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Abstract:

This paper presents the nonlinear thermodynamic results of functionally graded plates
lying on Winkler/Pasternak and Kerr foundation through an analytical formulation. The field
displacement is defined by only four unknowns, including an indeterminate integral and a
new shape function representing the transverse shear stresses. Material properties of the FG
plates are temperature-dependent and graded according to a simple power-law distribution.
Also, the thermodynamic equations of motion are deduced based on Hamilton’s principle.
The exactitude of the present theory results is verified with those obtained by various
researchers. The effects of temperature-dependence material properties, power-law index,
nonlinear temperature rising, elastic foundation parameters, aspect, and slenderness ratio are
discussed. The results show that the increase in elastic foundation parameters would enhance
the thermodynamic response of the FG plates. Nevertheless, the degree of improvement
would be related to the nonlinear temperature change. Moreover, the plate’s configuration
effect is more significant when the nonlinear temperature difference is high.

Keywords: Nonlinear thermodynamic, FG plates, Winkler/Pasternak/Kerr foundation,

Temperature-dependence material.
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1. Introduction

The continuous evolution of thermomechanical properties between the lower and
upper surfaces of functionally graded structures makes them widely used in diverse areas such
as aerospace, nuclear reactors, power sources, biomechanical, optical, civil, automotive,
electronic, chemical, and mechanical engineering [1].

The material features gradually differ along with one or various dimensions of the
structure to achieve intended functionalities. Researchers developed FG materials to resist
ultra-high temperatures. The FG structures have been tested under high-temperature gradients
across the cross-sectional thickness, Thai et al. [2]. This type of material is prepared by
mixing two different constituents, such as ceramic and metal. This advanced manufacturing
process aims at developing ideal heat-resistant materials. In this way, thermal resistance is
provided by a heat-resistant ceramic on one side. At the same time, crack resistance is offered
by metal with high thermal conductivity and high hardness. Thanks to these simultaneous
functions, the use of (FGMSs) has been fostered in thermal protection systems for melting
reactors and heat exchanger pipes [3-9].

After their innovation in the late 90s, researchers carried out various investigations to
assess the thermomechanical and dynamic behaviors of FGMs plates using different analytical
methods [10-14]. Thai et al. [2] confirmed that the FSDT is also accurate in investigating the
free vibration analysis of FGM plates composed of functionally graded face sheets and an
isotropic homogeneous core with variable thickness. Ye et al. [15] recently analyzed the free
vibration behavior of FG sandwich plates using new higher-order refined models.

As stated previously, to withstand the high temperatures, FGM structures made up of
ceramic/metallic components are generally of interest. Shariyat [16] introduced a generalized
global-local theory to investigate the vibration behavior of FG sandwich plates exposed to
thermo-mechanical loads. Malekzadeh and Monajjemzadeh [17] investigated the thermal
dynamic response of FG plates resting on elastic foundation and subjected to a moving load
based on the first-order shear deformation theory, including the initial thermal stresses’
effects. Two dimensions’ free vibration responses of temperature-dependent FG plates have
been analyzed by Attia et al. [18] using four-variable higher-order shear deformation theory.
Parida and Mohanty [6] employed higher-order shear deformation theory (HSDT) to consider
the free vibration response of rotating functionally graded plates subjected to the nonlinear
temperature. Zaoui et al. [19] studied the free vibration of FG temperature-dependent
properties plates using an improved exponential-trigonometric two-dimensional higher shear

deformation theory. Furthermore, Arshid et al. [20] analyzed the thermomechanical buckling
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and vibrational behavior of a sandwich-curved microbeam resting on the visco-Pasternak
foundation. Navier's solution method is used to solve the differential equations system
analytically. Based on the findings, such intelligent structures can be used to design and
manufacture various equipment, making high stiffness-to-weight ratios more accessible. Li et
al. [21] investigated the nonlinear vibration behavior of FG sandwich beams. In thermal
environments, the beams have been modeled with an auxetic porous copper core. Singha et al.
[22] analyzed the vibration analysis of a rotating pre-twisted graphene-reinforced composite
(GRC) cylindrical shell. The temperature-dependent material properties of the FG-GRC have
been predicted by employing the continued Halpin-Tsai model. Abouelregal et al. [23]
analyzed the vibrational behavior of rotating isotropic nanobeams using the nonlocal theory of
elasticity. This study aims to contribute to understanding the dynamics of rotating nanobeams
subject to varying heat sources. Also, the thermoelastic vibrations of nanobeams resting on a
Pasternak foundation and thermally loaded by ramp-type varying heat have been investigated
by Nasr et al. [24].

Nevertheless, limited research has been carried out to analyze the 3D thermodynamic
behavior of FG structures or those lying on Winkler, Pasternak, and Kerr foundation [25-27].
Malekzadeh et al. [25] investigated the three-dimensional thermal dynamic response of thick
FG annular plates in a thermal environment. The differential quadrature method (DQM) has
been used to drive the 3D thermoelastic equilibrium equations. Tu et al. [27] have considered
the heat conduction and temperature-dependent material properties to analyze functionally
graded plates' 3D free vibration behavior in thermal environments using an eight-unknown
higher-order shear deformation theory. On the one hand, Parida and Mohanty [6] and Zaoui et
al. [28] are the only researchers investigating the nonlinear thermal vibration behavior of FG
plates based on a displacement field containing four variables (2D shear deformation theory).
On the other hand, the main advantage of our study is to use a displacement field containing
the same number of unknowns (four variables) with 3D theory. Additionally, this model
simplifies the problem and considers the effect of transverse stretching, which is not
considered in the case of 2D- shear deformation theories.

According to this literature, in all the previously mentioned research, the thermal
conductivity has always been considered independent of temperature, affecting the obtained
results when the temperature difference is at high levels. Therefore, this work deals with
proposing a new 3D modelling concept and investigating the nonlinear temperature field
effect on the free vibration behavior of FG plates resting on various elastic foundations. Even

more, the implications of temperature-dependent material properties, power-law property
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index, non-linear temperature rise, elastic foundation parameters, and aspect ratio and
slenderness ratio are reviewed.
2. FG plates

The considered plates of length (a), width (b), and thickness (h) lie on elastic
foundations (Winkler-Pasternak foundation and Kerr foundation). All the investigated plates
are exposed to the nonlinear temperature change, see Figure 1. Mechanical characteristics
vary progressively with thickness, from the lower metal surface to the upper ceramic surface.

Significantly, to more accurately describe the behavior of FG plates at elevated

temperatures, the material parameters need to be temperature-dependent P(z,T), including

Poisson’s ratio, Young’s modulus, the thermal expansion, and the thermal conductivity are
presented as [29-30]:
P(2,T)=[R.(T)=Ry(T) V. +P.(T) 1)
Pm(T) and P¢(T) denote the effective temperature-dependent properties of the metal and
ceramic, respectively.
V. denotes the ceramic fraction and it is given conforming to the power law:

k
v :G+§j (2a)
In which k is the volume fraction exponent.

