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Abstract 

The Endurance Time (ET) method is employed as a dynamic time history technique to analyze structures 
under artificially intensified acceleration time histories, known as Endurance Time Excitation Functions 
(ETEFs). Prior studies have shown that discrete wavelet transform (DWT) is an effective approach for 
generating ETEFs by representing signals as transform coefficients determined through optimization 
procedures. However, the impact of the chosen mother wavelet function on simulated ETEF accuracy 
remains unexplored. This study introduces a methodology to investigate the influence of mother wavelet 
functions on simulated ETEFs. Specifically, 31 mother wavelet function candidates from four families 
(Daubechies, Coiflet, Symlet, and Bio-Orthogonal) are examined. Results reveal that the choice of the 
mother wavelet function can lead to approximately 15% variation in simulated ETEFs' accuracy. The 
Daubechies wavelet family stands out as the preferred choice, exhibiting a diminished impact compared 
to alternative families. Remarkably, this wavelet family is associated with an importance factor of 5.5%, 
significantly lower than the 13% observed for the other families. Within the Daubechies family, db12 
demonstrates optimal efficiency in generating linear response-based ETEFs. The research highlights the 
superiority of the Daubechies wavelet family, offering valuable insights to enhance ETEF simulation 
accuracy and reliability for effective ET method implementation. 
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1  Introduction 

Several researchers have tried to offer new alternative frameworks to overcome difficulties associated 
with the conventional nonlinear time history analyses [1-3]. One potential solution to address this 
problem is employing source-based or site-based ground motion simulation, which finds application in 
nonlinear time history analysis [4-7]. Additionally, researchers have examined the effectiveness of this 
method by comparing it with actual ground motion data. As another solution, Endurance Time (ET) 
method was devised to be as a simple yet accurate alternative for an nonlinear dynamic analysis [8]. The 
ET method is a dynamic time history procedure in which the structure is subjected to a set of predefined 
acceleration functions. These endurance time excitation functions (ETEFs) are produced to be in an 
increasing form, which are replaced by the real ground motions (GMs) being used in the conventional 
time history analysis. The conceptual viewpoint behind the ET method works in a way that seismic 
behavior of a specific structure or building can be readily assessed by how long it can endure the seismic 
vibration of an ETEF [9]. 

The ET method can be also compared to a more recent dynamic analysis that is in an increasing 
form as well—the Incremental Dynamic Analysis (IDA). To perform an IDA, selected recorded ground 
motions should be scaled from a lower intensity level up to an upper seismic intensity level that is 
typically decided to become related to the collapse mechanism of the considered structural system [10]. In 
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earthquake engineering, the IDA is widely used for many applications such as risk assessment [11], 
collapse assessment [12] and fragility model developments [13]. The major advantage of the ET method 
over the IDA procedure is the limited and reduced number of required dynamic analyses that are essential 
for an ET procedure [14]. Mashayekhi and Mostafaei [15] utilized the ET method to determine the 
intensity measure at which cracks initiate in the concrete dam. 

As can be recognized from the concept of the ET method, ETEFs are the core part of the ET analysis 
[16]. This means that the accuracy of the ET method can heavily depend on the accuracy and exactness of 
the ET records, the ETEFs. Therefore, simulating efficient and more reliable ETEFs is an important step 
toward improving the results obtained from the ET framework. ETEFs are generated and optimized in a 
way that they maintain their compatibility with the responses computed using recorded GMs. To reach 
this ultimate goal, dynamic characteristics of the generated ETEFs are set to be compatible with the ones 
found to be significant in those of GMs selected for the ET record generation procedure. In this case, 
there are a number of investigations in which the significance of different dynamic characteristics for the 
generation of  ETEFs has been examined [17, 18]. In a tradition for this case, discrepancies between 
dynamic characteristics of ETEFs and those corresponding factors associated with selected GMs are 
defined as target equations or objective functions which are normally solved by unconstrained nonlinear 
optimization algorithms. For more information on this issue, readers are referred to available literatures in 
this regard [14, 18].   

