreover, comparing Eqs. 
(69) and (70) to Eqs. (11) and (12), it is easy to observe that 
𝒂𝒂2 = 𝟎𝟎 and 𝑸𝑸𝑁𝑁 = 𝟎𝟎. As a result, according to Definition 1 it 
can be concluded that 𝑥𝑥 is an ignorable coordinate. The 
initial condition and properties of the system are obtained 
from [41].
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Table 2. Result of simulation using various methods (first case study). 
Method Lagrange Maggi Gibbs-Appell (Kane) Proposed 

Number of state variables 6 6 5 4 
Number of equations  3 3 2 1 

CPU time (s) 1.93 1.72 1.87 1.69 
Norm of energy error 6.05 × 10−4 6.05 × 10−4 9.77 × 10−5 3.55 × 10−6 

Norm of constraint error 7.51 × 10−5 7.52 × 10−5 6.54 × 10−15 0 
Norm of linear momentum error (X) 3.83 × 10−6 3.93 × 10−6 3.96 × 10−5 2.41 × 10−15 

Figure 2. Percentage of mechanical energy drift in the first case 
study. 

Moreover, the value of the torque (𝜏𝜏) is set to zero. In this 
case, due to the lack of external active forces and torques, the 
amount of mechanical energy of the system must remain 
constant. Therefore, by computing the error of mechanical 
energy conservation for each method, in addition to linear 
momentum (𝑋𝑋 direction) conservation error, an extra 
criterion for comparison of the methods is available. 

The problem is solved using four different methods: 
Lagrange, Maggi, Gibbs-Appell (Kane), and the proposed 
method. Quasi-velocities in Maggi and Gibbs-Appell 
methods are chosen as Eq. (71), and in the proposed method, 
the non-ignorable quasi-velocity is chosen as 𝑢𝑢𝑁𝑁𝑁𝑁 = �̇�𝜃2 − �̇�𝜃1. 
The simulation is carried out for 50 seconds, the solving time 
step is fixed at 0.01 s and the ode45 function of MATLAB is 
used to solve the equations. The results of the simulation are 
provided in Table 2. 

The superior performance of the proposed approach 
compared to other methods is obvious from Table 2. The 
plots of mechanical energy drift, constraint’s conservation 
error, and linear momentum conservation error (in 𝑥𝑥 
direction) are shown in Figures 2 to 4. Again, the better 
results of the proposed method can be seen in comparison 
with alternative approaches. The plot of the GCs is illustrated 
in Figure 5. Shots of the motion of the system in several 
instants are displayed in Figure 6. 

3.2. An unconstrained multibody system including three 
connected rigid bodies translating and rotating in 
space 

As the second case study, the system shown in Figure 7 is 
analyzed. This system is a set of three connected rigid bodies. 
In addition to three external torques applied on the middle 
body, two motors are mounted on joints 𝐴𝐴 and 𝐵𝐵 to produce  

Figure 3. Percentage of constraint conservation error in the first 
case study. 

Figure 4. Percentage of linear momentum (x direction) 
conservation error in the first case study. 

𝝉𝝉𝑝𝑝1  and 𝝉𝝉𝑝𝑝2 respectively. The purpose of this example is to 
show the application of the proposed method in 
unconstrained problems. The GCs vector is chosen as: 

𝒒𝒒 = [𝜓𝜓 𝜃𝜃 𝜙𝜙 𝛾𝛾1 𝛾𝛾2 𝑋𝑋 𝑌𝑌 𝑍𝑍]⊤, (72) 

in which  𝜓𝜓, 𝜃𝜃  and 𝜙𝜙  are the amounts of the sequence of 
rotations that 𝑥𝑥𝑥𝑥𝑥𝑥 frame undergoes about its own axes (𝑥𝑥, 𝑥𝑥 
and 𝑥𝑥, respectively) to transform from its initial orientation to 
its final orientation. Furthermore, 𝑋𝑋, 𝑌𝑌, and 𝑍𝑍 determine the 
absolute position of the center of mass of the middle body. Other 
parameters are shown in Figure 7. The system has no 
constraints, so it has 𝑝𝑝 = 𝑚𝑚 = 8 number of DOFs. After 
deriving generalized forces (similar to Eq. (70)) it turns out that 
based on Definition 1, the ignorable coordinates vector is:



M.H. Yoosefian Nooshabadi and H.  Nejat Pishkenari./ Scientia Iranica (2025) 32(2): 6891 

Table 3. Results of simulation of the second example using different methods. 
Method Lagrange Maggi Kane (Gibbs-Appell) Proposed 

Number of state variables 16 16 16 13 
Number of equations  8 8 8 5 

CPU time (s) 1.1 0.99 0.68 0.67 
Norm of energy error 2.96 × 10−7 2.96 × 10−7 9.10 × 10−9 6.36 × 10−9 

Norm of linear momentum error (X) 1.55 × 10−6 1.55 × 10−6 3.75 × 10−8 0 

Figure 5. The plot of the GCs in the first case study. 

𝒒𝒒𝑁𝑁 = [𝑋𝑋 𝑌𝑌 𝑍𝑍]⊤. (73) 

Hence, the system has 𝑠𝑠 = 3 number of ignorable 
coordinates. The vector of quasi-velocities is selected as: 

𝒖𝒖 = [𝝎𝝎𝑚𝑚
⊤ �̇�𝛾1 �̇�𝛾2 �̇�𝑋 �̇�𝑌 �̇�𝑍]⊤ , (74) 

where 𝝎𝝎𝑚𝑚 is the angular velocity of the middle body relative 
to the 𝑥𝑥𝑥𝑥𝑥𝑥 frame. The first five elements of 𝒖𝒖  construct the 
𝒖𝒖𝑁𝑁𝑁𝑁 vector which is to be used in the proposed method. 

All external torques are set to zero so that the mechanical 
energy of the system remains constant. The inertia matrix of 
the middle body is: 

𝑰𝑰 = �
𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥
−𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥
−𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥

�. 
(75) 

The initial condition and properties of the system are 
obtained from [41]. 

Similar to what was done in the first example, the 
problem is solved via four different methods: the Lagrange 
method, the Maggi method, the Kane (or Gibbs-Appell) 
method, and the proposed method. The simulation is 
conducted for 50 seconds, the time step is fixed at 0.1 s, and 
similar to the prior example, the ode45 function of MATLAB 
is employed to solve the equations of motion. The results are 
provided in Table 3. 
      As it can be seen from Table 3, the proposed method 
acted significantly better than other approaches. For the ease 
of comparison, graphs of energy and linear momentum (in 𝑋𝑋 
direction) errors are provided in Figures 8 and 9. Again, it 
can be easily comprehended that the proposed method 
conserves mechanical energy and linear momentum 
noticeably better than other methods. The plot of the GCs is 

shown in Figure 10. Furthermore, to exhibit the motion, 
snapshots of the motion of the system in several instants are 
displayed in Figure 11. 
3.3. A cubic satellite on which a deployable boom is 

mounted 
As the last case study, a cubic satellite is considered. On one 
side of this satellite a deployable boom is mounted which 
expands and thus moves a mass to a predetermined position. 
The system is shown in Figure 12. A motor produces force 
𝑭𝑭, thus pushing the mass 𝑚𝑚 forward. The initial length of the 
boom is 𝑎𝑎. The mass of the boom which is used to move the 
mass 𝑚𝑚 is negligible. The GCs vector is chosen as: 
𝒒𝒒 = [𝜓𝜓 𝜃𝜃 𝜙𝜙 𝜌𝜌 𝑋𝑋 𝑌𝑌 𝑍𝑍]⊤, (76) 

The first and the last three parameters used in Eq. (76) are defined 
as same as those used in Eq. (72). 𝜌𝜌 is the amount of variation in 
the length of the boom. 