Touloukian [31] suggests the material properties as follows:
P(T), =R(P.T ' +1+PT +RT*+RT?) (2b)

Where i= ¢, m. T is temperature in Kelvin, and P; (j =—1,1,0,1,2,3) are the temperature-
dependent factors, see Table 1, Mamen [30]. Also, the variation of the effective temperature-
dependent and independent material properties is illustrated in Figure 2.

Figures 2(a)-(c) show the evolution of temperature-dependent properties through the
FG square plate’s thickness. The temperature of the lower surface is constant (T, = 300K),
while the upper surface temperature is varied (T, =300 to 700K). It can find that the
temperature has an important influence on all material properties except Poisson’s coefficient.
Therefore, in this investigation, Poisson’s coefficient will be considered a constant

(independent of temperature) and equals 0.28.
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3. Nonlinear temperature distribution

Assume the FGM plates are exposed to nonlinear temperature rise (NLTR). The
temperature field distributes nonlinearly from the upper surface T. to the lower surface
Tm=300 K. In this case, the one-dimensional steady-state heat conduction along the thickness
is given as Salari et al. [32]:

d dT(z)
— I x(z,T =0 3
dz{K( ) dz } @)
Taking into account the continuous thermal conditions yields to:
J. (1T)dz
K\Z,
T(z2)=T,+AT 2 ——— . ; —gszﬁg (32)
dz
,h/zK(Z’T)

In which: AT =T, -T,
Eq. (3a) can be solved by using an approximation of polynomial series expansion [33-
35] and Mamen [30]:

T(2)=T, +(T, —Tm)g:ﬁ;, —gszsg (3b)
| (1 +Z](in+l)j
Di(z)= ._O(KmK_ch 2 inh+1 (i=03) e

Where r represents the item numbers in the series and is chosen equals to five to ensure the
computation is accurate.
4. Theory and governing equations
4.1 Kinematics and constitutive relations
The boundary conditions are the main limitation of the present model compared to
computational methods. In other words, the present model could be only used for simply-
supported plates. However, with a slight modification in solutions (functions in the double
Fourier series), the present model could effectively predict the behavior of clamped or
simply-clamped FG plates.
Based on 2D and 3D higher shear deformation theories, the fields of displacement are

described as follows:



164

165

166

167

168

169

170

171

172

173

174
175
176

177

178

179

180

181

ow, (x,y,t)
ox

ow, (x,y,t)

u(x,y,z,t)zuo(x,y,t)—z +K4 f(z)J.H(x,y,t)dx

v(x,y,2,t)=vy(x,y,t)-z +K2f(z)J.¢9(x,y,t)dy 4)

w(x,z,t)=wy(x,y,t)+ng(z)0(x,y,t)

The undetermined integral in Eq. (4) is simplified and declared as, Bouhadra [36]:

Ie(x, y.t) dx=A'M (52)
OX
Iﬁ(x, y,t) dy= BM (5b)
oy
Based on Egs. (5a-b), Eq. (4) takes the following form:
u(x,y,z,t)=ug(x,y,t)-z Mﬂ(l A'f(z)w
X
owg (x,y,t) 96(x,y,t)

Vzt)=vo(x,y,t) -z —~"Z L4k, B' f(z)——~ 6
v(xyz ) vo(xy ) z & +k, f(z) Py (6)
w(x,y,z,t)=wy(x,y,t)+ng(z)0(x,y.t)

Where ug, Vg, Wy and @ are unknown displacements of the mid-plane of the FGM plate.

Where the coefficients (k,k;) and (A',B')are defined as:

k, =—2%and A':—i2 (7a)
A

k, =—p?and B':—i2 (7b)
B

Note that A and gare defined in Eq. (31).
f(z) represents the shape function defining the distribution of transverse shear deformation, it

is written as follows, Mamen [30]:

27 .2 2 df (z)

f(z)=z| —-9z° |and g(z)=——"+ 8
2) 2(4 Zj g() 15 dz ®
n is a real number and is given as follows:

n=0 for 2D
| | ©
n=1 for Quasi-3D

The deformations associated with displacements in Eq. (6) are:
dug 0wy 00

=— 72— +k A f(z2)— 10a

X ox2 HaATT( )6x2 (10a)
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y E—z¥+k28'f(z)y (10b)
&,=9'(2)6 (10c)
Yxe =%[k1 A't'(2)+9(2)] (10d)
7= [ 1 (2)+0(2)] (109
y =%—2z82ﬂ+kf(z)A'az—9+%+k f(z)B'@ (10f)

AP oxay  t oxoy  ox  C X0y

Where ¢,,¢,and ¢, are the normal and the transverse strains, and y,,, 7,,, 7, are the transverse

shear strains.

Based on 3D displacement field expressed in Eq. (6), the linear constitutive relations

are given as:
ox| [Cy Cp C3 0 0 0 |éx
oy Co Cp Cp 0 0 0 |]¢y
oz| |Gz Cs Gz 0 0 0 |]g (11)
[Tl 0 0 0 C, 0 0 ||y
Txz 0 0 0 0 G 0|y
my| LO 0 0 0 0 Cellryy

The effective temperature-dependent elastic constants c;(z,T)depending on the normal strain
¢, are given as follows:

e Caseof 2D (&, =0), then C;; are:

E(z,T)
C11=Cp= 3
1—V(Z,T)
viz,T)E(z, T
612:# (12a)
1—V(Z,T)
E(z,T)

Cpp=Ccc =Cpp=——F"—
M o 14w (2, T)]
e Case of quasi-3D (&, #0),then C;; are:

E(z,T)[1-v(zT)]
[1-2v(2,T)|[1+v(2T)]
v(2,T)E(2.T)
Cip=C13=0C3= [1_2V(Z,T):|[1+V(Z'T):|

2[1+v(z,T)]

C11 =0 =C33=

(12b)

Cy4 =Cs5=Cep =
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4.2  Governing equations of motion

By employing the Hamilton principle in its analytical form, the three governing

equations are developed as follows, Esmaeilzadeh and Kadkhodayan [37]; Mamen [30]:

t

f&(U+Pf+V—K)dt=O

t

1

In which t; and t are the initial and end times, respectively.

The change of the total strain energy is represented as, Li et al. [38]:

000

dxdy

ouU =le 0;0g; AV
(14)
+h/2a b
oU = J. J. I (0x55x +0,08, + 0,08, +T,,07y, + 7,0, + Ty, 07y, )dz dxdy
~h/200
_N ddU, Mba 5W0 £k A Ms@ o0
o X2
+Nyag;,/° Mba %o, k, B |\/|Sa %
i o8u 25w
U = [[|+N,80+ N =2 —omp £
00 OXoy
2
o, Ty 0 Ly gy ©O0
oxoy ox Oxoy
ko B'Q, 207 153 90 4y a9 43 000
oy X

OX

(13)

(15)

(16)

Where N, M, S and Q are the force and moment components represented in the following

forms, Mamen [30]:

+h/2
(Ni,Mib,Mf)z J- (Lz, f(2))oidz,(i=xy,xy)
2
+h/2
N, = _[ o, dz
2
+h/2

(SXSZ’SVZ)_ I (sz,Tyz)g(Z)dz

—hy2

+h/2

(02125~ | () (21

—h/2

(17a)

(17b)

(17c¢)

(17d)
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Using Equations (10), (11) and (12b), N, M, S and Q can be represented, see Appendix
A (Eq.A.l).