There are several ways to define decision variables in simulating ETEFs problem. In the 
conventional practice of simulating ETEF, acceleration values of the ET signals are selected as the 
decision variables in the optimization procedure. It is well known that acceleration values are not able to 
solely express the dynamic characteristics of signals, i.e., the frequency properties and content within the 
signal. In fact, the dynamic characteristics of the signals can be detected and extracted by methods 
frequently used in signal processing—the Fourier and Wavelet transformations. Fourier transform is able 
to decompose a signal record into its frequency components. However, it should be mentioned that it 
cannot detect and extract frequency variations along a signal, so the Fourier transform seems to be 
appropriate for stationary signals only. Conversely, the wavelet transform expresses the time history of a 
signal in a time-frequency domain [19]. Therefore, contrary to the Fourier transformation technique, the 
wavelet transform is capable of identifying the time variation of frequency in a signal. The temporal 
variations of signals can be identified and extracted by the wavelet transformation procedure, so it is 
applicable to the non-stationary signals such as real GMs. Wavelet functions are produced based on a 
basic wavelet function called mother wavelet function. Wavelet functions are basis functions for wavelet 
analysis. There are several mother wavelet functions developed for wavelet analysis. Recent generations 
of ETEFs have been efficiently produced by an algorithm that is based on a wavelet transformation or 
discrete form of it—the discrete wavelet transform (DWT) [20]. DWT finds extensive application in 
earthquake engineering, particularly in seismic response evaluation [21-24]. Simulating ETEFs in DWT 
space is employed in fourth and fifth ETEFs generation [25, 26]. Although the recent generations of 
ETEFs—which are based on a wavelet transform—turned to be highly efficient in terms of matching and 
exactness quality, no study has been performed to investigate the influence of the mother wavelet 
functions used for the generation procedure of ET records. It is worth to add that there are several mother 
wavelet functions for this purpose and finding an appropriate one is a significant and important step for 
having more accurate and exact ETEFs. Presently, there is a lack of dedicated research on identifying the 
optimal mother wavelet function for generating ETEFs. The selection of the mother wavelet is often done 
randomly or by using multiple mother wavelets to produce ETEFs, and then choosing the most suitable 
one. However, both approaches fall short of yielding an ideal solution, and the latter option is particularly 
time-consuming. Therefore, it is crucial to conduct comprehensive research focused on the selection of 
mother wavelets for ETEF production. Such research efforts are essential to enhance the accuracy and 
efficiency of the process. Mashayekhi et al. [27] employed increasing sine functions to generate long-time 
ETEFs. 

In this study, a methodology to perform a parametric study for finding the best mother wavelet 
functions that can be incorporated in simulating ETEFs via DWT is proposed. So, the appropriate mother 
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wavelet functions found from this study can be utilized to simulate ETEFs in the DWT space. The 
primary novelty of this study lies in exploring the impact of different mother wavelet functions on the 
production of ETEFs, as well as introducing the most effective mother wavelets for generating ETEFs. In 
this paper, first, the generation procedure of ETEFs is concisely described. Then matters related to the 
wavelet theory are explained shortly. Afterwards, explanations pertinent to the mother wavelet functions 
as well as the issues related to the methodology framework are put forth. Finally, the results associated 
with this parametric study on the mother wavelet functions and their influence on the quality of resulted 
ETEFs are presented and thoroughly discussed. 

2 Generation of Endurance Time Excitations 

In this section, a brief review on generating Endurance time excitation functions (ETEF) is presented. As 

previously stated, ETEFs are intensifying acceleration time histories that their intensities increase with 

time. Each time in ETEFs corresponds to a specific intensity level. ETEFs are generated in a way that the 

response of structures subjected to them at each analysis time would be representative of the response of 

structures under GMs with the intensity level that is identical to the level of intensity found from the ET 

record at a given time. In order to reach this condition, dynamic characteristics of ETEFs at each time 

should be compatible with those associated with recorded GMs with the intensity level associated with 

that time. Acceleration time history of ETA20kd01 at four time windows  0,5sec ,  0,10sec ,  0,15sec , 

and  0,20sec  are shown in Figure 1. It should be mentioned that these windows are arbitrarily chosen 

and the sole purpose is to show the intensifying feature of ETEFs. Acceleration spectra of these time 

windows are also shown in this figure. The intensifying trend of the acceleration spectrum for this ETEF 

is apparent for longer time windows. There are numerous dynamic characteristics that can be considered 

in simulating ETEFs. With different considered dynamic characteristics of the recorded GMs, diverse 

ETEFs generations can be and have been created so far. Some examples of the dynamic characteristics 

that can be considered are linear response spectrum, Cumulative Absolute Velocity (CAV) and hysteresis 

energy. In this study, in order to avoid extra complexity, only acceleration spectra are adopted. But it 

should be noted that acceleration spectra are one of the most prominent dynamic characteristics of the 

earthquake records. 

In the ET method, time is the measure of intensity. Normally, the spectrum is the function of the 

period Single Degree of Freedom (SDOF) structures, hereafter represented as only period. According to 

these two facts, ETEFs are functions of time (t) and period (T). In order to simulate ETEFs, acceleration 

spectra of ETEFs at each time and each period should be specified. This matter contradicts with 

generating artificial motions in which only acceleration spectra at each period must be determined. This 

difference originates from the different natures of ETEFs and recorded GMs. Acceleration spectra of 

ETEFs gradually increases with a specified pattern as time increases. In order to simulate ETEFs, 

acceleration spectra of ETEFs must increase with time and must be compatible with considered GMs. 

