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The emergence of modern technology in the oil and gas sectors presents an opportunity to enhance 
productivity, minimize environmental impact and optimize the energy efficiency of these facilities, 
leading to increased economic benefits. In pursuit of sustainable development in gas-turbine operations, 
this study develops a mathematical model that is validated through experimental tests for monitoring the 
vibrations of an MS5002B gas turbine located in a gas compressor station. The primary objective is to 
determine the bifurcation indices, ensuring the continuous stability of the studied turbine's operating 
state while monitoring its vibrations in real-time. A comparison between the experimental and numerical 
results of the developed model is validated against real operating data, enabling predictions of the 
complex dynamic behaviors within the bearing-rotor system of the examined turbine. Robustness tests, 
based on real-time operating data, are conducted to analyze the impacts of undesirable effects that may 
disrupt the turbine system, as depicted in the bifurcation diagram. This approach facilitates the 
monitoring of the dynamic behavior of vibratory phenomena in the examined turbine, allowing for the 
establishment of reliable diagnostic elements to ensure component stability and prevent unscheduled 
production shutdowns. Ultimately, this approach enhances energy efficiency while delivering 
environmental and economic improvements. 

1. Introduction
In recent times, advancements in modern technologies and 
computing have provided reliable tools for enhancing the 
profitability and sustainability of industrial facilities. These 
innovations have the potential to improve both 
environmental and economic performance. Nevertheless, the 
monitoring of gas turbines in the oil and gas sector remains 
a significant challenge. The primary concern lies in 
mitigating the adverse effects resulting from sequences of 
turbine start-ups, optimizing yields, enhancing production 
performance, and preventing unforeseen failures. 

To address this issue, this study proposes an original 
approach centered on the analysis of vibratory phenomena 
bifurcation within the bearing-rotor system of the MS5002B 
turbine, situated in a gas compression station. The objective 
is to ensure effective monitoring of this turbine, 
incorporating practical models characterizing the dynamic 
behaviors of vibration bifurcations that affect the examined 
turbine. This is achieved by integrating degradation 
evaluation indices, employing experimental tests based on 
turbine input/output data to predict real-time vibration 
cycles. 
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To address the complexities of dynamic behavior in gas 
turbine systems subjected to high-power transmission and 
rotation, a monitoring approach based on various vibration 
bifurcations is implemented for the MS5002B turbine 
bearing-rotor system, taking into consideration the stability-
to-efficiency ratio. 

It is essential to recognize that rotating machines can 
encounter balance issues stemming from multiple sources of 
instability, particularly those caused by rotor-stator contact. 
Vibration dynamics can pose significant risks to rotating 
systems. Therefore, the rotational state must be considered 
when aligning the shaft to prevent bearing damage. Previous 
work in modern literature has been dedicated to the study of 
rotor stability and their responses at bifurcation limits. For 
example, Wang and Khonsari [1] conducted bifurcation 
analysis to evaluate the stiffness effects of a flexible rotor 
supported by plain bearings, leading to a dynamic 
characteristics model of the rotor-bearing system. In [2], the 
influence of oil temperature on the instability limit threshold 
of this rotor-bearing system was studied and validated by 
several experimental tests to evaluate the behavior of 
hydrodynamic plain bearings. Additionally, Chasalevris et 
al. [3] determined the additional harmonics affecting plain 
bearings using a magnetic geometry of these bearings, with 
experimental validation on 20% of the bearing radial 
clearance and 40% of other defects with critical speeds. 
Miraskari et al. [4] delved into the influence of nonlinear 
dynamics to determine the types of bifurcations affecting 
flexible rotors supported by plain bearings, facilitating the 
development of models for Hopf-type bifurcations. In [5], a 
numerical model of rotor-bearing system bearings was 
proposed by introducing disturbances to the Reynolds 
lubrication equation model, which allowed for the analysis 
of eigenvalues and the output of bifurcation directions of this 
rotor-bearing system. Anastasopoulos and Athanasios [6] 
studied the limit cycles of bifurcations in a rotor supported 
by plain bearings, enabling an analysis of the stability of the 
rotor-bearing system. 

Furthermore, Noah and Sundararajan [7] investigated the 
importance of nonlinear effects on the dynamic behavior of 
rotating machines, especially fluid film bearings, conducting 
performance tests on a rotor system with multiple degrees of 
freedom. Mahroug et al. [8] studied the vibration behaviors 
of the bearings of a rotating machine, allowing the 
identification of defects using the ARMAX modeling 
structure. Ehrich  [9] explored subcritical chaotic phenomena 
in a rotor, observing super-harmonic responses, which led to 
the analysis of bifurcation models obtained at the entrance 
and exit of different chaotic areas. 

Several studies have examined monitoring and diagnostic 
systems for gas turbine failures, proposing various 
approaches. Wu [10] introduced an approach to analyze the 
dynamic performance of a gas turbine shaft, using artificial 
neural networks to enhance energy efficiency through in 
depth optimization of the turbine's performance analysis. Ju 
et al.  [11] suggested a strategy of nonlinear feedback control 
for the vibration of the main transmission system of the 
scraper conveyor using  bifurcations,  while  estimating   the  

Figure 1. MS5002B gas turbine installed in the CS2/TFT gas 
compressor station in southeastern. 

influence of these bifurcations on the torsional instability of 
the transmission shaft. Li et al. [12] conducted a nonlinear 
dynamic study of a rotor-bearing system, considering the 
effects of misalignment faults and analyzing nonlinear 
dynamic behaviors supported by sliding bearings. Several 
other works have been undertaken, exploring different 
bifurcation analyses of vibration and fault-tolerant control to 
monitor gas turbines in their design and implementation, as 
carried out by Hafaifa et al.  [13], Djeddi et al.  [14], 
Mohamadi et al.  [15], Avramov and Malyshev [16], 
Avramov and Raimberdiyev  [17], Aghayari et al.  [18], Ma 
et al. [19], Noiray and Schuermans  [20], and Mao et al. [21]. 

Understanding the dynamic behavior of turbines is vital 
to account for undesirable effects on their operation and to 
enhance efficiency and yield by managing the complex 
nonlinearities of vibratory behavior under severe conditions, 
such as high rotational speed, temperature, and pressure. To 
achieve this, gas turbine operators must design robust and 
reliable monitoring systems to detect anomalies and their 
potentially dangerous developments in turbine components. 
In this context, this study proposes a bifurcation analysis 
approach based on modeling the MS5002B turbine rotor-
bearing system, aiming to extend its operational life while 
reducing maintenance costs. This approach involves 
analyzing spectra of frequency, phase portraits, and Poincaré 
maps to describe the stability changes in the curves of 
solutions depicted in various bifurcation diagrams, all based 
on real-time measurements. 

2. The MS5002B gas turbine
In pursuit of enhancing the energy efficiency of gas turbines 
used in the natural gas transportation sector, along with the 
integration of modern monitoring practices to ensure their 
continuous availability while preventing sudden failures, our 
focus in this study centers on the MS5002B gas turbine, as 
depicted in Figure 1, with its specifications provided in Table 
1. This specific turbine is situated at the CS2/TFT gas
compressor station, operated by SONATRACH, located 
approximately 1400 km southeast of Algeria and 540 km 
from the Wilaya of ILLIZI in southern Algeria. The 
MS5002B turbine is engineered to deliver substantial power 
under optimal operating conditions, effectively driving a 
centrifugal gas compressor. Notably, it comprises two 
mechanically independent rotors, as illustrated in Figure 2. 
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Figure 2. Operational structure of the MS5002B gas turbine. 