The effective temperature-dependent stiffness elements are stated as follows:

A, By Dy Bi D Hj h/2 Cll(Z,T)
A, B, Dy By Dy Hyp= [[122°1(2),21().1(2) |{Cu(2T) a2 (18)
A66 BGG D66 BBSG Dg6 H (’556 2 CGG ( Z’T )

(A22' BZZ' D22' BZSZ' DZSZ' HZSZ):(AH' Bll’ Dll' B].Sl’ Dlsl’ Hlsl) (19&)
L 1

h/2 h/2
L= j Cy(zT){ z tg'(@)dz, {R%}= j Cy(2,T) [0'@] dzand(i=1,2;j=3) (19b)
R -h/2 f(Z) -h/2

h/2

Foa=Fa= [ C@T)[ @] dz and (i= 4 5) (19¢)
—h/2
h/2

X5, = XS = j Ci(2T)f(2)g(z)dz and (i= 4, 5) (19d)
-h/2

Ky=As= [ Ci(2T) @) dz and (i= 4, 5) (19)

—-h/2

The variation of the potential energy of foundations is given by:
ab
5P, = j j (f, + frerr ) SW, dxdly (20)
00

Where f. and fkerr are the densities of reaction forces for the Pasternak foundation and Keer
foundation model, respectively.
Importantly, the Pasternak foundation is a two-parameter elastic model and its distributed

reaction force is expressed as:

2 2
o'w, 0 WOJ (20a)

f, =K, W, —Kp[ PV + Y
In which K, and K, are the Winkler and the shear layer coefficients of the elastic foundation,
respectively.

More importantly, the Kerr model foundation is a three-parameter elastic model, and its

distributed reaction force is expressed as:

2 2
1:Kerr = KI Ku Wy — KS Ku o V!O + o V\zlo (ZOb)
K, +K, K, +K, )l ox oy

In which K is the shear layer parameter, K, is the upper elastic layer, and K| is the lower

elastic layer.
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The kinetic energy variation is represented as, Mamen [30]:
ab+h/2
oK = ” £(2)(Ug 8ty + Vo SV + Wiy SV ) dx dly dz
00-h/2

Iy (Ul By +Vp 8% +odVip ) — Iy Uy 2200 1 Mo s g 00V, O 5
OX OX
L1 [0 80V _ay 00V,
ox ox oy oy
ab . . . .
sK=[[|+3 kA, 220 4k A s, + kB, 297 1,829 s, dxdy
0% OX OX oy oy
3, [ a2 290 056 A 00 88\, AL a59+k25,%65w0
ox X ox oy oy oy oy
\2 06 856 200 050 o )
{(kA) — & (B ——}J (Vip06 + 05, ) + K650

The dot—superscript convention is used to denote the time derivative.
lo. 11,1,,91,3,,K,, 3, and K, are the independent—temperature mass inertias.

+h/2

[o.11,15,31,35.K;, 30, Ko | = I p(Z)[l,Z,ZZ, f(z),zf (2), fz(z),g(z),z(z)]dz

“hj2

The variation of work done by thermal loads is written in the following form:

ab 2 2 2
oV = IJLNTG 2Ny —— ow N;a—\;v]5wdxdy
00 a ay 6y

Where N;, Njand N are defined as follows:

+h/2

NJ :_J‘ Cu(2.T)a(zT)(T(2)-T,)dz

Ny :+]./2022(z,T)a(z,T)(T(z)—To)dz

Ny = Tclz (2T)a(z.T)(T(2)-T,)dz

—h/2
As C,, =C,,, we get Ny =NJ =N'

The variation of work done by thermal loads becomes as follows:

ab 2 2w 2
b\/:”{N [6W+a ] +ong OV j5wdxdy
5% ox* oy? Y oxoy

(21)

(21a)

(21b)

(22)

(23-a)

(23-h)

(23-¢)

(24)

where T(z) is the nonlinear field of temperature (see Egs. 3a-c), and the initial temperature Ty

= 300K.
10
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Substituting Egs. (16), (20), (21a) and (24) into Eq. (13), the equations of motion are
obtained in the following forms:

oN, ON,, O o6

Suy =+ Y =IOU’0—I1§°+J1K1A'& (25a)
oN, N i j

vy S0 Dy g Mo gy 29 (25b)
gy  OX oy oy

2na b 62Mb 82Mb 2 2 2 2
OW, : 0 NZIX +—+2 D (f, + frer )+ NT a—WZ"+M +NTg(0) %+g
OX oy oxoy OX ox: oy

o L -
—|2(a W 0 W°J+ Jz[klA'%+ kzs'ﬂjuoé
oy X oy

8X2 2 2 2
(25¢)
2\ S O*MS *M s Qs s oS8
50: —kA' oM, —k,B'—~ =N, +(kA+k,B")—= JrklA'E)QXZ +k,B' O L
ox? OXoy OX oy OX oy
o°w, o%w, o’0 %0 o°w, o°0
+NTg(0)| =2 +—2 |+ NTg(O) —+— [+2N,,"g(0) 0 |+ NTg(O)2 =
ox2 oy ox2 oy XY Xy
Sy kAP g Py klA‘a\IZO k,B’ AN (kA)28f+(sz')zae + 3,0 + Ky
OX oy OX oy? OX oy?
(25d)

Egs. (25a), (25b), (25c) and (25d) can be expressed in terms of ug, v, wgandé by using Eq.
(18) as follows:

o%u o°u o*w, o*w,
0 : AllaTzo+Aseay_zo+(A& Aee) 11 ox 30_(812+2866)8X—6;2
%0 o0 . 00 oW 00 (262)
+[ Bok,B '+ By (KA'+ sz3')]w +BkA— L= Ila—xo+\]1klA'&
0%V, 0%, o*w, o*w,
5 (A.L Ase)axay Azz Ase (3X2 _Bzz 6yg _(B 2866)8X 6y (26b)
039 o0 . 00 oW 00