These two required conditions are the targets of simulating ETEFs. Since the number of targets 

considerably exceeds the number of variables, optimization process must be used to simulate ETEFs. In 

optimization context, equations are defined in the objective functions form. The objective function of 

Equation  (1) calculates the discrepancy between ETEFs acceleration spectra and targets: 

        
max max

min

2

ETEF

0

, , d d

T t

g a aC

T

F a S t T S t T t T     (1) 

Where  ,aS t   denotes acceleration spectra produced by time window  0, t  of ETEFs at period of T. 
aCS  

is target acceleration spectra of ETEFs. 
maxt  is duration of ETEFs. Also, 

minT  and 
maxT  are the minimum 

and maximum of the periods considered in the generating process, respectively. In this case,  ,aS t T is 

calculated by Equation (2).  
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       , max 0a gS t T x a t     
 

 (2)  

Where  x   is the relative acceleration response of an SDOF with a period of T and damping ratio of 5% 
under the ETEFs, and  ga   is the acceleration time history of ETEFs.  

  ,aCS t T  is calculated by Equation  (3) : 

    Target

target

,
ac a

tS t T S T
t

    (3) 

Where 
targett  is the time at which ETEFs are compatible with normalized GMs. target

aS is the median 

acceleration spectra of normalized GMs. In this study, the GMs suite recommended by [28] is used as 

target motions. These ground motions are recorded from large magnitude events ( 6.5M  ) at sites located 

greater than or equal to 10 km from fault rupture.  This set includes records from soft rock, stiff sites, and 

shallow crustal sources. Acceleration spectra of GMs in logarithmic scale are depicted in Figure 2. It 

should be mentioned that normalizing procedure proposed by FEMAP695 is used in this study [29]. 

To minimize the objective function Equation (1) for simulating ETEFs, unconstrained nonlinear 

optimization procedure is employed. It should be noted that discretization is required in solving such 

objective functions; not to mention that the type of discretization to be used might affect the results. For 

discretization purpose, times are sampled at n points  1:jt j n , and periods are sampled at m points 

 1:iT i m . When discretization is applied, objective function of Equation (1) converts double integrals 

to double summations, as stated in Equation (4). 

 

       2ETEF

1 1

, ,

m n

g a i j aC i j

i j

F a S T t S T t
 

    (4)

 

In this study, 120 periods with a logarithmic distribution between 0.02 seconds and 5 seconds are 
employed. The logarithmic distribution produces more data in the low period region where fluctuation of 
acceleration spectra is considerably higher than the high period region. In this way, t is also sampled at 
2048 points with equal intervals of 0.01seconds. 

There are several optimization algorithms that can be employed for simulating ETEFs. In this study, 
trust region reflective algorithm, a simple yet powerful concept in optimization, is employed as the 
optimization method [30]. The basic idea is to approximate function f with a simpler function q, which 
reasonably reflects the behavior of function f in the neighborhood N around the point of x. This 
neighborhood is called the trust region [31]. In the standard trust region, q is defined by the first two 
terms of the Taylor expansion of f around x, and N is hyper-spherical with radius of  , as stated in 
Equation (5). As can be found, this is a constrained optimization problem, where g and H are the gradient 
and Hessian matrix of f at point x and s is the step size to be determined at each iteration.   

  1
min such that

2

T T
s Hs s g s     (5) 

In order to compare ETEFs produced with different objective functions, a quantity called 
Normalized Relative Residual (NRR) is defined [32]. Although this quantity can be defined for different 
dynamic characteristics, the one associated with acceleration spectra as given in (6) is utilized in this 
study. The main property of this quantity is its independency to the target acceleration spectra. With this 
quantity, comparison of different ETEFs produced by different objective functions would be possible. 
This quantity expresses the incorrectness of ETEFs in percent. In fact, the accuracy of ETEFs can be 
defined as one hundred minus NRR in percent. The discretized form of Equation (6) is given in Equation 
(7).  
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3 Proposed Method for Selecting Mother Wavelet Functions  

In this section, it is investigated whether or not the used mother wavelet function can play an 
important role in the accuracy of the generated ETEFs. A methodology to explore the influence of the 
mother wavelet function on the accuracy of simulated ETEFs is presented. The steps of the proposed 
methodology are presented here: 

1- Select a suite of mother wavelet families (e.g., Daubechies, Symlet, Coiflet, and Bio-

Orthogonal). Given that n wavelet families are selected, these wavelet families are consecutively 

numbered as 1,2,...,i n .  

2- For each mother wavelet family, a set of mother wavelet functions is chosen. For example, the 

set  2,4,6,...,20 is chosen for Daubechies family. This selection is based on engineering 

judgment. The members of the selected set are consecutively numbered as 1,2,...,j m , where m 

is the set size. The j-th member of this set is 
ij . 

3- For each mother wavelet functions
ij , k number of ETEFs are generated. The process of 

generating ETEFs is briefly described in Section 2. The generation procedure is completely 

explained by [20]. The objective functions of the generated excitations are denoted as 

 1,2,...,ijlF l k . 