The system has no constraints, so it has 𝑝𝑝 = 𝑚𝑚 = 7 number of 
DOFs. After deriving generalized forces (similar to Eq. (70)) it turns out 
that based on Definition 1, the vector of ignorable coordinates is: 

𝒒𝒒𝑁𝑁 = [𝑋𝑋 𝑌𝑌 𝑍𝑍]⊤. (77) 

Hence, the system has 𝑠𝑠 = 3 number of ignorable coordinates. The 
vector of quasi-velocities is selected as: 

𝒖𝒖 = [𝝎𝝎𝑚𝑚
⊤ �̇�𝜌 �̇�𝑋 �̇�𝑌 �̇�𝑍]⊤ , (78) 

where 𝝎𝝎𝑚𝑚  is the angular velocity of the satellite relative to 
the 𝑥𝑥𝑥𝑥𝑥𝑥 frame. The first four elements of 𝒖𝒖 construct the 𝒖𝒖𝑁𝑁𝑁𝑁  
vector which is to be used in the proposed method. 

Like the previous example, all external torques are set to 
zero. However, the magnitude of force 𝑭𝑭 changes over 
time as: 

|𝐹𝐹| = −0.018 sin( 0.089𝑡𝑡) 
 +0.012 cos( 0.0485𝑡𝑡). 

(79) 

Unlike previous examples, mechanical energy does not remain 
constant. Instead, the amount of energy error should remain 
constant. The energy error is defined as: 

Energy error = 𝜕𝜕 + 𝑉𝑉 − �  
𝑑𝑑𝑠𝑠

0
𝑸𝑸⊤�̇�𝒒𝑑𝑑𝑡𝑡, (80) 

in which 𝜕𝜕 and 𝑉𝑉 are the kinetic and potential energies of the 
system, �̇�𝒒 ∈ ℝ𝑚𝑚 is the generalized velocity vector, 𝑸𝑸 ∈ ℝ𝑚𝑚   is 
the generalized force vector expressed in the generalized 
velocity space, and 𝑡𝑡𝑠𝑠 is the simulation time. Moreover, the term 
𝑸𝑸⊤𝒒𝒒

.
  indicates the input power to the system. For approaches 

that employ the quasi-velocity concept, the equivalent term for 
the power will be 𝑼𝑼⊤𝒖𝒖, in which 𝒖𝒖 is the quasi-velocity vector, 
and 𝑼𝑼 is the generalized force vector expressed in the quasi-
velocity space. The inertia matrix of the satellite is the same as 
Eq. (75). The system parameters and initial conditions are listed 
in Tables 4 and 5, respectively. 

9 
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Table 4. Parameters of the system considered in the third 
example. 

Parameter Value Unit 
mg 2000 Kg 
m 1 Kg 
l 2.5 m 
a 0.5 m 
Ixx 1400 Kgm2

Iyy 900 Kgm2 
Izz 1100 Kgm2 
Ixy 5 Kgm2 
Ixz 8 Kgm2 
Iyz 3 Kgm2 

Table 5. Initial conditions of the system considered in the third
example. 

Parameter Value Unit
𝜓𝜓 π/8 rad 
𝜃𝜃 π/12 rad
𝜑𝜑 0.08 rad

𝜌𝜌(= 𝑎𝑎) 0.5 m 
𝑋𝑋 0 m
𝑌𝑌 0 m 
𝑍𝑍 0 m
�̇�𝜓 -0.1 rad/s 
�̇�𝜃 0.05 rad/s 
�̇�𝜑 -0.05 rad/s
�̇�𝜌 0 m/s 
�̇�𝑋 2 m/s 
�̇�𝑌 1 m/s 
�̇�𝑍 0 m/s 

Figure 6. Snapshots of the system’s motion of the first case study. 