+[Bf2klA'+B§6(k1A'+kZB')]8Xay Bk, B'ay LE=|OVO—|1E°+J11<ZB-_

11



o’u ou o, o, o'w,
Sw, :BllaT;’+(Blz+ZB%)8x—8;2+(Blz+2866)m+ Bzzﬁf+2(D12+2D66)8X2—8;2
o'w, o'W, 00 s s 0'0
_DZZ# D11 o 2 Dllk A'—- aX |:(D12+2D66)(k A+k B ):|8X—ay2
4 2 2 2 2
skB Ol (7290 w4k [a V‘2’°+8VZOJ—( KK, woj
. oy X2 oy’ o oy K, +K,
K K, ) o°w, o%w, o’w,  o%w, . 0’0 0’0
| ——u 2 +——0 |+NT 2+ +N'g(0)| —5+—
K +K, L ox2 oy ox ay o2 oy
2 2 . os 2 .. 2.
N[ 1o g (0) S < ity 1, | Lo s Ko |y [ 2V, OV
OXoy oxoy ox oy OX oy
- -
+J {kA'a 0 +k, g2Y gj +J,0
ox? oy?
270 (26c¢)
271
_ ,0°U, . , 21 0°U, o o os , A
50 ~Bik A ~[Bk,B'+BS (kA+k,B )}ax [ B kA+ B (A+k,B)] vy
A W Tl Lo Coon oW o LW,
~B3k,B' T2 v + DA +[ (D5, +2D3 ) ( A+ k,B )}axz—a;ﬁ D5,k,B W“O
4
2 (oA 29 (k,By 29 - | 2H3k ATk B+ (kA kB ) ge}—a o
ox* oy ox20y?
1 S 1 620 820
_[ZRklA—F55(kA) —2X Sk A A55J——[2Rk B'-F (k,B') —2X 3 k,B'— Ad@yz
2 2 2 2 2
L[ OV O ) (O Q) gy NTg(0) D0 O | g (o 29,00
ox2 ' oy? ox oy o oy ox oy
2 2 .o ..
2N, Tg(0) 22 |y on, g (0)F [ 22 | =, kA Do 5 To
éxay 8x8y OX oy
2
3, [l D g @) At 20 (108 20 |4 g+ K,
272 ox’ oy’ ox oy*
273 (26d)

274 4.3 Analytical solutions for FGM plate
275 We are interested here in finding exact solutions for the free vibration problem of
276 simply-supported FG plate. With the Navier solution technique, the change in displacement

277  can be calculated as follows:

o 0

278 Uy (X, Yit) =D Uy, cos(Ax)sin(By)e (27)

m=1 n=1

12
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289

290

2901

292

o0 00

(% y,t)=D"> v, sin(Ax)cos(By)e'™ (28)

m=1 n=1
(X ¥,1) =D Wy, sin(Ax)sin(By)e'™ (29)
m=1 n=1
(x,y,t) ZZ sin(Ax)sin(By)e'" (30)
m=1 n=1
with: 2=""and ﬁ:%[ (31)
a

In which (u,,,, Vi, Wy, » G ) @€ unknown parameters to be determined. The boundary

conditions are represented as:

v0=w0=0=@=Nx=M§=M’;=o at x=0, a
oy

(32)
00 b s
Up =W, = G—BX =N, =M/ =M /=0aty=0b
Substituting 27, 28, 29 and 30 into 26a, 26b, 26¢ and 26d, respectively, leads to:
[~AuA” = A8 =100, U + [ ~(As + Aig) A8 [V +| BuA® + (B, +2Bgg ) A% + L, 4 iy,
+[—k1A'J1/1a)n2 ~(BEk,B"+ Bl (K A+ k,B)) 257 ~ Bk, A2 + L/I]Gmn =0
(33a)

[_(Aiz + %G)Aﬁ]umn +[_Azzﬂ2 — A’ - IOa)nz:'an +|:|1a)n2ﬁ+ B, f° +(By, + ZBse)ﬂzﬂJWmn
+ kB3, 50, ~ Bk A+ By (A k,B')) A7 ~ B3k, B 7 + L3 |6, =0

(33b)
[ 10,72+ BuA® +(Byy + 2B ) AB° Upy + | 110,> B+ Bypf8° + (B, + 2Bgg) A2 B Vi,
0 (1o +15(47 + )~ 2(Dy, + 2D ) A28 ~ D8~ DA
' —KW—Kp(iz+ﬂ2)—(K}I<'+K}EUJ—(K}TS+KI2u](/12+,Bz)+ NT (4% + B2)~2N,,| (1) e
+:—a)n2(—J2(klA‘/12+sz',BZ)+JO)+DflklA'ﬂ,"'+(sz+2D§6)(klA‘+kZB‘)/12ﬁ2 " o
+D3K BB — L (47 + £2)+ NTg(0)(42 + 57) 2N, "9 (0)(45) "
(33c)
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293

294
295
296
297

298

299
300
301
302
303
304

305

306

307

308

309

310

311

[—klA'Jlla)nz ~(BEk,B'+ B (K A+ k,B")) A% Bk A'2* + LzJumn

k.83, 80,2 ~ (B kA + Bl (K A+ K,B')) fA% ~ Bk, B 5 + Lﬂ}vmn

+_+D§2sz',B4 (/12+ﬂ )+g( )N (/12+/3 )-2N,,"9(0)(48)
_—a)nz(Kz ((klA')2 A%+ 2)+ ) H151}“4 (k, ) H5.8°
~(2HEk A B Hi (kA KB ) 225

+(—F5‘°‘5(k1A')2 + 2k A'R— 2k A' XS, — Ags),iz

o2 (—32 (kA'2% +k,B' B2 )+ Jo)+ Dik,A'2* +(Df, +2Dg ) (K A+ k,B') 1257

mn

+(_F454(kZB')2+2sz'R—2sz'XZ4—Aj4)ﬂ ~R, +NTg(0)* (4> + %) -2N,"g(0)" ()

(33d)

By finding the determinant of the coefficient matrix of the above equations and setting

this multinomial to zero, we can find natural frequencies o, :

Where the different components of the previous matrix are presented in Appendix B,

(Eq.B.1).

5. Findings and discussion

Evaluations are made with analytical and numerical results published by various

researchers. Additionally, the solutions in the tables and graphs are revealed in non-

dimensional formulas that are proposed as follows:

B=awhp./E,
W = o0 p/En
o @) i)
Where: v, =0.28
K, =kyDp/a*, K, =k, D, /a®
K, =k D,/a*, K, =k,Dy/a* K, =k,D,/a®

Where: D, = Egh®/12(1-+?)
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p,and g, are the parameters of metal at ambient temperature (300K).
The proposed shear deformation theory results, based on four variables, are verified in

Table 2 by comparing the fundamental frequencies of FG square plates Al,/Al Oz with the
exact results published by Zaoui et al. [28] using five variables. Furthermore, the fundamental
frequencies are given for different slenderness ratios (a/h=5, 10, and 20) and the first three
modes. The comparison concludes that the proposed theory functions correctly and matches
the results previously published by Zaoui et al. [28].

Additionally, the proposed theory’s results are compared with those published by
Zaoui et al. [28] and Mengzhen et al. [39] for FG square plates Al,/AIO3 lying on elastic
foundations by considering different power-law indexes, see Tables 3 and 4.