4- Find the average objective function value of the simulated ETEFs produced by the mother 

wavelet function 
ij  as follow: 

   1

k

ijl

l
ij

F

F
k




  (8) 

5- Find the best wavelet function for each wavelet family 

 

  * arg min ij
j

j i F   (9) 

 

6- Find the best wavelet family 

 
 *

* arg min
ij ii

i F
  (10) 

With this approach, the wavelet family associated with the number *i  and the mother wavelet 
function associated with  * *j i  leads to the more accurate ETEFs. This methodology is illustrated in 
Figure 3. 
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In order to investigate the influence of the used mother wavelet function on the accuracy of 
simulated ETEFs the importance factor denoted by α is defined. The equation of determining the 
importance factor is given in Equation (11). This parameter is expressed in percent. The high value of this 
parameter shows the sensitivity of the simulated ETEFs to the selected mother wavelet function. The 
importance factor can be obtained either for each separate mother wavelet family or for all considered 
mother wavelet families. In the earlier one, the sensitivity of the ETEFs accuracy to the selected mother 
wavelet function that belongs to a mother wavelet family is of concern, while, in the latter one, the mother 
wavelet function can be selected from all mother wavelet families. 

 

1
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ijl

ijl

ijl

F
F

mk mk

F
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

 
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 
 




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4 Application of the Proposed Method 

In this section, the influence of the mother wavelet on the accuracy of the produced ETEFs is 
investigated through applying the methodology presented in previous section. Four wavelet families are 
considered for this purpose, i.e., the wavelet families of Daubechies, Coiflet, Symlet and Bio-Orthogonal. 
On the other words, n is taken four in the methodology presented in previous section. The first three 
wavelet families belong to the class three (orthogonal) and the other one belongs to the class four (bio-
orthogonal). No wavelet families are selected from two first classes because FWT cannot be performed by 
these two classes. For each wavelet family, several members of the wavelet set belonging to that family 
will be considered as mother wavelets, and the corresponding wavelet coefficients are taken as 
optimization variables in the production of ETEFs. The procedure explained in the methodology section 
is followed. 

The first wavelet family considered in this study is Daubechies wavelet family. This wavelet family 
is an orthogonal wavelet class. For the Daubechies wavelet family, ten mother wavelets—db2, db4, db6, 
db8, db10, db12, db14, db16, db18, db20—are considered, m=10. The function support of db2, db4, db6, 
db8, db10, db12, db14, db16, db18, and db20 are 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19, respectively. 
According to the methodology presented in previous section, six ETEFs are produced for each mother 
wavelet function. On the other words, k is taken six. Ten scenarios with the names of ETEF-db2, ETEF-
db4, ETEF-db6, ETEF-db8, ETEF-db10, ETEF-db12, ETEF-db14, ETEF-db16, ETEF-db18, and ETEF-
db20 are defined. The second part of each scenario name shows the used wavelet function. Number of 
sample points of each scenario is 2048. Number of optimization variables for each scenario is taken 512.  

According to the proposed methodology, 60 ETEFs are generated. The average objective function 
value of ETEFs produced by db2 is 85.9, while this value for other generated ETEFs is 35.3; this shows 
that the wavelet function db2 does not provide sufficient accuracy, so this wavelet function is not 
considered for further investigation. The accuracy of the produced ETEFs in the boxplot format is shown 
in Figure 4. By the methodology presented in previous section,  * 1 6j  . On the other words, db12 
mother wavelet function results in a more accurate ET excitation function than the other mother wavelet 
functions applied in this scenario. However, it can be seen the accuracy of the production functions in the 
other wavelets has approximately the same error values if we exclude the wavelet db2. Figure 4 shows 
that the cost function of db12 is less than other considered wavelet functions; This is consistent with the 
results of the methodology. The average CPU time of production of ETEFs in the Daubechies family was 
7348 seconds. It should be mentioned that Intel® Xeon® Processor E5-2698 v4 system is used to 
simulate ETEFs. 

The second mother wavelet family considered in this paper is Coiflet. Coiflet wavelet family 
corresponds to 2i   in the methodology. Coiflet is an orthogonal wavelet family. For Coiflet wavelet 
family, five mother wavelet functions are considered, i.e., 5m  . The function support of Coif1, Coif2, 
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Coif3, Coif4, and Coif5 are 5, 11, 17, 23, and 29, respectively. Nine levels of decomposition have been 
used to generate the ETEFs of this scenario using the upper-pass and lower-pass filters. The reason for 
choosing nine levels of decomposition is that it can be possible to cover different significant frequencies 
of the signal. To reduce the optimization variables and eliminate inefficient decision variables in this case, 
level 1 and 2 detail coefficients are not considered in the optimization procedure. The values of these 
coefficients are set to zero. Five optimization scenarios are introduced to investigate the generated ETEFs 
in Coiflet wavelet family. The details of these optimization scenarios are given in Table 1. In this table, 
number of sample points is the total number of wavelet coefficients and number of decision variables is 
the number of wavelet coefficients that are considered as variables in the optimization procedure. As said 
before, wavelet coefficients of levels 1 and 2 are not considered as variable in this case.  

The cost functions of the produced ETEFs in the Coiflet wavelet family are given in Figure 5. It is 
seen that the definition of wavelet coefficients using the coif4 mother wavelet results in more accurate 
ETEFs than the rest of the Coiflet family functions. It should be mentioned that all of the considered 
Coiflet-family mother wavelet functions lead to acceptable ETEFs. It is contrast with Daubechies wavelet 
family that db2 cannot be used to simulate ETEFs with acceptable accuracy. The average CPU time of 
production of ETEFs in the Coiflet family was 5721 seconds.   