Table 1. Specifications of the MS5002B gas turbine. 
Parameters Values 

Cycle Simple 
Pressure ratio 6 – 8 
Exhaust temperature 963 °F 
Exhaust flow 274.1 Ibs/sec 
Number of turbine stages 02 
Rated power 38000 HP 
Heat rate 8816 btu/hp-h 
Turbine efficiency 28.8 % 
Shaft speed 5100 rpm HP and 4903 rpm LP 

The first rotor operates at speeds of up to 5100 rpm and is 
responsible for driving the axial compressor, featuring 
sixteen compression stages of the high-pressure HP turbine. 
Its primary function is to compress the air, which must be 
supplied to the combustion chambers under pressure. The 
second rotor is that of the low-pressure LP turbine, which is 
coupled mechanically to the centrifugal compressor. 

To meet the goals concerning the analysis of vibratory 
dynamics, we begin with the processing of information and 
data to detect vibration anomalies, as detailed in the 
following section. This process initiates with the modeling 
of the bearing-rotor system of the examined MS5002B 
turbine. Subsequently, bifurcation indicators are employed to 
pinpoint the stability endpoints, providing reliable solutions 
for monitoring instability phenomena. This approach is 
critical for preventing any degradation of the turbine, 
ensuring stable and secure operation while aligning with the 
desired operation parameters to extend its operational 
lifespan. The method facilitates the early detection of 
malfunctions and enables continuous monitoring to plan 
maintenance interventions. These interventions encompass 
leveraging a range of failure detection techniques and 
modern supervision methods to develop intelligent 
monitoring tools tailored to the specific requirements of the 
examined turbine. 

Multiple data series are collected through direct 
measurements of the rotating components of the machine 
shafts using various sensors positioned on these shafts. These 
sensors redundantly measure shaft movements and trigger 
immediate alarms in the event of a malfunction or a violation 
of vibration detection thresholds, as outlined in Table 2.  

Table 2. Vibrations alarms in the MS5002B gas turbine. 
Alarm level Danger level 

Bearing N°1 12.7 mm/s 25.4 mm/s 
Bearing N°4 12.7 mm/s 25.4 mm/s 

Table 3. Type of MS5002B turbine bearings. 
Bearing 

N° Class Type 

1 
Journal Elliptical 

Thrust (active side) Tilting pad (self-equalizing) 
Thrust (inactive side) Tapered land 

2 Journal Elliptical 

3 Journal Tilting pad 

4 
Journal Tilting pad 

Thrust (active side) Tilting pad (self-equalizing) 
Thrust (inactive side) Tilting pad (non-equalizing) 

2.1. Modeling of MS5002B turbine bearing-rotor system 
Monitoring the vibrations of gas turbines involves tracking 
their behavior based on operational parameters. This type of 
monitoring is straightforward when dealing with simple 
vibratory signals. However, it becomes complex and 
impractical when these signals have diverse origins and 
dynamics, a common occurrence with rotating machines. 
These machines produce vibrations that manifest 
simultaneously in numerous locations across various 
elements, each exhibiting different types of vibrations. In this 
context, the bearing-rotor system, illustrated in Figure 3, is 
used to model the dynamic behavior of vibrations in the 
MS5002B turbine. This system comprises two journal 
bearings with oil film, one for the axial compressor and one 
for the turbine. 

The structure of the MS5002B turbine rotor-bearing 
system, examined in this study, comprises two plain bearings 
(journal bearings) for supporting the HP and LP rotors, along 
with a thrust bearing, as outlined in Table 3. The thrust 
bearing serves to maintain the axial position of the rotor-
stator and support the axial thrust loads transmitted by the 
rotor.  

The analysis of the rotor-bearing system's behavior 
focuses on the radial vibrations of the high-pressure HP 
turbine rotor. This analysis helps  determine  the  significant 
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Figure 3. Structure of studied gas turbine rotor-bearing system. 

Figure 4. Representation of pressure distribution of the oil film. 

impacts of these vibrations on the overall operation of the 

turbine. It also involves a thorough examination of the 

behaviors of the plain bearings, given their critical role in 

managing and mitigating the radial vibrations of the HP 

rotor. It's important to note that these bearings themselves 

can be a source of radial vibrations, particularly those 

generated within the HP rotor. These vibrations can have 

significant consequences on the efficiency, durability, and 

overall performance of the turbine. They can lead to 

premature wear of components and compromise system 

stability, resulting in substantial maintenance costs. 

In practice, vibration monitoring is a highly intricate task 

that necessitates robust and reliable turbine operating data. 

This data ensures the effective protection of the rotating 

machine by automatically triggering shutdown or generating 

alarms before severe damage occurs to its components. The 

vibrations recorded in the examined MS5002B turbine 

bearing-rotor system can be attributed to various forces and 

non-linear effects of the oil film. These effects occur when 

the fluid film is generated by the relative movement of two 

surfaces, ensuring no contact between the shaft and the 

bearings. This arrangement is characteristic of 

hydrodynamic bearings, which serve as supporting elements 

for turbine rotors. They guide rotating shafts, boasting a 

notably high load capacity, where shaft rotation generates 

viscous damping and rigidity within the bearing, as depicted 

in Figure 4. 

The nonlinear model of the hydrodynamic forces under the 

hypothesis of the short bearing, i.e., the ratio of its length to its 

diameter (L/D) has a low value ≤0.7, where the calculations of 

this type of bearing are based on the made that the circumferential 

pressure gradient is negligible, using the Reynolds equation the 

model of the hydrodynamic forces in the Cartesian frame of 

reference is given as follows [13, 22-24]:  

(
𝑅

𝐿
)

2 𝜕

𝜕𝑧
(ℎ3

𝜕𝑝

𝜕𝑧
) = −2(𝑦 ′ sin 𝜃 + 𝑥 ′ cos θ) 

       −𝑦 cos 𝜃 + 𝑥 sin 𝜃, (1) 

where 𝑅 and 𝐿 are respectively are the radius and the length 

of the bearing, 𝑧 =
𝑍

𝐿
 is the dimensionless axial displacement

with; −
1

2
≤ 𝑧 ≤ +

1

2
,  𝑝 =

𝑃

6𝜇𝑤(
𝑅

𝐶𝑏
)
 is the dimensionless
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pressure of the oil film with 𝐶𝐶𝑏𝑏 is the radial clearance of the 
bearing, 𝑥𝑥 and 𝑦𝑦 are dimensionless horizontal and vertical 
displacements, ℎ = 𝐻𝐻

𝐶𝐶𝑏𝑏
 is the dimensionless thickness of the 

oil film with ℎ = 1 − 𝑥𝑥 cos 𝜃𝜃 − 𝑦𝑦 sin 𝜃𝜃. 
Integrating the Reynolds Eq. (1) gives the dimensionless 

pressure distribution of the oil film as follows [25- 28]:  

( ) ( )
( )

( )
2

2
3

2 sin 2 cos1 4 1 .
2 1 cos sin

x y y xLp z
D x y

θ θ

θ θ

′ ′− − + = −   − −
 (2) 

As well as the total nonlinear forces of the oil film are 
calculated by the formulation given in following [13, 29-31]: 