Finally, the fundamental frequencies of FG plates composed of (SizN;-SUS304) are
compared with those published by Huang and Shen, [3]; Parida and Mohanty [6], and Zaoui et
al. [19] for (a/h=5 and 20), see Table 5. Calculations are performed for these FG plates with
the subsequent properties: a/b=1, a=8h, p=2770 kg/m®, pn=8166 kg/m®, and v= vn=0.28,
K:=9.19 W/mK, and K,=12.04 W/mK. Importantly, the present results reported in Table 5
agree satisfactorily with the published ones. The present method can successfully calculate the
3D dynamic response of FG plates exposed to nonlinear temperature rise.

As mentioned in Figure 2, the thermal conductivity will be considered temperature-
dependent to meet the required results. Notably, the examination of Table 6 reveals that the
natural frequencies in temperature-dependent are lower than those in temperature-independent
plates.

Variations of fundamental frequencies of the FGM plates lying on Winkler/Pasternak
and Kerr foundations at different temperatures on the ceramic side are shown in Tables 7 and
8, wherein the first five modes of free vibration are presented. The fundamental frequencies
are evaluated for different k. The temperature of the bottom side is kept constant at Tr,,= 300K,
while two different temperatures of the top side are considered with a rise of 100 and 300K
from reference temperature (To=300K). Additionally, the variation of fundamental frequencies
with change in temperature of the upper side is also shown in Tables 7 and 8.

Variations of the fundamental frequencies versus foundation parameters of plates lying
on Winkler and Pasternak elastic foundation are respectively shown in Figures 3(a)-(b) and
Figures 3(c)-(d) for different power-law index k and modes (1 and 3). All the plates are
subjectebd to a nonlinear thermal rise of 400K. It is noted that by increasing the power-law
index, the fundamental frequencies decrease whatever the type of foundation. This decrease is

because an increase in the power-law index decreases the elasticity modulus. In other words,
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the plate becomes softer as the metal’s volume fraction increases, thus decreasing the
frequencies’ values.

The variation of Winkler foundation stiffness slightly affects the fundamental
frequencies only in the first mode, see Figure 3(a). Otherwise, its influence is neglected, see
Figure 3(b). However, the results presented in Figures 3(c)-(d) show that the fundamental
frequencies of the plate increase with the increase of Pasternak foundation’s stiffness,
whatever k, and the mode vibration. Because when the parameter k, increases, it increases the
bending stiffness of the plate and therefore entrains the increase of the natural frequency.

Variations of the fundamental frequencies of FG plates subjected to nonlinear
temperature difference and resting on Winkler/Pasternak elastic foundation are respectively
shown in Figures 4(a)-(b) using a power-law index k=1. The maximum values of fundamental
frequencies are obtained for (kw=k,=100); this is due mainly to the inclusion of the shear
layer, which stabilizes the lateral movement of the plate. However, the minimum ones are
reached for plates without shear layer (k,=0). The fundamental frequencies decrease with the
increase of the environment temperature’s change. The reason is that increasing the
temperature results in a decrease of the material rigidity while the system's mass remains
constant.

Figure 5 gives the fundamental frequencies of various plates versus Kerr foundation’s
parameters (k;, ky, and ks) under a nonlinear temperature change of 400K using a different
power-law index. Whatever the power-law index, all the curves exhibit almost the same
evolution. The fundamental frequencies fall rapidly when the parameter of the lower elastic
layer is small (kj<30), while they slowly change when k;>30, see Figure 5(a). However, they
rise rapidly when the parameter of the upper elastic layer is small (k,<30), while they slowly
change when k,>30, see Figure 5(b). More importantly, Figure 5(c) gives the fundamental
natural frequency versus shear layer parameter for different FG plates. Notably, the
fundamental frequencies increase considerably as the shear parameter (ks) increases.

The effect of parameters (k;, ky, ks, 47) on the fundamental frequencies of square plates
is also studied, see Figure 6. Based on the variation of slope of fundamental frequencies, it is
observed that increasing (ki, ky, ks) has an insignificant influence on the effect of the AT on the
frequency of homogenous as well as FG plates. In other words, whatever the Kerr
foundation’s parameters, the fundamental frequencies decrease slightly as AT increases.
However, the lower spring, upper spring, and shear layer parameters have rising effects on the
fundamental frequencies of FG plates.
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Figures 7(a)-(b) and Figures 7(c)-(d) display a 3D analysis of fundamental frequency
versus slenderness ratio a’h for homogenous plate (k=0) and FG square plates lying on two
types of foundation and exposed to various nonlinear temperature changes: 0, 100, 200, 300,
and 400K, respectively. As highlighted in Figure 7, the first natural frequencies are almost
constant at 47=0, whatever the foundation type. But, for high-temperature changes, the
frequencies fall with growing a/h until it becomes zero. Therefore, the critical slenderness
ratio for plates lying on the Winkler-Pasternak foundation is higher than that on the Kerr
foundation.

Figures 8(a)-(b) and Figures 8(c)-(d) show the influence of the aspect ratio b/a on the
fundamental frequencies of the homogenous plate (k=0) and FG square plates lying on two
types of foundation and exposed to various nonlinear temperature changes: 0, 100, 200, 300,
and 400 K, respectively. Importantly, it is found that increasing b/a reduces the frequencies of
the structures significantly. More importantly, the fundamental frequencies drop rapidly when
the aspect ratio is small (b/a <6) while they become constant b/a>6, see Figure 8(a).
Furthermore, the frequencies are decreased with increasing the temperature change 47, and

this effect becomes more remarkable with increasing the aspect ratio b/a.
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6. Conclusions

In this study, the new four-unknown shear deformation theory is used to analyze the

3D free thermal vibration of FGM plates for the first time. The governing equations are

established based on Hamilton’s principle. Validation studies have been performed to confirm

the relevance of the current theory formulation. The obtained results are very similar to those

published by various researchers.

The increase in elastic foundation parameters would enhance the free-vibrational
response of homogenous and FG plates in the same manner. However, this increase
has an insignificant influence on the effect of the temperature change (47) on the
fundamental frequencies of these structures.

The increase in the temperature change (47) softens the FG plate and reduces the
natural frequency. This reduction is related to the compressive stress caused by the
thermal gradients.

The effect of the plate’s configuration is more significant when the nonlinear
temperature difference (47) is at high levels.

Even at high temperatures, the Pasternak/Kerr foundation models are suitable for
performing free-vibrational analysis of FG plates using large values of shear layer
stiffness.

Pasternak foundation model is better suited for the free-vibrational response of FG
plates than the Kerr foundation model. For large values of upper spring modulus, the

Kerr model tends to that of Pasternak.
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Figure and Table Captions

Figure 1: Geometry and coordinate system of FG square plates lying on elastic foundations:
(a) Winkler-Pasternak foundation, and (b) Kerr foundation.

Figure 2: Temperature-dependent properties through the FG square plates’ thickness: (a)
Young’s modulus, (b) thermal expansion coefficient, (c) thermal conductivity, and (d)
Poisson’s coefficient.