The third mother wavelet family considered in this study is Symlet. Symlet wavelet family 
corresponds to i=3 in the methodology. Symlet belongs to Orthogonal wavelet families. For Symlet, eight 
wavelet functions are considered, m=8. The function support of Sym1, Sym2, Sym3, Sym4, Sym5, Sym6, 
Sym7, and Sym8 are respectively 1, 3, 5, 7, 9, 11, 13, and 15. To investigate the wavelet functions of the 
Symlet family, the optimization scenarios defined in  

 are presented in this section. For each defined optimization scenario, three ET acceleration 
functions are generated. In other words, k is assigned to three for Symlet mother wavelet family in the 
methodology. To reduce the optimization variables and eliminate inefficient decision variables in this 
case, level 1 and 2 detail coefficients are not considered in the optimization procedure. The values of 
these coefficients are set to zero. 

The average cost function of ETEFs simulated by sym1 is 106.1, while the average cost function of 
ETEFs generated by other wavelet functions of Symlet family is 38.3; this shows the inappropriateness of 
sym1 in simulating ETEFs. So, sym1 is removed from mother wavelet function candidates for generating 
ETEFs.The results of the generated ETEFs in the Symlet family, except for sym1, are presented in Figure 
6. It can be seen that the produced ETEFs using the sym5 mother wavelet are more accurate than the rest 
of the functions computed from other wavelet functions in the Symlet family. The criteria for choosing 
sym5 is the multiplication sign in Figure 6 that shows the average value of the simulated ETEFs. The 
average CPU time of production of ETEFs in the Symlet family was 5721 seconds.   

The fourth mother wavelet family considered in this study is Bio-Orthogonal. Bio-Orthogonal 
wavelet family corresponds to i=4 in the methodology. In this wavelet family, eight mother wavelets—
including bior1.3, bior2.4, bior2.6, bior3.1, bior3.3, bior3.7, bior4.4 and bior6.8—are considered for the 
optimization scenarios aimed to be included for the production of ETEFs in the Bio-orthogonal wavelet 
family. As it can be seen, the function support of bior1.3, bior2.4, bior2.6, bior3.1, bior3.3, bior3.7, 
bior4.4, and bior6.8 are 4.99, 8.99, 12.99, 2.99, 6.99, 14.99, 8.99, and 16.99, respectively. These 
optimization scenarios are accessible from Table 3. For each optimization scenario shown, three ET 
acceleration functions have been simulated for each optimization scenario, k=3. To reduce the 
optimization variables and eliminate inefficient decision variables in this case, level 1 and 2 detail 
coefficients are not considered in the optimization procedure. The values of these coefficients are set to 
zero.  

bior1.3 leads to ETEFs that their cost function values are considerably larger than the ETEFs 
produced by other wavelet functions of Bio-orthogonal wavelet family. The results of the ETEFs within 
the Bio-orthogonal wavelet family, except for bior1.3, are revealed in Figure 7. It is seen that the use of 
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the bior3.3 mother wavelet in the Bio-orthogonal family results in more accurate ET acceleration 
functions. The average CPU time of production of ETEFs in the Bio-orthogonal family was 5638 
seconds.   

Top ten mother wavelet functions in simulating ETEFs and their corresponding cost function values 
are shown in Figure 8. As it can be seen, db12 is the most efficient mother wavelet function in generating 
ETEFs. From these ten mother wavelet functions, six of them belongs to Daubechies wavelet family. This 
matter highlights the effectiveness of Daubechies wavelet family in producing ETEFs. Two of these ten 
mother wavelet functions belong to Symlet wavelet family. Bio-orthogonal and Coiflet have only one 
share in top ten mother wavelet functions. As can be seen from this figure, discrepancies between the cost 
function of these ten mother wavelet functions are not significant. The difference between the cost 
function of db12 and coif4 is about seven percent. The Daubechies wavelet family demonstrates superior 
performance in producing ETEFs. 

The average cost function value of ETEFs simulated by using each mother wavelet family is shown 
in Figure 9. This figure provides a tool to compare different mother wavelet families. It should be 
mentioned that outliers are removed from the averaging process. The outliers are associated with db2, 
sym1, and bior1.3 wavelet functions.  Figure 9 demonstrates that Daubechies wavelet family outperform 
other considered wavelet families in producing ETEFs. Bio-Orthogonal, Symlet, and Coiflet wavelet 
families have respectively second, third, and fourth rank among considered wavelet families. The average 
cost function of ETEFs simulated by Daubechies wavelet function is 35.28 while this value for Bio-
Orthogonal, Symlet, and Coiflet wavelet functions are respectively are 37.86, 38.28, and 39.37. This 
means that Bio-Orthogonal, Symlet, and Coiflet wavelet functions have the efficiency about 7.3%, 8.5%, 
and 11.6% less than Daubechies wavelet family. The average cost function index serves as a criterion for 
selecting a mother wavelet function from one of the wavelet families randomly, determining which one 
performs better. In this context, it is observed that Daubechies outperforms the others. 