Figure 7. Second simulation example: A system of three connected rigid bodies.
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Figure 8. Percentage of mechanical energy drift in the second 
case study. 

Figure 9. Percentage of linear momentum (X direction) 
conservation error in the second case study. 

Figure 10. The plot of the GCs in the second case study. 

Again, the problem is solved via four different methods: Lagrange, 
Maggi, Kane (or Gibbs-Appell), and the proposed method. The 
simulation is conducted for 50 seconds, the time step is fixed at 
0.1 s, and like previous examples, the ode45 function of MATLAB 
is employed to solve the equations of motion. The results are 
provided in Table 6. 

As it can be seen from the Table 6, the proposed method 
acted significantly better than other approaches. For the ease 
of comparison, graphs of power and linear momentum  (in   𝑋𝑋  

Figure 11. Snapshots of the system’s motion of the second case 
study. 

direction) errors are provided in Figures 13 and 14. Again, it can 
be easily understood that the proposed method conserves power 
and linear momentum noticeably better than other methods. The 
plot of the GCs is shown in Figure 15. 

11 
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Figure 12. Third simulation example: a satellite with deployable 
magnetometer boom. 

Figure 13. Percentage of energy error in the third case study. 

4. Conclusion
In this paper, we presented an efficient form of Volterra’s 
equations of motion for systems including ignorable 
coordinates. Meanwhile, we proposed the concept of 
“dynamical constraints” associated with the definition of 
ignorable coordinates. Subsequently, by augmenting 
dynamical constraints along with ordinary constraints 
(which were regarded as “kinematical constraints”) with the 

Figure 14. Percentage of linear momentum (X direction) 
conservation error in the third case study. 

Figure 15. The plot of the GCs in the third case study. 

equations derived from the proposed method, the minimum 
number of equations required for complete motion analysis 
were derived. Three simulation examples were provided to 
show the usage of the approach and its superior performance 
compared to other conventional approaches. The developed 
method can be used in practical large-scale systems 
including ignorable coordinates and result in significant 
reduction in computation time and violation of motion 
constants, compared to conventional methods. In conclusion, 
the contributions of this paper are: 

• Introducing dynamical constraints and embedding
them with motion equations;

• Developing a novel Volterra-based approach to derive
equations of motion, which outperforms existing
methods in terms of runtime and constraints violation;

Table 6. Results of simulation of the third example employing various methods. 
Method Lagrange Maggi Kane (Gibbs-Appell) Proposed 

Number of state variables 15 15 15 12 
Number of equations  7 7 7 4 

CPU time (s) 0.59 0.53 0.50 0.48  
Norm of energy error 6.31 × 10−14 6.18 × 10−14 5.01 × 10−14 7.91 × 10−15 

Norm of linear momentum error (X) 3.23 × 10−14 3.75 × 10−14 3.74 × 10−14 0 

12 



13 M.H. Yoosefian Nooshabadi and H.  Nejat Pishkenari./ Scientia Iranica (2025) 32(2): 6891 

• Possessing the minimum number of equations for
systems including ignorable coordinates.

Nomenclature 
a Constraints’ Jacobian matrix 
b Constraints’ bias vector 
𝒒𝒒𝑁𝑁𝑁𝑁  Non-ignorable generalized coordinates vector 
𝒒𝒒𝑁𝑁  Ignorable generalized coordinates vector 
𝑯𝑯 Angular momentum vector 
𝑷𝑷 Linear momentum vector 
𝝎𝝎 Angular velocity 
𝑽𝑽 Linear velocity 
𝒖𝒖 Quasi-velocity vector 
𝑸𝑸 Generalized forces vector 
𝑼𝑼 Generalized forces vector in quasi-velocity space 
𝑮𝑮 Generalized momentum vector 
𝑭𝑭 External force vector 
𝒀𝒀 Jacobian matrix of quasi-velocities 
𝒁𝒁 Bias vector of quasi-velocities 
T Kinetic energy 
M Mass matrix 
I Inertia matrix 
𝓛𝓛 Lagrangian function 

Funding 
This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors. 