2 1 2

1 2

2 1 2

1 2

6 cos

6 sin

X
b

Y
b

RF RL p dzd
C

RF RL p dzd
C

α

α

α

α

π

π

µω θ θ

µω θ θ

+

−

+

−

   = −      
   = −      

∫ ∫

∫ ∫
(3) 

Substituting Eq. (2) into Eq. (3) gives the dimensionless 

equations of oil film forces expressed as follows [13, 28, 

29, 32]:  

( ) ( )
( )

( ) ( )
( )

2

3

2

3

1

2 sin cos 2 cos
2

1 cos sin
1

2 sin 2 cos sin
2

1 cos sin

x X

y Y

f F

x y x y
d

x y

f F

x y y x
d

x y

α

α

α

π

π

α

σ
θ θ θ

θ
θ θ

σ
θ θ θ

θ
θ θ

+

+

 =

 ′ ′− − +

=
 − −

 =



′ ′− − + =
− −

∫

∫
(4) 

with : 
2 2

.
2b

R LRL
C R

σ µω
   =        

 (5) 

The resulting calculation of integration of Eq. (4) is written 
as follows [13, 27]: 

3 1

2 2

2( 2 ) 2( 2 ) ,
2( 2 ) 2( 2 ) ,

x

y

f x y I y x I
f x y I y x I

′ ′= − − +
′ ′= − − + (6) 

with : 
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( )

2

1 3

2

2 3

3 3

cos( , , ) ,
1 cos sin

sin( , , ) ,
1 cos sin

cos sin( , , ) .
1 cos sin

I x y d
x y

I x y d
x y

I x y d
x y

α π

α
α π

α
α π

α

θα θ
θ θ

θα θ
θ θ

θ θα θ
θ θ

+

+

+

=
− −

=
− −

=
− −

∫

∫

∫

 

(7) 

By introducing 𝑇𝑇(𝑥𝑥, 𝑦𝑦,𝛼𝛼) = ∫ 𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑𝛼𝛼+𝜋𝜋
𝛼𝛼  with 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 1
1−𝑥𝑥 cos𝜃𝜃−𝑦𝑦 sin 𝜃𝜃

 and using Leibniz's integral rule, 

the variables 𝐼𝐼1, 𝐼𝐼2 and 𝐼𝐼3 are calculated as follows [33,34]: 
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1 2 2
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2
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(8) 

Then, substituting Eq. (8) into Eq. (6), the forces xf  and

yf  are expressed as follows [35-38]:

( ) ( )
1
22 2

2 2

2 2

1
x

y

x y y xf
f x y

 ′ ′− + +    = − 
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,

3 ( , , ) ( , , )cos 2 ( , , )sin
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α α α α α
α α α α α
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(9) 

where: 
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( )

( ) ( )
( )
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2 2
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2

2 2 2 2

2 cos sin ( , , )
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1
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21 1
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α
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  ′ ′+ + ′= − + −  ′ ′− −   (10) 

With 𝜎𝜎 is the Sommerfeld number, 𝜇𝜇 is the dynamic 
viscosity, while 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are the dimensionless nonlinear 
forces of the oil film. 

2.2. Governing equations of the bearing-rotor system of 
the MS5002B turbine 

The dynamic equations of a bearing-rotor system of a gas 
turbine are established by neglecting the shear strain and the 
gyroscopic torque to demonstrate the effect of the oil film 
force as follows: 

1

1

3

1 1 1 1 1 2

1 1 1 1 1 2 1

2
2 2 2 1 2 1 2 2 3 2

2
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ω ω

ω ω
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(11) 
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where 𝑔𝑔 is the acceleration of gravity, 𝑤𝑤 is the angular 
velocity of the rotor and 𝐹𝐹𝑋𝑋1, 𝐹𝐹𝑌𝑌1, 𝐹𝐹𝑋𝑋3 and 𝐹𝐹𝑌𝑌3 are the 
components of the nonlinear forces of the oil film in the plain 
bearings following  OX, OY, 𝑟𝑟  is the eccentricity of the rotor, 
𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3 are the stiffness matrix of the rotor, 𝑐𝑐 is the 
damping of the system, 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖 are the horizontal and 
vertical displacements, 𝑚𝑚1 and 𝑚𝑚3 are the concentrated 
masses of the left and right bearings respectively, 𝑚𝑚2 and 𝑚𝑚4 
are the concentrated masses of the compressor and the 
turbine, respectively. To ease the calculation, the 
dimensionless transformations are given as follows: 

𝜔𝜔𝜔𝜔 = 𝜏𝜏, 𝑒𝑒 =
𝑟𝑟
𝐶𝐶𝑝𝑝

, 𝑥𝑥𝑖𝑖 =
𝑋𝑋𝑖𝑖
𝐶𝐶𝑝𝑝

,𝑦𝑦𝑖𝑖 =
𝑌𝑌𝑖𝑖
𝐶𝐶𝑝𝑝

, (12) 

with: 

𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔
𝑑𝑑
𝑑𝑑𝑑𝑑

,
𝑑𝑑2

𝑑𝑑𝑡𝑡2
= 𝜔𝜔2 𝑑𝑑

2

𝑑𝑑𝜏𝜏2
, 

(13) 

which give: 

𝑥𝑥′ =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

,𝑦𝑦′ =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

,𝑥𝑥′′ =
𝑑𝑑2𝑥𝑥
𝑑𝑑𝜏𝜏2

,𝑦𝑦′′ =
𝑑𝑑2𝑦𝑦
𝑑𝑑𝜏𝜏2

. 
(14) 

The substitution of the force of the oil film given by Eq. (4) 
in Eq. (11) written in the following dimensionless form: 
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1 1 1 2 12 2

1 1 1
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b
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m m m C

σ
ω ω ω

′′ ′+ + − =  

1
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b b
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m m m C C

σ
ω ω ω ω

′′ ′+ + − = −

1 2
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m m m
τ

ω ω ω
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1 2
2 2 2 1 2 32 2 2

2 2 2
( ) ( ) sin( ) ,

b

c k k gy y y y y y e
m m m C

τ
ω ω ω ω

′′ ′+ + − + − = −

32
3 3 3 2 3 4 32 2 2

3 3 3 3
( ) ( ) ,x

b

kc kx x x x x x f
m m m m C

σ
ω ω ω ω

′′ ′+ + − + − =

32
3 3 3 2 3 42 2

3 3 3
( ) ( )kc ky y y y y y

m m mω ω ω
′′ ′+ + − + −

 
  32 2

3
,y

b b

gf
m C C

σ
ω ω

= −  

3
4 4 4 32

4 4
( ) cos( ),kcx x x x e

m m
τ

ω ω
′′ ′+ + − =

3
4 4 4 32 2

4 4
( ) sin( ) .

b

kc gy y y y e
m m C

τ
ω ω ω

′′ ′+ + − = −  (15) 

To solve the nonlinear equations of the system of Eq. (15), 

these eight second order equations are decomposed into 

sixteen first order equations, with the turbine bearing-rotor 

system model state variables of the MS5002B turbine are 

introduced as follows:  

{ }1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16, , , , , , , , , , , , , , ,x x x x x x x x x x x x x x x x x=  
   { }1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4, , , , , , , , , , , , , , , .x x x x x x x x y y y y y y y y′ ′ ′ ′ ′ ′ ′ ′=    (16) 

Then the equations of motion become: 