Importance factor, which shows the extent of impact of selecting the appropriate mother wavelet 
function in generating more accurate ETEFs according to Equation (11), are calculated either for each 
considered wavelet family separately or for all wavelet families together. The calculated values are 
depicted in Figure 10. Since the desired accuracy is not achieved in ETEFs produced by db2, sym1, and 
bior1.3, these mother wavelet functions are not included in calculating Importance factor. It can be seen 
that selecting appropriate mother wavelet function from all considered mother wavelet families has 13.8% 
impact on the accuracy of produced ETEFs. Moreover, selecting appropriate mother wavelet function 
from Daubechies wavelet family, has 5.5% impact on the accuracy of produced ETEFs. The Importance 
factor of Daubechies wavelet family is the lowest among all considered wavelet families, and this shows 
that the selection of the best wavelet function in this family is less significant in generating ETEFs. As 
evident from this figure, the Importance factor associated with the Bio-Orthogonal family is 
comparatively higher when compared to the other considered mother wavelet families. 

Summary results of comparing mother wavelets in generating ETEFs are presented in Table 4. This 
table shows the order of the wavelet family that results in more accurate ETEFs and also shows the first 
five best mother wavelet in each family. Moreover, importance factor for each wavelet family is 
provided. The same information for all considered wavelet families together is given in this table. It is 
seen that the Daubechies family with the db12 mother wavelet yields more accurate results all together. 

In order to analyze the results, the mother wavelet functions that are unsuitable for simulating 
ETEFs is shown in Figure 11. This figure shows that all these wavelet functions have discontinuity and 
have sudden jumps at several points. On the other hand, top ranked wavelet functions are shown in Figure 
12. 

In this section, the effectiveness of the proposed mother wavelet is evaluated by utilizing the 
Goodness-of-Fit (GOF) index to assess the quality of the generated ETEFs. GOF is proposed as a metric 
to quantify the misfit of broadband synthetic seismograms [33-35]. The formula for calculating this index 
is given below. It's important to acknowledge that the GOF criterion is a numerical measure falling within 
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the range of 0 to 100, where a value of 100 signifies the perfect fit. While the GOF index can be applied 
to various intensity measures, this study focuses on using it specifically for Peak Ground Acceleration 
(PGA) since only acceleration spectra were utilized in the production process. For ETEFs produced with 
db12, the Goodness-of-fit for PGA is 94.50%, indicating an excellent level of fit. The GOF index for 
spectral acceleration is computed by averaging across various periods ranging from 0.02 seconds to 5 
seconds, resulting in a value of 91.66%. 

  
2

100*erfc NR where NR=
x y

GOF
x y





  (12) 

where x and y represent the observed and simulated values, respectively, while the complementary error 

function erfc(.) is employed to measure the discrepancy between the two datasets. 

5 Simulating new ETEFs by the Selected Mother Wavelet Functions 

In order to show the validity of the results presented in the previous section, four ETEFs by using the first 
rank mother wavelet functions associated with four considered wavelet families, i.e., db12, bior3.3, sym5, 
and coif4, are produced. Target acceleration spectra of these ETEFs differ from that considered for 
determining the influence of the mother wavelet function in producing ETEFs in previous sections. The 
reason that the considered spectrum in this section is different from the target spectrum of the previous 
section is to investigate whether the results are dependent on the target spectrum or not. Iranian national 
building code [36] spectrum for soil type C and high seismic zone is considered as target spectrum. Both 
the target spectrum for finding the appropriate mother wavelet functions and the target spectrum defined 
in this section are depicted in Figure 13. The main difference between these two spectra is that the target 
spectrum of this section has sharp corner. ETEFs simulated by using db12, sym5, bior3.3, and coif4 are 
respectively named ETA20NBCdb12, ETA20NBCsym5, ETA20NBCbior3.3, and ETA20NBCcoif4. 
Acceleration time histories of these ETEFs are shown in Figure 14. It can be seen that all these four 
ETEFs have the intensifying trend as expected. The comparison between target spectrum and ETEFs 
spectrum at four times, i.e., 5sec, 10sec, 15sec, and 20sec, are demonstrated in Figure 15. Acceptable 
correspondence between target spectrum and ETEFs spectrum is evident. Acceleration time history 
response of ETEFs is compared with the corresponding target at four periods, i.e., 0.1sec, 0.8sec, 2sec, 
and 4.5sec. This comparison is shown in Figure 16. Figure 15 and Figure 16 show that although all these 
wavelet functions lead to acceptable ETEFs, ETA20NBCdb12 is more accurate than other ETEFs. In 
order to quantify the accuracy of the generated ETEFs, normalized relative residual (NRR) which was 
defined by [32] is used. The NRR (in percent) of these four ETEFs are provided in Table 5. This table 
approves that db12 leads to more accurate ETEFs than other considered mother wavelet functions. 
ETA20NBCdb12 had 8.6% error or 91.4% accuracy. In Section 5, it was seen that the order of the 
wavelet functions in terms of efficiency in simulating ETEFs was db12, sym5, bior3.3 and coif4. In this 
section, this order becomes db12, bior3.3, sym5 and coif4 respectively. The first and the last wavelet 
functions in these two orders are same. But the second and the third ones are changed. Nevertheless, it 
can be seen that this difference is very small. Table 5 shows that bior3.3 is only about 0.2% better than 
sym5. As can be seen, this difference can be ignored. In addition, the best mother wavelet function is 
important and the best mother wavelet function is same for two cases.       