Conflicts of interest 
The authors declare that they have no known competing 
financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

Authors contribution statement 
Mohammad Hussein Yoosefian Nooshabadi: Writing - 
original draft, Conceptualization, Visualization, Validation, 
Formal analysis, Data curation. 

Hossein Nejat Pishkenari: Writing - review and editing, 
Supervision, Validation, Investigation, Methodology, 
Project administration. 

References 
1. Ginsberg, J.H. “Introduction to analytical mechanics”,

In Advanced Engineering Dynamics, F. Padgett, Ed.,
2nd Edn., pp. 245-308, Cambridge University Press,
Cambridge, UK (1998).
https://doi.org/10.1017/CBO9780511800214

2. Dirac, P.A.M. “The Hamilton method”, In Lectures on
Quantum Mechanics, Ed., 1st Edn., pp. 1-25, Belfor
Graduate School of Science, Yeshiva University, New
York, USA (1964).

3. Capecchi, D. and Drago, A. “On Lagrange’s history of
mechanics”, Meccanica, 40(1), pp. 19-33 (2005).
https://doi.org/10.1007/s11012-004-2198-z

4. Köppe, J., Grecksch, W., and Paul, W. “Derivation and
application of quantum Hamilton equations of motion”,

Ann. Phys. (Berl.), 529(3), pp. 1-9 (2017). 
https://doi.org/10.1002/andp.201600251  

5. Borisov, A.V., Mamaev, I.S., and Bizyaev, I.A. “The
Jacobi integral in nonholonomic mechanics”, Regul.
Chaotic Dyn., 20(3), pp. 383-400 (2015).
https://doi.org/10.1134/S1560354715030107

6. Qin, Y., Wang, Z., and Zou, L. “Dynamics of nonlinear
transversely vibrating beams: Parametric and closed-
form solutions”, Appl. Math. Model., 88, pp. 676-687
(2020). https://doi.org/10.1016/j.apm.2020.06.056

7. Papastavridis, J.G. and Yagasaki, K. “Analytical
mechanics, a comprehensive treatise on the dynamics of
constrained systems; for engineers, physicists, and
mathematicians”, ASME. Appl. Mech. Rev., 56(2), pp.
B22-B23 (2003).
https://doi.org/10.1142/8058

8. Ginsberg, J.H. “Alternative formulations”, In
Engineering Dynamics, P. Gordon, Ed., 2nd Edn., pp.
552-636, Cambridge University Press, Cambridge, UK
(2008). https://doi.org/10.1017/CBO9780511805899

9. Gibbs, J.W. “On the fundamental formulae of
dynamics”, Amer. J. Math., 2(1), pp. 49-64 (1879).
https://doi.org/10.2307/2369196

10. Ne_mark, J.I. and Fufaev, N.A. “Analytic dynamics of
nonholonomic systems”, In Dynamics of Nonholonomic
Systems, J.R. Barbour, Ed., 1st Edn., pp. 87-211,
American Mathematical Society (2004).
https://doi.org/10.1090/mmono/033

11. Haug, E.J. “Extension of Maggi and Kane equations to
holonomic dynamic systems”, J. Comput. Nonlin.
Dyn., 13(12), pp. 1-6 (2018).
https://doi.org/10.1115/1.4041579

12. Hamel, G., Theoretische Mechanik: Eine Einheitliche
Einführung in die gesamte Mechanik, Springer-Verlag,
Berlin (1949).
https://doi.org/10.1007/978-3-642-88463-4

13. Kane, T.R. “Dynamics of nonholonomic systems”, J.
Appl. Mech., 28(4), pp. 574-578 (1961).
https://doi.org/10.1115/1.3641786

14. Kane, T.R. and Levinson, D.A. “Formulation of
equations of motion”, In Dynamics, Theory and
Applications, J.P. Holman, Ed., 1st Edn., pp. 190-258,
McGraw Hill, New York, USA (1985).