1

5

1 2

1
2 2 1 32 2

1 1 1

3 4

1 2
4 4 3 1 3 52 2

2 2 2

5 6

32
6 6 5 3 5 72 2 2
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7 8

3
8 8 7 52

4 4

,
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,

( ) ( ) cos( ),

,

( ) ( ) ,

,

( ) cos( ),

x
b

x
b

x x
c kx x x x f

m m m C
x x

c k kx x x x x x e
m m m

x x
kc kx x x x x x f

m m m m C
x x

kcx x x x e
m m

x

σ
ω ω ω

τ
ω ω ω

σ
ω ω ω ω

τ
ω ω

′ =

′ = − − − +

′ =

′ = − − − − − +

′ =

′ = − − − − − +

′ =

′ = − − − +

′

9

9 10

1
10 10 9 112 2 2

1 1 1

11 12

,

( ) ,

,

x
b b

x
c k gx x x x f

m m m C C
x x

σ
ω ω ω ω

=

′ = − − − + −

′ =

1 2
12 12 11 9 11 132 2

2 2 2
( ) ( )c k kx x x x x x

m m mω ω ω
′ = − − − − −

         2sin( )
b

ge
C

τ
ω

+ − , 

13 14,x x′ =

32
14 14 13 11 13 152 2

3 3 3
( ) ( )kc kx x x x x x

m m mω ω ω
′ = − − − − −

         
132 2

3
,x

b b

gf
m C C

σ
ω ω

+ −  

15 16,x x′ =

3
16 16 15 132 2

4 4
( ) sin( )

b

kc gx x x x e
m m C

τ
ω ω ω

′ = − − − + − . (17) 

This representation of the system of equations (17) is of the 
form 𝑥̄𝑥′ = 𝑓𝑓(𝑥̄𝑥,𝜔𝜔), with the steady-state equilibrium points 
𝑥̄𝑥𝑠𝑠 are represented in the phase space as the solutions of the 
equilibrium states, i.e., the solutions of the equation 
𝑓𝑓(𝑥̄𝑥𝑠𝑠,𝜔𝜔) = 0 

For the stability analysis of the MS5002B turbine 
bearing-rotor system, the stability of the fixed points 𝑥̄𝑥𝑠𝑠 
figures out the equilibrium points of the turbine system 
formally represented by Eq. (17). Hence, the problem that 
arises is whether the fixed points are stable or not. Suppose 
that the system of Eq. (17) has a fixed point at 𝑥̄𝑥 = 𝑥̄𝑥𝑠𝑠, the 
linearization of this system of Eq. (17) around this state of 
equilibrium, gives: 

( )2( ) ( ) .( ) ( ) ,
ss x s sf x f x J x x O x x= + − + − (18) 

where 𝐽𝐽 is the Jacobian matrix of  𝑓𝑓 evaluated in 𝑥̄𝑥𝑠𝑠, written 
by: 

ijJ J ≡   with .i
ij

j

fJ
x
∂

≡
∂

 (19)

Eq. (18) can be transformed into the following form: 

( ) .( ).
s

s
x s

d x x J x x
dt
−

= −  (20) 
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Eq. (20) is linear with constant coefficients, its solutions are 
a sum of exponentials expressed as follows: 

.exp( ),s i i
i

x x A tλ− =∑ (21) 

where 𝜆𝜆𝑖𝑖 are the eigenvalues of the problem, knowing that 𝜆𝜆𝑖𝑖 
are solutions of the following system: 

det( . ) 0,J Iλ− =  (22) 

where 𝐼𝐼 is the identity matrix and 𝑑𝑑𝑑𝑑𝑑𝑑  is the determinant. 
The solutions 𝜆𝜆𝑖𝑖 are real or imaginary, so the stability of 

the equilibrium state depends on the eigenvalues. We can get 
two following cases:  

• If for every 𝑖𝑖 ∈ [1;𝑛𝑛] thing, 𝑅𝑅𝑒𝑒(𝜆𝜆𝑖𝑖) ≤ 0 the fixed point 
𝑥̄𝑥𝑠𝑠 is stable;

• If it exists 𝑗𝑗 ∈ [1;𝑛𝑛], 𝑅𝑅𝑒𝑒(𝜆𝜆𝑖𝑖) ≻ 0 the fixed point 𝑥̄𝑥𝑠𝑠 is
unstable.

3. Vibrations’ bifurcation behavior of MS5002B
turbine bearing-rotor system

Modeling of vibrations bifurcation behavior of the MS5002B 
turbine bearing-rotor system is done in this section, 
considering the effects of nonlinear forces of the oil film, 
based on the observed turbine operating state, under de 
different rotational speed of the rotors. As well as in the 
presence of instabilities generated by the phenomenon of 
unbalance on the shaft lines of turbine bearing-rotor system. 
This nonlinear dynamic will be modeled using the 
bifurcation diagram, the phase portrait, the Poincaré map and 
the frequency spectrum, in order to figure out the stable 
operating zones of the studied turbine and to guarantee a 
proper operation. Indeed, the theory of bifurcations aims to 
describe the changes and variations of the points of stability, 
verifying the equilibrium equations to represent the real 
behavior of the system. The nonlinear system dynamics is 
given by:  

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝛼𝛼), (23) 

where 𝑥𝑥 ∈ ℜ𝑁𝑁 is the state vector, 𝑓𝑓 is the nonlinear function 
and α  is the control parameter vector. 

When the control parameter α  is variable, we say that a 
value 𝛼𝛼𝑐𝑐 is a critical bifurcation value, if the vector field 
𝑓𝑓(𝑥𝑥,𝛼𝛼𝑐𝑐) is not equivalent to 𝑓𝑓(𝑥𝑥,𝛼𝛼) whatever 𝛼𝛼 is in the 
neighborhood of 𝛼𝛼𝑐𝑐. However, the bifurcation diagram 
summarizes all the essential information of the nonlinear 
dynamic system, which is the case of the studied turbine and 
helps to understand how its behavior evolves and is a useful 
means to analyze their stability.  

Numerically, we can calculate the bifurcations which 
connects the equilibriums to the periodic motion is the Hopf 
bifurcation. The loss of stability at the Hopf bifurcation 
occurs when a pair of conjugate eigenvalues cross the 
imaginary axis at the points ±𝑤𝑤𝑐𝑐, where the bifurcation 
parameter reaches the critical value 𝛼𝛼𝑐𝑐. This implies that the 
bifurcation condition 𝑅𝑅𝑅𝑅 𝜆𝜆1,2 = 0 is satisfied and 𝑙𝑙𝑙𝑙𝜆𝜆1,2 ≠
0, this case corresponds to the Hopf bifurcation, also call the 
Poincaré-Andronov-Hopf bifurcation, this type of 

bifurcation connects the equilibriums to the periodic 
oscillation at the well-determined bifurcation point. From 
where, the study of the bifurcation of Hopf rests on the 
following assumptions [4,5]: 

(1) Suppose that the system of ordinary differential 
equations 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝛼𝛼) has a fixed point 𝑥𝑥 = 𝑥𝑥𝑠𝑠(𝛼𝛼); 

(2) The Jacobian matrix 𝐽𝐽𝑥𝑥(𝑥𝑥𝑠𝑠(𝛼𝛼),𝛼𝛼) =
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

(𝑥𝑥𝑠𝑠(𝛼𝛼),𝛼𝛼) ;   𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁 has a pair of complex 

conjugate eigenvalues 𝜇𝜇(𝛼𝛼) ± 𝑖𝑖𝑖𝑖(𝛼𝛼), such as when; 
𝛼𝛼 = 𝛼𝛼𝑐𝑐 , 𝜇𝜇(𝛼𝛼𝑐𝑐) = 0,𝛽𝛽(𝛼𝛼𝑐𝑐) = 𝜔𝜔0 > 0 such that 𝛼𝛼𝑐𝑐 is the 
critical value of α  and the other eigenvalues (𝑛𝑛 − 2) 
have negative real parts;  

(3) The derivative of  𝜕𝜕𝜕𝜕(𝛼𝛼)
𝜕𝜕𝜕𝜕

≠ 0 when 𝛼𝛼 = 𝛼𝛼𝑐𝑐; 

(4) The function 𝑓𝑓 is analytical in x  and α  in the 
neighborhood of (𝑥𝑥,𝛼𝛼) = (𝑥𝑥𝑠𝑠,𝛼𝛼𝑐𝑐). 