6 Discussion 

The production of ETEFs is a crucial step in the development of the ET method, achieved through 
unconstrained nonlinear optimization by selecting appropriate decision variables, often using the Discrete 
Wavelet Transform (DWT). An algorithm is proposed to identify the optimal mother wavelet for ETEFs 
generation, evaluating various mother wavelets' accuracy. Due to computational complexity, it's 
preferable to identify the optimal mother wavelets for fundamental problems and extend the results. This 
study focuses on generating ETEFs suitable for linear analysis, assuming that mother wavelets obtained 
for linear response ETEFs can also apply to non-linear responses. Estekanchi et al. [37] demonstrated that 
incorporating long periods into the process of generating ETEFs simulated based on linear response can 
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lead to an acceptable level of consistency in capturing nonlinear responses. However, the efficiency of 
these mother wavelets in producing non-linear ETEFs remains an avenue for future research. 

The ETEFs presented in this article serve a specific purpose: identifying the optimal mother wavelet 
function for generating ETEFs based on the linear responses of structures. This particular class of ETEFs 
finds extensive utility in the linear analysis of structures. Moreover, their viability extends to non-linear 
analysis if long periods are incorporated during the generation process. However, it's worth noting that 
ETEFs intended for practical applications must undergo a rigorous qualification process for compatibility 
with both linear and non-linear spectra before they can be deemed fit for use. 

7 Summary and Conclusion 

The Endurance Time (ET) method involves subjecting structures to intensifying excitations called 
Endurance Time Excitation Functions (ETEFs) in a time history dynamic analysis. The accuracy of these 
ETEFs is vital for the successful implementation of the method, often simulated through an unconstrained 
optimization procedure. Previous studies have shown that defining decision variables in the discrete 
wavelet transform (DWT) space results in more precise ETEFs. This study presents a methodology to 
assess the impact of the mother wavelet function on the accuracy of simulated ETEFs, particularly for 
acceleration spectra-consistent ETEFs. The results are applied to ETEFs simulated based on linear 
response, emphasizing their compatibility with far-field ground motions recommended by FEMAP695. 
The ranking of mother wavelets is based on the examined wavelet families.  

1- It is demonstrated that the accuracy of ETEFs simulated by db2 (Haar), sym1 and bior1.3 wavelet 

functions is meaningfully less than those ETEFs simulated by other considered wavelet functions. 

So, it is not recommended to utilize these wavelet functions in simulating ETEFs. The common 

property of these mother wavelet functions is the presence of rectangular part in their functions 

and the existence of some sharp jumps. 

2- It is observed that selecting the best mother wavelet function, db12 as shown in this paper, for 

simulating ETEFs has about 15% improvement on the accuracy of produced ETEFs. This matter 

shows the importance of selecting the mother wavelet function in producing ETEFs.   

3- Among four considered mother wavelet families, it is shown that Daubechies wavelet family 

leads to more accurate ETEFs. After that, the Bio-Orthogonal, Symlet, and Coiflet are 

consecutively next positions. Bio-Orthogonal, Symlet, and Coiflet wavelet functions have the 

more residual, the difference between targets and ETEFs, about 7.3%, 8.5%, and 11.6% than 

Daubechies, respectively. 

4- Among the different mother wavelet families examined, the Daubechies wavelet stands out as the 

least influenced by the choice of the mother wavelet function, as revealed by the Importance 

Factor index. Specifically, the Importance Factor index for Daubechies is 5.5%. In comparison, 

the Coiflet, Symlet, and Bio-Orthogonal families exhibit Importance Factor indices of 12.4%, 

13.5%, and 14.6%, respectively. 

5- Among 31 considered mother wavelet functions, it is demonstrated that db12 is the best mother 

wavelet function to be chosen for simulating ETEFs. After that, db14, db18, db6, sym5, sym7, 

db16, bior3.3, and db10 are the next positions. This ranking is based on the observations of this 

study. 

6- For each wavelet family, the best mother wavelet function for simulating ETEFs is identified. The 

best mother wavelet function for Daubechies, Bio-Orthogonal, Symlet, and Coiflet are 

respectively db12, bior3.3, sym5, and coif4. 