15. Zboiński, K. “Relative kinematics exploited in Kane's
approach to describe multibody systems in relative
motion”, Acta Mech., 147(1), pp. 19-34 (2001).
https://doi.org/10.1007/BF01182349

16. Udwadia, F.E. and Kalaba, R.E. “The fundamental
equation in generalized coordinates”, In Analytical
Dynamics: A New Approach, pp. 175-219, Cambridge
University Press, Cambrdige, UK (2007).

https://doi.org/10.1017/CBO9780511800214
https://doi.org/10.1007/s11012-004-2198-z
https://doi.org/10.1002/andp.201600251
https://doi.org/10.1134/S1560354715030107
https://doi.org/10.1016/j.apm.2020.06.056
https://doi.org/10.1142/8058
https://doi.org/10.1017/CBO9780511805899
https://doi.org/10.2307/2369196
https://doi.org/10.1090/mmono/033
https://doi.org/10.1115/1.4041579
https://doi.org/10.1007/978-3-642-88463-4
https://doi.org/10.1115/1.3641786
https://doi.org/10.1007/BF01182349


M.H. Yoosefian Nooshabadi and H.  Nejat Pishkenari./ Scientia Iranica (2025) 32(2): 6891 14 

 https://doi.org/10.1017/CBO9780511665479 

17. Udwadia, F.E. and Schutte, A.D. “Equations of motion
for general constrained systems in Lagrangian
mechanics”, Acta Mech., 213(1), pp. 111-129 (2010).
https://doi.org/10.1007/s00707-009-0272-2

18. Zhao, X.M., Chen, Y.H., Zhao, H., et al. “Udwadia–
Kalaba equation for constrained mechanical systems:
formulation and applications”, Chin. J. Mech.
Eng., 31(1), pp. 1-14 (2018).
https://doi.org/10.1186/s10033-018-0310-x

19. Liu, P., Hao, Y., and Wang, Q. “Distributed formation-
containment control of networked mobile robots using
the Udwadia–Kalaba approach”, IEEE Trans. Network
Sci. Eng., 11(1), pp. 848-857 (2023).
https://doi.org/10.1109/TNSE.2023.3308992

20. Zhen, S., Meng, C., Xiao, H., et al. “Robust approximate 
constraint following control for SCARA robots’ system
with uncertainty and experimental validation”, Control
Eng. Pract., 138, pp. 1-12 (2023).
https://doi.org/10.1016/j.conengprac.2023.105610

21. Straižys, A., Burke, M., and Ramamoorthy, S. “Learning 
robotic cutting from demonstration: Non-holonomic
DMPs using the Udwadia-Kalaba method”, 2023 IEEE
International Conference on Robotics and Automation
(ICRA), London, UK, pp. 5034-5040 (2023).
https://doi.org/10.1109/ICRA48891.2023.10160917

22. Zhang, L. and Zhang, D. “A two-loop procedure based
on implicit Runge–Kutta method for index-3 dae of
constrained dynamic problems”, Nonlinear
Dynam., 85(1), pp. 263-280 (2016).
https://doi.org/10.1007/s11071-016-2682-8

23. Marques, F., Souto, A.P., and Flores, P. “On the
constraints violation in forward dynamics of multibody
systems”, Multibody Syst. Dyn., 39(4), pp. 385-419
(2017). https://doi.org/10.1007/s11044-016-9530-y

24. Rodríguez, J.I., Jiménez, J.M., Funes, F.J., et al.
“Recursive and residual algorithms for the efficient
numerical integration of multi-body
systems”, Multibody Syst. Dyn., 11(4), pp. 295-320
(2004).
https://doi.org/10.1023/B:MUBO.0000040798.77064.bc