If hypothesis (2) holds, then hypothesis (3) implies that the 
linear stability of the fixed point 𝑥𝑥𝑠𝑠(𝛼𝛼) will be lost when 𝛼𝛼 
crosses to 𝛼𝛼𝑐𝑐. That, allows to describe the model of system 
by bifurcation of Hopf by the equation of Stuart – Landau, 
given by: 

𝑧̇𝑧 = (𝛼𝛼 + 𝑗𝑗𝜔𝜔0)𝑧𝑧 + 𝐿𝐿𝐿𝐿|𝑧𝑧|2,𝜔𝜔0 ≠ 0, L ≠ 0. (24) 
Hence 𝑧𝑧 is the instantaneous complex amplitude and 𝐿𝐿 is the 
first exponent of the Lyapunov function, if 𝐿𝐿 ≻ 0, the 
bifurcation is subcritical and the unstable cycle and the stable 
focus exist for 𝛼𝛼 ≺ 0 and only one unstable focus exists for 
𝛼𝛼 ≻ 0 and if 𝐿𝐿 ≺ 0, the bifurcation is supercritical and the 
cycle exists and is stable for 𝛼𝛼 ≻ 0 and the focus is stable for 
𝛼𝛼 ≺ 0 and unstable for 𝛼𝛼 ≻ 0. 

To study this equation (24), the variable 𝑧𝑧 is written in 
form 𝑧𝑧 = 𝑟𝑟𝑒𝑒𝑗𝑗𝑗𝑗, where the normal form is written in the polar 
coordinate system (𝑟𝑟, 𝜃𝜃) and after the calculations we get:  

�𝑟̇𝑟 = 𝛼𝛼𝛼𝛼 + 𝐿𝐿𝑟𝑟3
𝜃̇𝜃 = 𝜔𝜔0 (25) 

where 𝑟𝑟 = |𝑧𝑧| and 𝜃𝜃 = arg(𝑧𝑧). 

Hence, the Hopf bifurcation is the combination of a fork 
bifurcation 𝑟̇𝑟 and a rotation 𝜃̇𝜃 at constant angular speed, from 
the equation of stationary amplitudes, i.e. 𝛼𝛼𝛼𝛼 + 𝐿𝐿𝑟𝑟3 = 0, we 
get values of d amplitude for equilibrium 𝑟𝑟𝑓𝑓 = 0 and for the 
limit cycle 𝑟𝑟𝑐𝑐2 = −𝛼𝛼/𝐿𝐿. Therefore, the limit cycle exists if 
𝛼𝛼/𝐿𝐿 < 0 and the quantity 𝑤𝑤0  gives its period 𝑇𝑇 = 2𝜋𝜋/𝜔𝜔0. 
The eigenvalues result from setting up the determinant 𝐷𝐷 
equal to zero, at the equilibriums points determined by:  

𝐷𝐷 = det[𝐽𝐽(𝑡𝑡) − 𝜆𝜆𝜆𝜆] = (𝛼𝛼 + 3𝐿𝐿𝑟𝑟2 − 𝜆𝜆𝑖𝑖)𝑟𝑟𝑖𝑖 = 0. (26) 

Therefore, the eigenvalues are obtained as follows: 

�
𝜆𝜆𝑓𝑓 = 𝛼𝛼
𝜆𝜆𝑐𝑐 = −2𝛼𝛼 

(27) 

The numerical results of the developed model show that as 
the rotational speed increases, the bearing-rotor system 
undergoes a variety of nonlinear phenomena and complex 
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dynamic behaviors, including periodic, quasi-periodic and 
multi-periodic motions. One of the main causes of unstable 
rotor movement is the effect of the non-linear force of the oil 
film. The study of their characteristic is therefore a 
prerequisite for improving the dynamic stability of the 
system. The obtained results are a useful reference source for 
the design and control of such a bearing-rotor system of the 
examined gas turbine.  

The application of Hopf's bifurcation theory to the 
MS5002B turbine bearing-rotor system is based on the study 
of dynamic behavior given in the equation system of Eq. 
(17), this formulation having the proper form 𝑥̄𝑥 ′ = 𝑓𝑓(𝑥̄𝑥,𝜔𝜔) 
for the application of Hopf's bifurcation theory. Also, a 
stationary equilibrium position 𝑥̄𝑥𝑠𝑠 is determined for the 
rotational speed 𝑤𝑤, which is considered the control 
parameter 𝛼𝛼, when all other system parameters are assumed 
to be set. So according to Hopf's bifurcation theory, if the 
parameter 𝑤𝑤 becomes greater than a critical value 𝑤𝑤𝑐𝑐, 
implying that there is a stationary point 𝑥̄𝑥𝑠𝑠 will lose its linear 
stability. 

To perform this Hopf bifurcation analysis, firstly, the 
function 𝑓𝑓  of the system of Eq. (17) is used with a Taylor 
series around the equilibrium point 𝑥̄𝑥𝑠𝑠, as follows: 

( , ) ( , ) ( , )( )s s s
ff x f x x x x
x

ω ω ω∂
= + −

∂
 

      
2

2
2

1 ( , )( )
!2 s s

f x x x
x

ω∂
+ −

∂
3

3
3

1 ( , )( ) ....
!3 s s

f x x x
x

ω∂
+ − +

∂
 

(28) 

Hence the term 𝑓𝑓(𝑥̄𝑥𝑠𝑠,𝜔𝜔) = 0 is used to determine the 
equilibrium point, the term 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥̄𝑥
(𝑥̄𝑥𝑠𝑠,𝜔𝜔) used to determine 

dynamic performance through eigenvalue analysis, the terms 
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥̄𝑥2

(𝑥̄𝑥𝑠𝑠 ,𝜔𝜔) and 𝜕𝜕
3𝑓𝑓

𝜕𝜕𝑥̄𝑥3
(𝑥̄𝑥𝑠𝑠,𝜔𝜔) are used to determine the stability

of periodic solutions. 
In this sense, the nonlinear dynamic behavior of the 

MS5002B gas turbine bearing-rotor system at high pressure 
is decided using this proposed analytical model, to obtain the 
nonlinear dynamic response of displacement and speed of 
rotations of the studied turbine bearing-rotor system, with 
calculations and numerical integrations using the bifurcation 
diagram, phase portrait, Poincaré map and frequency 
spectrum. This transforms the resolution of the nonlinear 
problem into that of a succession of a linear system, which is 
highlighted in the following section of results of 
investigations and application. 