Figure 3: Variation of & of square plates versus the elastic foundation parameters (kv and kp)
under nonlinear temperature gradient (47=400 K): (a) effect of ky, in first mode, (b) effect of
kw In fourth mode (c) effect of k; in first mode, (d) effect of k;, in fourth mode.

Figure 4: 3D fundamental frequencies » depending on the nonlinear temperature change AT
of the square plates lying on different elastic foundations: (a) Homogenous plate (k=0) and (b)
FG plate (k=1).

Figure 5: Effect of Kerr foundation parameters (k;, ky and k) on @ of square plates exposed
to nonlinear temperature change (47=400 K).

Figure 6: 3D @ depending on the nonlinear temperature change A7 of the square plates lying
on different Kerr foundations: (a) Homogenous plate (k=0) and (b) FG plate (k=1).

Figure 7: 3D fundamental frequencies » of square plates lying on two types of foundations
and exposed to various nonlinear temperature changes (47) versus the side-to-thickness ratio:
(a-b) Homogenous plate (k=0) and (c-d) FG plate (k=1).

Figure 8: 3D fundamental frequencies @ of square plates lying on two types of foundations
and exposed to various nonlinear temperature changes (47) versus the plate aspect ratio: (a-b)
Homogenous plate (k=0) and (c-d) FG plate (k=1).

Table 1. Factor defining the temperature dependence of Si3N4 and SUS304, Reddy [40] and
Mamen [30]

Table 2. Comparaison of 3D fundamental frequencies g for square FG plate Al,/AlO3 with
E. =380 GPa,E, =70 GPa , p, =3800 kg/m*, p,, =2702 kg/m* and v, =v, =0.3.

Table 3. Comparaison of first 3D fundamental frequencies i for square Al,/Al O3 plate lying

on Winkler/Pasternak foundation

Table 4. Comparaison of first 3D fundamental frequencies y for square Al/Al O; plate lying

on Kerr foundation
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Table 5. Comparaison of first fundamental frequencies @ for SisN4-SUS304 square plates in
nonlinear thermal environments with a/b=1 and a=8h

Table 6. 3D fundamental frequencies @ for SisNs,-SUS304 square plates in thermal
environments with a/b=1 and a=8h.

Table 7. 3D fundamental frequencies @ of FG square plates lying on Winkler/Pasternak
foundations with a/b=1 and a=8h.

Table 8. 3D fundamental frequencies @ of FG square plates lying on Kerr foundation with
a/b=1, a=8h and k=100.
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651  Poisson’s coefficient.
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652  Figure 3: Variation of @ of square plates versus the elastic foundation parameters (kw and kp)
653  under nonlinear temperature gradient (47=400 K): (a) effect of ki, in first mode, (b) effect of

654  kyw in fourth mode (c) effect of k;, in first mode, (d) effect of k, in fourth mode.
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655  Figure 4: 3D fundamental frequencies @ depending on the nonlinear temperature change AT
656  of the square plates lying on different elastic foundations: (a) Homogenous plate (k=0) and (b)
657 FG plate (k=1).
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658  Figure 5: Effect of Kerr foundation parameters (k, ky and ks) on @ of square plates exposed
659  to nonlinear temperature change (47=400 K).
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660 Figure 6: 3D @ depending on the nonlinear temperature change A7 of the square plates lying
661  on different Kerr foundations: (a) Homogenous plate (k=0) and (b) FG plate (k=1).
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Figure 7: 3D fundamental frequencies @ of square plates lying on two types of foundations
and exposed to various nonlinear temperature changes (47) versus the side-to-thickness ratio:
(a-b) Homogenous plate (k=0) and (c-d) FG plate (k=1).
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Figure 8: 3D fundamental frequencies @ of square plates lying on two types of foundations

and exposed to various nonlinear temperature changes (A7) versus the plate aspect ratio: (a-b)
Homogenous plate (k=0) and (c-d) FG plate (k=1).

Table 1. Factor defining the temperature dependence of Si3N4 and SUS304, Reddy [40] and

Mamen [30]
Constituents Properties Py P P, P, P
E (Pa) 201.04e+9 0 3.079%e—4  —6.534e—7 0
SUS304 o (K'll) ) 12.330-6 0 8.086e—4 0 0
K (Wm™'K™?) 15.379 0 —1.264¢-3  2.092¢e—6  —7.223e-10
v 0.3262 0 -2.002e-4  3.797e-7 0
p (kg/m?) 8166 0 0 0 0
E (Pa) 348.43e+9 0 -3.070e-4  2.160e-7  —8.946e—11
o (Kh 5.8723e—6 0 9.095-4 0 0
SizN, K (Wm™'K™?) 13.723 0 -1.032-3  5.466e-7 —7.876e—11
v 0.24 0 0 0 0
p (kg/m®) 2370 0 0 0 0
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678  Table 2. Comparaison of 3D fundamental frequencies s for square FG plate Al,/AIO; with

679 E,=380GPa,E, =70GPa , p, =3800 kg/m*, p, =2702 kg/m* and v, =v,, =0.3.

Mode N° k
a/h (m, n) Source 5 G 1 7 M)
101, 1) Zaoui et al. [2_8]—5v 0.2126 0.1829 0.1663 0.1411 0.1320
' Present (quasi-3D)-4v 0.2127 0.1832 0.1663 0.1410 0.1321
5 2(12) Zaoui et al. [2_8]—5v 0.4674 0.4052 0.3687 0.3052 0.2817
' Present (quasi-3D)-4v 0.4674 0.4058 0.3687 0.3049 0.2817
3(2,2) Zaoui et al. [2_8]—5v 0.6783 0.5911 0.5381 0.4389 0.4018
' Present (quasi-3D)-4v 0.6778 0.5914 0.5377 0.4383 0.4014
11, 1) Zaoui et al. [2_8]-5v 0.0579 0.0495 0.0450 0.0390 0.0369
' Present (quasi-3D)-4v 0.0578 0.0495 0.0449 0.0389 0.0369
10 2(12) Zaoui et al. [2_8]-5v 0.1383 0.1186 0.1078 0.0924 0.0868
' Present (quasi-3D)-4v 0.1384 0.1188 0.1079 0.0923 0.0869
3(2,2) Zaoui et al. [2_8]-5v 0.2126 0.1829 0.1663 0.1411 0.1320
' Present (quasi-3D)-4v 0.2127 0.1832 0.1663 0.1410 0.1321
20 1(11) Zaoui et al. [28]-5v 0.0148 0.0126 0.0115 0.0100 0.0095

Present (quasi-3D)-4v 0.0148 0.0126 0.0115 0.0100 0.0095
4v: Four variables, 5v: Five variables.