25. Roberson, R.E. and Schwertassek, R. “Computer
simulation”, In Dynamics of Multibody Systems, 1st
Edn., pp. 365-411, Springer Berlin, Heidelberg,
Germany (1988).
https://doi.org/10.1007/978-3-642-86464-3

26. Liu, C.Q. and Huston, R.L. “Another form of equations
of motion for constrained multibody
systems”, Nonlinear Dynam., 51(3), pp. 465-475
(2008). https://doi.org/10.1007/s11071-007-9225-2

27. Gattringer, H., Bremer, H. and Kastner, M. “Efficient
dynamic modeling for rigid multi-body systems with

contact and impact”, Acta Mech., 219(1), pp. 111-128 
(2011). https://doi.org/10.1007/s00707-010-0436-0  

28. Appell, P. “Sur les mouvements de roulment; equations
du mouvement analougues a celles de
Lagrange”, Comptes Rendus., 129, pp. 317-320 (1899).

29. Pius, P. and Selekwa, M. “The equivalence of
Boltzmann–Hamel and Gibbs–Appell equations in
modeling constrained systems”, Int. J. Dyn. Control,
11(5), pp. 2101-2111 (2023).
https://doi.org/10.1007/s40435-023-01119-3

30. Müller, A. “On the Hamel coefficients and the
Boltzmann–Hamel equations for the rigid body”, J.
Nonlinear Sci., 31(2), pp. 1-39 (2021).
https://doi.org/10.1007/s00332-021-09692-7

31. Mirtaheri, S.M. and Zohoor, H. “Quasi-velocities
definition in Lagrangian multibody
dynamics”, Proceedings of the Institution of Mechanical 
Engineers, Part C: Journal of Mechanical Engineering
Science, 235(20), pp. 4679-4691 (2021).
https://doi.org/10.1177/0954406221995852

32. Mirtaheri, S.M. and Zohoor, H. “Efficient formulation
of the Gibbs–Appell equations for constrained
multibody systems”, Multibody Syst. Dyn., 53(3), pp.
303-325 (2021).
https://doi.org/10.1007/s11044-021-09798-6

33. Honein, T.E. and O’Reilly, O.M. “On the Gibbs–Appell
equations for the dynamics of rigid bodies”, J. Appl.
Mech., 88(7), pp. 1-8 (2021).
https://doi.org/10.1115/1.4051181

34. Mirtaheri, S.M. and Zohoor, H. “The explicit gibbs-
appell equations of motion for rigid-body constrained
mechanical system”, 2018 6th RSI International
Conference on Robotics and Mechatronics
(IcRoM), Tehran, Iran, pp. 304-309 (2018).
https://doi.org/10.1109/ICRoM.2018.8657637

35. Bajodah, A.H. and Hodges, D.H. “Canonical Kane’s
equations of motion for discrete dynamical
systems”, AIAA J., 57(10), pp. 4226-4240 (2019).
https://doi.org/10.2514/1.J057603

36. Korayem, M.H., Shafei, A.M., and Shafei, H.R.
“Dynamic modeling of nonholonomic wheeled mobile
manipulators with elastic joints using recursive Gibbs–
Appell formulation”, Sci. Iran., 19(4), pp. 1092-1104
(2012). https://doi.org/10.1016/j.scient.2012.05.001

37. Talaeizadeh, A., Forootan, M., Zabihi, M., et al.
“Comparison of Kane’s and Lagrange’s methods in
analysis of constrained dynamical systems”, Robotica,
38(12), pp. 2138-2150 (2020).
https://doi.org/10.1017/S0263574719001899

38. Korayem, M.H. and Shafei A.M. “Motion equations
proper for forward dynamics of robotic manipulator
with flexible links by using recursive Gibbs-Appell
formulation”, Sci. Iran., 16(6), pp. 479-495 (2009).