4. Investigations and analysis of the obtained results

In this section, we present the investigations and analysis of 
the obtained results to highlight the experimental application 
of bifurcation studies to the examined MS5002B gas turbine. 
First, we model the turbine bearing-rotor system parameters 
and initialize them to characterize the nonlinear dynamics of 
this system. We model the operating zones in periodic and 
quasi-periodic regimes to mitigate instability effects. Then, 
we present the  different  dynamic  behaviors  of the  turbine 

Figure 5. Position of the vibration sensor. 

bearing-rotor system using bifurcation diagram formalisms, 
phase portrait, Poincaré map, and frequency spectrum. We 
present the most meaningful results to show the solution of 
bifurcation problems adapted for the examined gas turbine 
MS5002B. 

For this work, we use data acquisition equipment of 
Bently Nevada BN3500 type. It consists of a vibration sensor 
at bearing No. 1, a magnetic sensor (Magnetic Speed Pickup) 
to measure the speed of rotation, and a thermocouple sensor 
to measure the temperature variation of the oil film in bearing 
No. 1. The positions of various sensors are shown in Figures 
5 and 6. 

4.1. Parameters’ modeling of the examined bearing-rotor 
system 

In this section of work, the modeling parameters of the 
examined MS5002B turbine bearing-rotor system are 
determined, to characterize the nonlinear dynamics of this 
system using three bifurcation analysis techniques using 
frequency spectra, the phase portraits and the Poincaré maps. 
These three bifurcation diagrams are chosen to study the 
nonlinear dynamic behaviors of the studied turbine bearing-
rotor system, with is a system representation made from the 
various input/output turbine operating data MS5002B. 
However, the choice of variables describing the behavior of 
the bearing-rotor system and the phenomena of instability of 
this system are considered, as a function of their vibratory 
influence on this rotating machine. Hence, series of turbine 
operating data corresponding to the different rotational speed 
variations of the bearing-rotor system is used to analyze the 
different behaviors affecting the turbine operating areas. 
Where, 400 cycles of turbine bearing-rotor response data are 
used, with 139 first cycles of transient bearing-rotor response 
excluded to eliminate turbine starting impacts and 261 cycles 
of bearing-rotor response for rpm permanent are exploited, 
to reproduce the vibratory behaviors of the turbine, making 
it possible to determine the optimal speed with the purpose 
to operate the turbine in the established stable zone. For this, 
the initial values adopted for the gas turbine bearing-rotor 
system model MS5002B are given by Table 4, with a 
numerical integration step equal to 𝜋𝜋/36. 

In this section, we present the investigations and analysis 
of the obtained results to highlight the experimental 
application of bifurcation studies to the MS5002B gas 
turbine. First, we model the turbine bearing-rotor system 
parameters and initialize them to characterize the nonlinear 
dynamics of this system. We model the operating zones in 
periodic  and  quasi-periodic  regimes  to  reduce  instability 
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Figure 6.A: Position of the magnetic pickup (Magnetic speed pickup); (b) Position of the thermocouple sensor. 

Table 4. Parameters of the studied turbine bearing-rotor 
system. 
Parameters Values Units
Concentrated mass of left-hand bearings 
N°1 𝑚𝑚1 

Concentrated mass of the compressor 𝑚𝑚2 

Concentrated mass of right-hand bearings 
N°2 𝑚𝑚3 

Concentrated mass of turbine 𝑚𝑚4 

50 

6480 

50 

200 

[kg] 

Rotor stiffness 𝑘𝑘 8×106 [N/m] 
Rotor damping 𝑐𝑐 500 [N.s/m] 

Ray 𝑅𝑅 
Length 𝐿𝐿 
Radial clearance of the bearing 𝐶𝐶𝑏𝑏 

101.89 
122.27 
0.2 

[mm] 

Rotor eccentricity 𝑟𝑟 0.06 [mm] 
Dynamic viscosity 𝜇𝜇 0.03 [Pa.s] 

effects. Then, we present the different dynamic behaviors of 
the turbine bearing-rotor system using three bifurcation 
analysis techniques: frequency spectra, phase portraits, and 
Poincaré maps. We base the system representation on various 
input/output turbine operating data from the MS5002B. 

The choice of variables to describe the behavior of the 
bearing-rotor system and the instability phenomena is made 

considering their vibratory influence on the rotating 
machine. We employ a series of turbine operating data 
corresponding to variations in the rotational speed of the 
bearing-rotor system to analyze the different behaviors 
affecting the turbine within its operational zones. 
Specifically, we use 400 cycles of turbine bearing-rotor 
response data. The first 139 cycles of transient bearing-rotor 
response are excluded to eliminate the impacts of turbine 
starting, leaving us with 261 cycles of bearing-rotor response 
for maintaining a constant RPM. This data enables us to 
replicate the vibratory behaviors of the turbine and determine 
the optimal speed for operating the turbine within the 
established stable zone. 

The initial values adopted for the gas turbine bearing-
rotor system model MS5002B are outlined in Table 4, with a 
numerical integration step equal to 𝜋𝜋/36, are given by: 

{ }0 01 02 016

5 4 5 -3 -5 4 -5 5

-5 -5 5 8 5 5 5 5

,  , ,

10 ,10 ,10 ,25.7 10 ,10 , 35.8 10 , 0 ,36.4 10 ,
10 ,8 10 ,10 ,47 10 ,10 ,52 10 ,10 , 32.14 10

ix x x x
− − − − −

− − − − − −

= =

 × − × × 
 

× × × − ×  



 

Practically, the bifurcation diagram is a graphical representation 
where the x-axis signifies the bifurcation parameter undergoing 
alteration (in our case, the angular velocity ω), and the y-axis 
depicts the observed system behavior. 
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Figure 7: Bifurcation diagram of the compressor center. 

Figure 8. Bifurcation diagram of the turbine center. 

Different types of behavior, such as stable points, periodic 
orbits, and chaotic behavior, will later be presented in this 
section through distinctive patterns or structures in the 
diagram. 

The variations in the different bifurcation diagrams, 
presented in Figures 7 and 8 are plotted as a function of the 
angular speed of rotation of the turbine rotor. These diagrams 
reveal the areas of instability linked to various turbine 
operating speed models. 

4.2. Dynamic behavior of the examined turbine bearing-
rotor system 

To investigate the dynamic behaviors of the bearing-rotor 
system within various ranges of angular speed variations, a 
data acquisition system has been established on the 
examined turbine. This system comprises different sensors 
strategically positioned on the bearing-rotor system to 
observe the movements of the system as it operates during 
turbine operation. 

However, Figure 9 shows the periodic motion of the 
turbine center at 𝜔𝜔 = 98 rad/s with double period time 2𝑇𝑇0, 
waveform in the horizontal direction of 𝑥𝑥4, as shown in 
Figure 9(a), for this periodic motion. Hence, in the frequency 
spectrum of Figure 9(b), there are two discrete frequency 

components corresponding to the rotational speed 1
2
𝑓𝑓𝑟𝑟 and 𝑓𝑓𝑟𝑟 

is a limited circle in the phase portrait of Figure 9(c), where 
the trajectory of center of the turbine is regular given by the 
two discrete points in the Poincaré map of Figure 9(d), which 
implies that this movement is stable with double period 𝑇𝑇 =
2 × 𝑇𝑇0 = 4𝜋𝜋. 