680
681  Table 3. Comparaison of first 3D fundamental frequencies  for square Al,/Al O3 plate lying

682  on Winkler/Pasternak foundation

(Kws Kp) h/a  Source 5 G li > z
0.05 Zaoui et al. [28]-5v 0.0406 0.0387 0.0380 0.0376 0.0378
' Present (quasi-3D)-4v  0.0406 0.0387 0.0379 0.0376 0.0378
(0, 100) 01 Zaoui et al. [28]-5v 0.1594 0.1525 0.1497 0.1483 0.1489
' ' Present (quasi-3D)-4v  0.1595 0.1527 0.1498 0.1483 0.1489
0.2 Zaoui et al. [28]-5v 0.6015 0.5795 0.5701 0.5652 0.5662

Present (quasi-3D)-4v  0.6036 0.5828 0.5730 0.5671 0.5674
Zaoui et al. [28]-5v 0.0298 0.0257 0.0236 0.0219 0.0208

005 pecent (quasi-3D)-4v 00208 00257 00236 00218  0.0208

(100,0) o1 Zuietal[8]5v 01164 01007 00924 00854  0.0809
' ' Present (quasi-3D)-4v 0.1164 0.1008 0.0924 0.0853 0.0809

o, Zeouictal [28]5v 04200 03737 03438 03161 02048

Present (quasi-3D)-4v ~ 0.4293 0.3745 0.3436 0.3156 0.2948
0.05 Zaoui et al. [28]-5v 0.0411 0.0393 0.0386 0.0383 0.0385
Present (quasi-3D)-4v 0.0410 0.0393 0.0386 0.0383 0.0385
Zaoui et al. [28]-5v 0.1614 0.1548 0.1522 0.1509 0.1517
Present (quasi-3D)-4v  0.1614 0.1549 0.1522 0.1509 0.1517
Zaoui et al. [28]-5v 0.6093 0.5884 0.5797 0.5754 0.5770
Present (quasi-3D)-4v  0.6115 0.5918 0.5827 0.5774 0.5784
4v: Four variables, 5v: Five variables.

(100, 100) 0.1

0.2

683
684
685
686
687
688
689
690

29



691
692

693
694
695
696

697

698

699

700

701

702

703

704

705

Table 4. Comparaison of first 3D fundamental frequencies

on Kerr foundation

y for square Al,/Al Os plate lying

(ku, Ks) h/a  Source 5 G lk > G
0.05 Mengzhen et al. [39]-5v  0.0294  0.0253 0.0231 0.0212 0.0202
' Present (quasi-3D)-4v 0.0294  0.0253 0.0231 0.0212 0.0202
(100, 0) 01 Mengzhen et _al. [39]-5v 0.1149  0.0988 0.0903 0.0830 0.0783
' Present (quasi-3D)-4v 0.1150  0.0990 0.0904 0.0830 0.0783
0.2 Mengzhen et al. [39]-5v  0.4225  0.3659 0.3345 0.3059 0.2837
' Present (quasi-3D)-4v 0.4237  0.3673 0.3353 0.3060 0.2839
0.05 Mengzhenetal. [39]-5v  0.0356  0.0329 0.0316 0.0307 0.0305
Present (quasi-3D)-4v 0.0356  0.0329 0.0316 0.0307 0.0305
(100,100) 0.1 Mengzhen et al. [39]-5v  0.1395  0.1292 0.1243 0.1210 0.1198
' ' Present (quasi-3D)-4v 0.1396  0.1293 0.1244 0.1210 0.1198
0.2 Mengzhen et al. [39]-5v  0.5218  0.4873 0.4705 0.4580 0.4522
' Present (quasi-3D)-4v 0.5237  0.4898 0.4724 0.4589 0.4522

4v: Four variables, 5v: Five variables.

Table 5. Comparaison of first fundamental frequencies @ for SisN4-SUS304 square plates in

nonlinear thermal environments with a/b=1 and a=8h

T K Present Present  Huang and Shen Parida and Mohanty Zaoui et al.

(quasi-3D) (2D) [3]-2D [6]-2D [19]-2D

SizNy 12.537 12.503 12.495 12.587 12.508

T.=300 K 0.5 8.640 8.607 8.675 9.094 8.610
T.2300 K 1.0 7.572 7.542 7.555 7.656 7.545
" 2.0 6.791 6.769 6.777 6.78 6.771
SUS304 5.425 5.410 5.405 5.445 5.411

SizNy 12.332 12.299 12.397 12.387 12.308

T.=2400 K 0.5 8.514 8.483 8.615 8.615 8.454
T 2300 K 1.0 7.468 7.440 7.474 7.51 7.399
m 2.0 6.701 6.680 6.693 6.642 6.632
SUS304 5.318 5.304 5.311 5.311 5.279

SizN, 11.932 11.901 11.984 11.971 11.887
T.2600 K 0.5 8.266 8.236 8.269 8.272 8.119
T.2300 K 1.0 7.260 7.235 7.171 7.186 7.082
m 2.0 6.522 6.503 6.398 6.327 6.323
SUS304 4.979 4.964 4.971 4.989 4.945
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706  Table 6. 3D fundamental frequencies @ for SizNs-SUS304 square plates in thermal

707  environments with a/b=1 and a=8h.

T K Modes

L) (L2 @2 (L3) 23

SizN, 12411 29.147 44.196 53.498 66.566

Toa0k 08 8.637 20270 30.718 37.170 46.228

a0k L0 7601 17.785 26.882 32.373 40.188

m= 2.0 6.836 15986 24.157 29.185 36.224

SUS304 5495 12.873 19.469 23.530 29.216

Ta00K  SiNa 12204 28757 43.655 52.843 65.786

ook 05 8510 20.049 30425 36.813 45814

T eratire L0 7490 17555 26.454 31.810 39.200

i e‘r’] ot 20 6.746 15844 23.986 28.974 35.995

P SUS304 5395 12.709 19.270 23.275 28.939

Tao0K  SiNa 12336 29.061 44.114 53.398 66.475

a0k 05 85734 20.197 30.648 37.084 46.151

o rature 10 7540 17.702 26.815 32.233 40.015

o depen dont 20 6.777 15915 24.091 29.099 36.149

P SUS304 5434 12.797 19.401 23.436 29.138

Toso0k  SiaNe 11.799 28.033 42.677 51.657 64.394

a0k 08 8264 19.639 29.894 36.164 45.073

o rature 10 7286 17.233 26.055 31.343 38.713

i ef’] ot 20 6571 15580 23.673 28.585 35579

P SUS304 5086 12.140 18521 22.323 27.851

TosooK  SiNa 12185 28.890 43.950 53.198 66.293

ook 05 8.445 20.049 30.509 36.910 45.996

o erature L0 7417 17558 26.680 32.060 39.862

i depen ot 20 6.656 15773 23.959 28.927 35.999

P SUS304 5309 12.644 19.265 23.245 28.981
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
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723  Table 7. 3D fundamental frequencies @ of FG square plates lying on Winkler/Pasternak
724  foundations with a/b=1 and a=8h.