https://doi.org/10.1017/CBO9780511665479
https://doi.org/10.1007/s00707-009-0272-2
https://doi.org/10.1186/s10033-018-0310-x
https://doi.org/10.1109/TNSE.2023.3308992
https://doi.org/10.1016/j.conengprac.2023.105610
https://doi.org/10.1109/ICRA48891.2023.10160917
https://doi.org/10.1007/s11071-016-2682-8
https://doi.org/10.1007/s11044-016-9530-y
https://doi.org/10.1023/B:MUBO.0000040798.77064.bc
https://doi.org/10.1007/978-3-642-86464-3
https://doi.org/10.1007/s11071-007-9225-2
https://doi.org/10.1007/s00707-010-0436-0
https://doi.org/10.1007/s40435-023-01119-3
https://doi.org/10.1007/s00332-021-09692-7
https://doi.org/10.1177/0954406221995852
https://doi.org/10.1007/s11044-021-09798-6
https://doi.org/10.1115/1.4051181
https://doi.org/10.1109/ICRoM.2018.8657637
https://doi.org/10.2514/1.J057603
https://doi.org/10.1016/j.scient.2012.05.001
https://doi.org/10.1017/S0263574719001899


15 M.H. Yoosefian Nooshabadi and H.  Nejat Pishkenari./ Scientia Iranica (2025) 32(2): 6891 

39. Malayjerdi, M. and Akbarzadeh, A. “Analytical
modeling of a 3-d snake robot based on sidewinding
locomotion”, Int. J. Dyn. Control, 7(1), pp. 83–93
(2019).
https://doi.org/10.1007/s40435-018-0441-z

40. Bilgili, D., Budak, E., and Altintas, Y. “Multibody
dynamic modeling of five-axis machine tools with
improved efficiency”, Mech. Syst. Signal Pr., 171, pp. 1-
20 (2022).
https://doi.org/10.1016/j.ymssp.2022.108945

41. Pishkenari, H.N. and Heidarzadeh, S. “A novel
computer-oriented dynamical approach with efficient
formulations for multibody systems including ignorable
coordinates”, Appl. Math. Model., 62, pp. 461-475
(2018).
https://doi.org/10.1016/j.apm.2018.06.012

Biographies 
Mohammad Hussein Yoosefian Nooshabadi received his 
BSc degree in Mechanical Engineering in 2018 from Isfahan 
University of Technology, Isfahan, Iran. He then received his 
MSc degree in Mechanical Engineering in 2022 from Sharif 
University of Technology. Currently, he is pursuing his PhD 
studies in Mechanical Engineering at Northeastern University. 
His research interests include estimation theory, control 
theory, optimization theory, and analytical dynamics.  

Hossein Nejat Pishkenari earned his BSc, MSc and PhD 
degrees in Mechanical Engineering from the Sharif University 
of Technology, Tehran, Iran in 2003, 2005 and 2010, 
respectively. Then he joined the department of Mechanical 
Engineering at the Sharif University of Technology in 2012. 
Currently he is directing the Micro/Nano-robotics Laboratory 
and the corresponding ongoing research projects in the 
multidisciplinary field of molecular dynamics modeling 
method.

https://doi.org/10.1007/s40435-018-0441-z
https://doi.org/10.1016/j.ymssp.2022.108945
https://doi.org/10.1016/j.apm.2018.06.012

	1. Introduction
	2. The proposed method
	2.1. Preliminaries and the standard Volterra approach
	2.2. Formulating dynamical constraints
	2.3. The modified form of Volterra’s equations

	3. Simulation results and discussion
	3.1. A cart with a 2-DOF pendulum (constrained system)
	3.2. An unconstrained multibody system including three connected rigid bodies translating and rotating in space
	3.3. A cubic satellite on which a deployable boom is mounted

	4. Conclusion
	Nomenclature
	Funding
	Conflicts of interest
	Authors contribution statement
	References
	Biographies