With the increase of the turbine angular speed in the 
interval 98 < 𝜔𝜔 < 200 rad/s, there is an appearance of the 
quasi-periodic motion in the center of the turbine and in the 
center of the rotor in bearing N°2 as shown in Figure 10 at 
the angular speed of 𝜔𝜔 = 110 rad/s. Hence, Figure 10 shows 
the quasi-periodic motion of the center of the time waveform 
turbine in the direction 𝑥𝑥4 as shown in Figure 10(a) at the 
critical speed 𝜔𝜔 = 110 rad/s, there are two components 
discrete frequencies with vibration amplitudes in the order of 
0.33 and 0.39 as shown in Figure 10(b), corresponding to the 
speed of rotation 𝑓𝑓𝑟𝑟 and 9

4
× 𝑓𝑓𝑟𝑟, with a risk of increased 

amplitude of turbine rotor vibrations. As well as several 
vibration modes can appear during turbine operation because 
the trajectories are very disordered in the limit circles in the 
phase portrait of Figure 10(c). Moreover, the projections of 
the Poincaré section of Figure 10(d) are of the closed curve 
type, indicating the quasi-periodic nature of the movement 
of the turbine bearing-rotor system, which can be interpreted 
by the strong presence of the force effects of the non-linear 
oil film. 

And when the turbine angular speed varied in the interval 
200 ≤ 𝜔𝜔 ≤ 555 rad/s, the dynamic motion of bearing-rotor 
system changes from a quasi-periodic motion to a periodic 
motion. In this range of rotation, the results obtained from 
periodic movement from turbine center at 𝜔𝜔 = 300 rad/s 
with 𝑁𝑁𝑇𝑇0 periods as given in Figure 11 of a time waveform 
𝑥𝑥4 shown in Figure 11(a), shows that there are two dynamics 
discrete frequency vibrators corresponding to the speed of 
rotation 4

9
× 𝑓𝑓𝑟𝑟 and 𝑓𝑓𝑟𝑟  with the frequencies 0.27 and 0.06 is

a negligible dynamic with a frequency on the order of 0.01, 
as shown in Figure 11(b). This causes the existence of a 
limited circle in the phase portrait presented in Figure 11(c), 
where the trajectory is regular, with the presence 𝑁𝑁 of 
discrete points in the Poincaré maps of Figure 11(d), which 
proves that the movement is periodic with a period of 𝑇𝑇 =
𝑁𝑁 × 𝑇𝑇0 = 𝑁𝑁 × 2𝜋𝜋. 

To recognize the dynamic behavior of compressor center 
over an interval of angular speed 1 ≤ 𝜔𝜔 ≤ 555 rad/s, Figure 
12 shows the evolution of their periodic motion at 𝜔𝜔 =
10 rad/s with four periods 4𝑇𝑇0, where Figure 12(a) shows the 
waveform temporal movement of 𝑥𝑥2, Figure 12(b) shows the 
variation in frequency spectrum of this movement, Figure 
12(c) shows the phase portrait of 𝑦𝑦2 as function of 𝑥𝑥2 and 
Figure 12(d) shows their projections according to the 
Poincaré map. However, a bifurcation diagram was obtained 
on the interval 1 ≤ 𝜔𝜔 ≤ 22 rad/s, where the movement is 
periodic for four periods 𝑇𝑇 = 4 × 𝑇𝑇0 = 8𝜋𝜋, in the case of 
𝜔𝜔 = 10 rad/s a limit cycle appears as the critical value of 
stability, in the phase portrait with trajectory regular and four 
discrete points in the Poincaré map, for these turbine rotor 
rotation amplitude values. 
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Figure 9. Periodic motion of the turbine center at 𝑤𝑤 = 98 rad/s with double period 2𝑇𝑇0, (a) Time waveform of 𝑥𝑥4, (b) Frequency spectrum of 
motion of 𝑥𝑥4, (c) Phase portrait of 𝑦𝑦4 as function 𝑥𝑥4, and (d) Poincaré map of 𝑦𝑦4 as a function 𝑥𝑥4. 

Figure 10. Quasi-periodic movement of turbine center at 𝑤𝑤 = 110 rad/s, (a) Time waveform of 𝑥𝑥4, (b) Frequency spectrum of motion of 𝑥𝑥4, 
(c) Phase portrait of 𝑦𝑦4 as function 𝑥𝑥4, and (d) Poincaré map of 𝑦𝑦4 as a function 𝑥𝑥4. 
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Figure 11. Periodic movement of turbine center at 𝑤𝑤 = 300 rad/s with 𝑁𝑁𝑇𝑇0 periods, (a) Time waveform of 𝑥𝑥4, (b) Frequency spectrum of 
motion of 𝑥𝑥4, (c) Phase portrait of 𝑦𝑦4 as function 𝑥𝑥4, and (d) Poincaré map of 𝑦𝑦4 as a function 𝑥𝑥4. 

Figure 12. Periodic movement of compressor center at 𝑤𝑤 = 10 rad/s with four periods 4𝑇𝑇0, (a) Time waveform of 𝑥𝑥2, (b) Frequency 
spectrum of motion of 𝑥𝑥2, (c) Phase portrait of 𝑦𝑦2 as function 𝑥𝑥2, and (d) Poincaré map of 𝑦𝑦2 as a function 𝑥𝑥2. 



Y. Mahroug et al./ Scientia Iranica (2025) 32(6): 6990 13 

Figure 13. Quasi-periodic movement of compressor center at 𝑤𝑤 = 110 rad/s, (a) Time waveform of 𝑥𝑥2, (b) Frequency spectrum of motion of 
𝑥𝑥2, (c) Phase portrait of 𝑦𝑦2 as function 𝑥𝑥2, and (d) Poincaré map of 𝑦𝑦2 as a function 𝑥𝑥2. 

The results obtained in Figure 13 show the quasi-periodic 
movement of the compressor center at the critical speed 𝜔𝜔 =
110 rad/s with temporal integration of this quasi-periodic 
movement and which indicates the presence of partial 
contacts with the turbine rotor due to the effects of unbalance 
and the force effects of the oil film. This implies the rapid 
increase in the amplitudes of vibrations, as shown in Figure 
13(b) of the time-wave motion frequency spectrum of 𝑥𝑥2 as 
given in Figure 13(a), which can reach up to the amplitude 
of 3.4. Hence, the phase portrait trajectories of 𝑦𝑦2 as a 
function of 𝑥𝑥2 given in Figure 13(c) are disordered with 
projections on the map of the Poincaré section of Figure 
13(d) of closed curve type. These results appear to be an 
advance for practical measurements of these type of gas 
turbine vibration modes. 

For speed variations in 200 ≤ 𝜔𝜔 ≤ 555 rad/s, the 
periodic motion from compressor center at 𝜔𝜔 = 300 with N 
periods 𝑁𝑁𝑇𝑇0 is shown in Figure 14, with the data time wave 
motion 𝑥𝑥2 given in Figure 14(a) and the frequency spectrum 
of this movement given in Figure 14(b), after this speed the 
movement of the rotor is no longer quasi-periodic and passes 
to a periodic movement. In addition, this return to this 

periodic regime is established by determining a stable limit 
cycle at the value of this critical speed, what is shown on the 
phase portrait of 𝑦𝑦2 as a function of 𝑥𝑥2 given in Figure 14(c) 
and projected on their Poincaré map in the Figure 14(d). 