7- The best mother wavelet functions for each considered wavelet family are employed to simulate 

new ETEFs. Among db12, bior3.3, sym5, and coif4, db12 leads to the more accurate ETEFs as 
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shown by the methodology. The residuals of ETEFs generated by db12, bior3.3, sym5, and coif4 

are 8.6%, 8.9%, 8.9%, and 9.5%, respectively.  
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Figures and Tables captions: 

Figure 1. (a) ETA20kd01 acceleration time history at four times windows [0-5sec], [0-10sec], [0-15sec], and [0 

20sec], (b) ETA20kd01 acceleration spectra at four times windows [0-5sec], [0-10sec], [0-15sec], and [0-20sec] 

Figure 2. Acceleration spectra of the recorded GMs used as the basis for generating ETEFs (logarithmic scale) 

Figure 3. Flowchart of finding the optimum mother wavelet function for generating ETEFs 

Figure 4. Cost function of ETEFs produced by Daubechies wavelet family  

Figure 5. Cost function of ETEFs produced by Coiflet wavelet family  

Figure 6. Cost function of ETEFs produced by Symlet wavelet family  

Figure 7. Cost function of ETEFs produced by Bio-orthogonal wavelet family  

Figure 8. Top ten mother wavelet functions in generating ETEFs. 

Figure 9. Comparison between the efficiency of different wavelet families in simulating ETEFs. 

Figure 10. Importance factor of selecting the appropriate mother wavelet in simulating ETEFs 

Figure 11. Unsuitable mother wavelet functions for simulating ETEFs, (a) db2, (b) sym1, and (c) bior1.3. 

Figure 12. Top ranked mother wavelet functions for simulating ETEFs, (a)db12, (b)sym5, (c)bior3.3, (d)coif4. 

Figure 13. Target spectrum for finding the best mother wavelet function in simulating ETEFs vs the target spectrum 

for generating new ETEFs    
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Figure 14. Acceleration time histories of the produced ETEFs: (a) ETA20NBCdb12, (b) ETA20NBCbior3.3, (c) 

ETA20NBCsym5, and (d) ETA20NBCcoif4. 

Figure 15. Comparison of target spectrum and ETEFs spectrum: (a) ETA20NBCdb12, (b) ETA20NBCbior3.3, (c) 

ETA20NBCsym5, and (d) ETA20NBCcoif4. 

Figure 16. Comparison between acceleration time history of ETEFs with target acceleration time history at four 

periods: (a) 0.1sec, (b) 0.8sec, (c) 2sec, and (d) 4.5sec. 

Table 1. Optimization scenarios for generating ETEFs using the Coiflet wavelet family 

Table 2. Optimization scenarios for the generation of ETEFs using Symlet 's wavelet 

Table 3. Optimization scenarios for the generation of ETEFs by the Bio-orthogonal wavelet family 

Table 4. Comparison of different mother wavelets in simulation of ET excitation functions   

Table 5. Normalized Relative residuals (NRR) of the generated ETEFs 
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Table 1 

Scenario Mother wavelet 
Number of sample 

points 

Number of 

decision variables 

ETEF-cf1 Coif1 2085 544 

ETEF-cf2 Coif2 2140 591 

ETEF-cf3 Coif3 2193 637 

ETEF-cf4 Coif4 2294 685 

ETEF-cf5 Coif5 2303 732 

 

 

 

 

 

 

 

 

 

Table 2 
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Scenario Mother wavelet 
Number of sample 

points 

Number of 

decision variables 

ETEF-sym1 Sym1 2048 512 

ETEF-sym2 Sym2 2067 528 

ETEF-sym3 Sym3 2085 544 

ETEF-sym4 Sym4 2104 560 

ETEF-sym5 Sym5 2121 575 

ETEF-sym6 Sym6 2140 591 

ETEF-sym7 Sym7 2158 607 

ETEF-sym8 Sym8 2177 623 

 

Table 3 

Scenario Mother wavelet 
Number of sample 

points 

Number of 

decision variables 

ETEF-bior1.3 bior1.3 2085 544 

ETEF-bior2.4 bior2.4 2121 575 

ETEF-bior2.6 bior2.6 2158 607 

ETEF-bior3.1 bior3.1 2067 528 

ETEF-bior3.3 bior3.3 2104 560 

ETEF-bior3.7 bior3.7 2177 623 

ETEF-bior4.4 bior4.4 2121 575 

ETEF-bior6.8 bior6.8 2193 637 

 

 

Table 4 

Wavelet family Rank in 

simulating ETEFs 

Importance 

Factor 

First 

rank 

Second 

rank 

Third 

rank 

Fourth 

rank 

Fifth 

rank 

Daubechies 1 5.5% db12 db14 db18 db6 db16 

Bio-Orthogonal 2 14.6% sym5 sym7 sym8 sym6 sym4 

Symlet 3 13.5% bior3.3 bior3.7 bior2.6 bior6.8 bior3.1 
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Coiflet 4 12.4% coif4 coif3 coif5 coif1 coif2 

All Considered 

Families 

--- 13.8% db12 db14 db18 db6 sym5 

        

 

 

 

Table 5 

ETEF Normalized Relative Residual (%) 

ETA20NBCdb12 8.63 

ETA20NBCsym5 8.91 

ETA20NBCbior3.3 8.86 

ETA20NBCcoif4 9.46 

 

 