T K K Modes
w P

(1,1) (1,2) (2,2) (1, 3) (2,3)

SizNy4 12.204 28.757 43.655 52.843 65.786

0.5 8.510 20.049 30.425 36.813 45.814

0 0 1.0 7.490 17555 26.454 31.810 39.200

2.0 6.746  15.844 23986 28.974 35.995

SUS304 5.395 12709 19.270 23.275 28.939

SizNy4 13.290 29.216 43.950 53.083 65.976

0.5 9.361 20.410 30.656 37.001 45.963

100 0 1.0 8.278 17.891 26.671 31.989 39.342

2.0 7483 16.159 24.189 29.140 36.126

T=400 K SUS304 6.092 13.008 19.463 23.433 29.064

Tm=300 K SizNy4 26.363 46.247 62.808 72.820 86.782

0.5 19.297 33.482 45.187 52234 62.046

0 100 1.0 17.348 29.918 40.140 46.193 54.487

2.0 15.890 27.344 36.708 42.312 50.097

SUS304 13550 22.938 30.540 35.002 41.291

SisN, 26.883 46.533 63.013 72.994 86.926

0.5 19.686 33.698 45.343 52.367 62.156

100 100 1.0 17.702 30.115 40.283 46.316 54.589

2.0 16.216 27.527 36.840 42.426 50.192

SUS304 13.962 23415 31.126 35.725 42121

SizNy4 11.799 28.033 42.677 51.657 64.394

0.5 8.264 19.639 29.894 36.164 45.073

0 0 1.0 7.286 17.233 26.055 31.343 38.713

2.0 6.571 15,580 23.673 28.585 35.579

SUS304 5.086 12.140 18.521 22.323 27.851

SizNy4 12,919 28503 42978 51.903 64.587

0.5 9.138 20.007 30.130 36.356 45.224

100 0 1.0 8.094 17575 26.276 31.524 38.857

2.0 7326 15.900 23.879 28.754 35.712

T.=600 K SUS304 5.819 12452 18.721 22.488 27.981

Tw=300 K SizNy4 26.178 45800 62.132 71964 85.732

0.5 19.190 33.239 44835 51.784 61.507

0 100 1.0 17.262 29.732 39.883 45.876 54.140

2.0 15.817 27.194 36.508 42.053 49.807

SUS304 13.673 23.251 31.006 35.621 42.034

SizNy4 26.701 46.089 62.340 72.140 85.877

0.5 19.582 33.458 44992 51918 61.617

100 100 1.0 17.617 29.931 40.027 45.999 54.243

2.0 16.145 27.379 36.642 42.167 49.901

SUS304 13.841 23.105 30.662 35.108 41.379
725
726
727
728
729
730
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731  Table 8. 3D fundamental frequencies @ of FG square plates lying on Kerr foundation with
732 a/b=1, a=8h and k=100.

Modes
(1,1) (1,2 (2,2) (1,3) (2,3)
SizN, 12.759 28.987 43.803 52.963 65.881

T ky ks k

0.5 8.946 20.230 30.541 36.907 45.888
100 0 1.0 7.894 17.726 26.562 31912 39.296
2.0 7.124 16.002 24.087 29.057 36.060

SUS304 5.754 12.859 19.367 23.354 29.002
SizNy 12.204 28.757 43.655 52.843 65.786

T.=400 K 0.5 8.510 20.049 30.425 36.813 45.814
T =300 K 0 100 1.0 7.490 17.557 26.454 31.823 39.225
m 2.0 6.746 15844 23986 28.974 35.995
SUS304 5395 12709 19.270 23.275 28.939

SizNy 20.878 38.682 54.206 63.720 77.084

0.5 15.168 27.730 38.614 45.266 54.604

100 100 1.0 13.594 24.654 34.081 39.744 47.546

2.0 12.421 22.462 31.088 36.331 43.677

SUS304 10.586 18.840 25.887 30.150 36.136

SizNy 12372 28.269 42.828 51.780 64.491

0.5 8.712 19.824 30.012 36.260 45.148

100 0 1.0 7701 17404 26.165 31430 38.779

2.0 6.959 15741 23776 28.670 35.646

SUS304 5465 12.297 18.622 22.406 27.916

SizNg 11.799 28.033 42.677 51.657 64.394

T.=600 K 0.5 8.264 19.639 29.894 36.164 45.073
T =300 K 0 100 1.0 7.286 17.233 26.055 31.339 38.706
m 2.0 6.571 15580 23.673 28.585 35.579

SUS304 5.086 12.140 18.521 22.323 27.851
SizNg 20.644 38.146 53421 62.740 75.899
0.5 15.032 27.436 38.200 44.743 53.986
100 100 1.0 13.483 24.425 33.775 39.362 47.123
2.0 12.328 22278 30.849 36.025 43.339
SUS304 10.429 18.457 25.330 29.419 35.270

733
734
735
736
737
738
739
740
741
742
743
744
745
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Appendix A:

" M1 A2 O Bjqg Bop O 0 B,koB' BrkA" L 0 0 00
X
Ny | [A2 A2 O B Bp O 0 B5,koB' B kA" L 0 0 00
Ny 0 0 A 0 0 Bgs B(kiA+koB) 0 0 0 0 0 00
M2 Bj1 Bp 0 Djg Dp O 0 DykoB' DA La 0 0 00
b
My| |Bp By 0 Djp Dyp © 0 D3,ko8B' Dk A" La 0 0 00
b
Mxy 0 0 Bg O 0 Dgg Dgs(klA‘+sz') 0 0 0 0 0 00
M3 S S S S S . S .
>s< _|B B O D D 0 0 HokoB Hi kA R 0 0 00
My B, B, 0 D), D3 O 0 H3,koB' Hok A’ R 0 0 00
Myl 1o o 8. o o o 0 0 His(kiA+kB) © 0 0 00
N 66 66 6617 K2
SZ L L 0 L Lg o0 0 koB'R kiA'R Ra 0 0 00
Qyz s N2 .y S
o 0 0 0 0 0 O 0 0 0 0 Fpy(koB) + X3, 0 00
Xz S )2 s
S5, 0 0 0 0 0 O© 0 0 0 0 0 Fos(klA)  +Xg5 0 0
S ' S
s, 0 0 0 0 0 O 0 0 0 0 XGskoB'+ Ay, 0 00
S ' S
o 0o 0o 0o 0 0 0 0 0 0 0 XZgkiA't Ay 0 0
(Eq.A.1)
Appendix B:
_ 2 2 2
du—[_'oilﬂb — A" = oo, ]
d, =d;, z[_(An + 'A&se)ﬁﬂ]
_q 3 2 2
ds —dsl—[Bu/1 +(B12 +2866)/Iﬁ + L, /1]
dy, =d,; =| kA" I Aw,? —(BSK,B'+ Bg (k,A'+ k,B')) A5° Bk A'A% + LA
14 =Y = 1M I AW, 2R 66 \ 'L 2 1™
Ay, =| —A, 87 — Agh® — 1,0, (Eq.B.1)
2= 2 6 0®%h g.b.

dys =ds, :[Ilwnzﬂ"' By +(Bp, + 2866)/12ﬁ]

Ay =0y, = [—kZB'Jlﬁa)nz —(Bak A+ B (k A+ K,B")) 81° ~Bk,B' B + L,BJ
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