The actual operating data of the examined gas turbine 
MS5002B in this work is designed to measure the dynamic 
characteristics of the bearing-rotor system under a series of 
conditions, such as a full set of different operating processes. 
Hence, the numerical results of the modeling made are 
validated by the experimental data, to monitor the dynamic 
behavior of the bearing-rotor system. Figure 15 shows the 
variation of movement of the center of the rotor in the 
bearings N°  1 in parallel with the variation of the angular 
speed of the rotor HP and the temperature of the film of oil, 
these variations break down into two phases, phase of 
starting and maximum operating phase. Where, the 
vibrations evolve according to the angular velocity and the 
temperature of the oil film. Knowing that, the variation of the 
film temperature greatly affects the viscosity of the oil and 
on the other hand the strength of the oil film is highly 
dependent on the viscosity of the oil such as a decrease in 
pressure or an increase oil film temperature causes a decrease 
in oil film viscosity and strength. 
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Figure 14. Periodic movement of compressor center at 𝑤𝑤 = 300 rad/s with  𝑁𝑁𝑇𝑇0 periods, (a) Time waveform of 𝑥𝑥2, (b) Frequency spectrum 
of motion of 𝑥𝑥2, (c) Phase portrait of 𝑦𝑦2 as function  𝑥𝑥2, and (d) Poincaré map of 𝑦𝑦2 as of function 𝑥𝑥2. 

Figure 15. Dynamic behavior of the bearing-rotor system in bearing N°1 (a) rotor speed HP, (b) movement of the center of the rotor, (c) 
temperature of the oil film. 



Y. Mahroug et al./ Scientia Iranica (2025) 32(6): 6990 15 

Also, it is clear that when the angular velocity is low such 
as ω ≤55 rad/s and t ≤70 s, only low amplitude synchronous 
vibrations appear. This synchronous movement is caused by 
the inertial force of the unbalance of the HP rotor. When the 
angular velocity increases further so that 55 rad/s < ω < 210 
rad/s and 70 s < t < 695 s, an oil whirl appears, which results 
in an increase in amplitude of vibrations and a decrease in 
the temperature of the oil film in 55 rad/s <ω ≤57 rad/s and 
77 s < t ≤97 s following a decrease in the amplitude of 
vibrations and increase in the temperature of the oil film in 
57 rad/s <ω <210 rad/s and 97 s < t <695 s. So, in this range 
of 55 rad/s <ω <210 rad/s the system will vibrate strongly 
and become unstable, oil swirl usually occurs when there is 
a change in oil properties such as temperature and oil 
viscosity. It is a mechanism for converting rotational energy 
into vibrational energy through the force of the oil film. 

As the angular velocity increases so that 210 rad/s ≤ ω ≤ 
555 rad/s and 695 s ≤ t ≤ 2445 s i.e., until the maximum 
operating phase, the vortex of oil disappears. At this range, 
the quenching phenomenon occurs because the increasing 
synchronous vibrations suppress the oil swirl, and the system 
becomes more stable. As well as the vibration amplitude 
caused by oil swirl is greater than that of synchronous 
vibration. So, based on the obtained experimental results 
through this study, we can conclude that there is an 
agreement between the experimental results and the 
numerical results of the developed model with a relative 
deviation of ≈ 1%. 

5. Conclusion

This research has emphasized the experimental exploration 
of vibration bifurcation diagrams for the MS5002B turbine 
bearing-rotor system. The study has introduced reliable 
models characterizing the vibration bifurcation behaviors 
affecting the examined turbine, thereby shedding light on the 
areas of stable operation. The investigation considered 
undesirable effects contributing to the instability of the 
bearing-rotor system, such as imbalance, non-linear film 
forces, rotor contacts, rotor misalignment, and other sources 
of vibration. 

Within this context, the study applied bifurcation 
diagram analysis to understand vibratory phenomena and 
monitor the operational state of the MS5002B. This involved 
an examination of the nonlinear dynamics exhibited by the 
bearing-rotor system. Concepts related to bifurcation theory, 
including phase portraits, various Poincaré maps, and 
frequency spectra, were employed to gain better insights into 
the destabilizing effects impacting the examined turbine. 
This allowed the utilization of digital advancements to 
effectively employ advanced tools for analyzing complex 
instability phenomena and ensuring the stable and safe 
operation of the turbine. 

The results obtained from various tests on the bearing-
rotor system of the MS5002B turbine demonstrated the 
robustness of the bifurcation models developed for variable 
turbine speeds. Furthermore, this work underscored the 
potential and performance of bifurcation tracking algorithms 

in the analysis of complex dynamic behaviors in gas 
turbines. These algorithms have proven effective in detecting 
harmonic resonances in the spectra of vibratory frequencies, 
serving as a valuable tool for developing systems that 
support the monitoring and diagnosis of gas turbines. This, 
in turn, ensures equipment sustainability by averting 
unexpected failures. The use of vibration analysis in 
conjunction with bifurcation indicators aids in the detection 
of limit points with periodic, quasi-periodic, or multi-
periodic solutions, making it possible to identify vibration 
faults and track their changes over time, thus preventing the 
degradation of the studied turbine. 

Nomenclature 
𝑄𝑄1 Rotor center in bearing N° 1 
𝑄𝑄2 Compressor center 
𝑄𝑄3 Rotor center in bearing N° 2 
𝑄𝑄4 Turbine center 
𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3 Shaft stiffness matrix of the rotor 
𝑅𝑅 Radius of bearing 
𝐿𝐿 Length of bearing 
𝑧𝑧 Dimensionless axial displacement 
𝑝𝑝 Dimensionless pressure of the oil film 
𝐶𝐶𝑏𝑏 Radial clearance of the bearing  

𝑥𝑥 and 𝑦𝑦 dimensionless horizontal and 
vertical displacements  

ℎ Dimensionless thickness of the oil film 
𝑒𝑒 Relative eccentricity of rotor 
𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 Horizontal and vertical displacements 
𝜏𝜏 Dimensionless time 
𝑓𝑓𝑟𝑟   Rotational frequency 
𝜎𝜎 Sommerfeld number 
𝜇𝜇 Dynamic viscosity 
𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 Dimensionless nonlinear forces of the oil 

film 
𝑔𝑔 Acceleration of gravity 
𝑤𝑤 Angular velocity of the rotor 
𝐹𝐹𝑋𝑋1, 𝐹𝐹𝑌𝑌1, 𝐹𝐹𝑋𝑋3 
and 𝐹𝐹𝑌𝑌3 

Components of the nonlinear forces of the 
oil film 

𝑟𝑟 Eccentricity of the rotor 
𝑐𝑐 Damping of the system 
𝑋𝑋𝑖𝑖, 𝑌𝑌𝑖𝑖 Horizontal and vertical displacements 
𝑚𝑚1 Concentrated masses of the of bearing N°1 
𝑚𝑚3 Concentrated masses of the of bearing N°2 
𝑚𝑚2 Concentrated masses of the compressor 
𝑚𝑚4 Concentrated masses of the turbine 
𝑥̄𝑥𝑠𝑠 Equilibrium points 
𝐽𝐽 Jacobian matrix 
𝜆𝜆𝑖𝑖 Eigenvalues  
𝐼𝐼 Identity matrix  
𝑓𝑓 Nonlinear function 
𝛼𝛼 Control parameter vector 
𝛼𝛼𝑐𝑐 Critical bifurcation value 
𝐷𝐷 Determinant 
𝑤𝑤𝑐𝑐  Critical value of rotation  
𝜇𝜇 Dynamic viscosity 
𝑟𝑟 Rotor eccentricity 
𝑐𝑐 Rotor damping 
𝑘𝑘 Rotor stiffness 
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