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This paper presents the nonlinear thermodynamic results of Functionally Graded (FG) plates lying on
Winkler/Pasternak and Kerr foundation through an analytical formulation. The field displacement is
defined by only four unknowns, including an indeterminate integral and a new shape function
representing the transverse shear stresses. Material properties of the FG plates are temperature-dependent
and graded according to a simple power-law distribution. Also, the thermodynamic equations of motion
are deduced based on Hamilton’s principle. The exactitude of the present theory results is verified with

those obtained by various researchers. The effects of temperature-dependence material properties,

Temperature-dependence
material.

power-law index, nonlinear temperature rising, elastic foundation parameters, aspect, and slenderness
ratio are discussed. The results show that the increase in elastic foundation parameters would enhance

the thermodynamic response of the FG plates. Nevertheless, the degree of improvement would be related
to the nonlinear temperature change. Moreover, the plate’s configuration effect is more significant when
the nonlinear temperature difference is high.

1. Introduction

The continuous evolution of thermomechanical properties
between the lower and upper surfaces of Functionally
Graded (FG) structures makes them widely used in diverse
areas such as aerospace, nuclear reactors, power sources,
biomechanical, optical, civil, automotive, electronic,
chemical, and mechanical engineering [1].

The material features gradually differ along with one or
various dimensions of the structure to achieve intended
functionalities. Researchers developed FG materials to resist
ultra-high temperatures. The FG structures have been tested
under high-temperature gradients across the cross-sectional
thickness [2]. This type of material is prepared by mixing
two different constituents, such as ceramic and metal. This
advanced manufacturing process aims at developing ideal

heat-resistant materials. In this way, thermal resistance is
provided by a heat-resistant ceramic on one side. At the same
time, crack resistance is offered by metal with high thermal
conductivity and high hardness. Thanks to these
simultaneous functions, the use of Functionally Graded
Materials (FGMs) has been fostered in thermal protection
systems for melting reactors and heat exchanger pipes [3-9].

After their innovation in the late 90s, researchers carried
out various investigations to assess the thermomechanical
and dynamic behaviors of FGMs plates using different
analytical methods [10-14]. Thai et al. [2] confirmed that the
First Shear Deformation Theory (FSDT) is also accurate in
investigating the free vibration analysis of FGM plates
composed of FG face sheets and an isotropic homogeneous
core with variable thickness. Ye et al. [15] recently analyzed
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the free vibration behavior of FG sandwich plates using new
higher-order refined models.

As stated previously, to withstand the high temperatures,
FGM structures made up of ceramic/metallic components are
generally of interest. Shariyat [16] introduced a generalized
global-local theory to investigate the vibration behavior of
FG sandwich plates exposed to thermo-mechanical loads.
Malekzadeh and Monajjemzadeh [17] investigated the
thermal dynamic response of FG plates resting on elastic
foundation and subjected to a moving load based on the first-
order shear deformation theory, including the initial thermal
stresses’ effects. Two dimensions’ free vibration responses of
temperature-dependent FG plates have been analyzed by
Attia et al. [18] using four-variable Higher-order Shear
Deformation Theory (HSDT). Parida and Mohanty [6]
employed HSDT to consider the free vibration response of
rotating FG plates subjected to the nonlinear temperature.
Zaoui et al. [19] studied the free vibration of FG temperature-
dependent properties plates using an improved exponential-
trigonometric two-dimensional higher shear deformation
theory. Furthermore, Arshid et al. [20] analyzed the
thermomechanical buckling and vibrational behavior of a
sandwich-curved microbeam resting on the Visco-Pasternak
foundation. Navier's solution method is used to solve the
differential equations system analytically. Based on the
findings, such intelligent structures can be used to design and
manufacture various equipment, making high stiffness-to-
weight ratios more accessible. Li et al. [21] investigated the
nonlinear vibration behavior of FG sandwich beams. In
thermal environments, the beams have been modeled with an
auxetic porous copper core. Singha et al. [22] analyzed the
vibration analysis of a rotating pre-twisted Graphene-
Reinforced Composite (GRC) cylindrical shell. The
temperature-dependent material properties of the FG-GRC
have been predicted by employing the continued Halpin-Tsai
model. Abouelregal et al. [23] analyzed the vibrational
behavior of rotating isotropic nanobeams using the nonlocal
theory of elasticity. This study aims to contribute to
understanding the dynamics of rotating nanobeams subject
to varying heat sources. Also, the thermoelastic vibrations of
nanobeams resting on a Pasternak foundation and thermally
loaded by ramp-type varying heat have been investigated by
Nasr et al. [24].
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Figure 1. Geometry and coordinate system of FG square plates lying on elastic foundations (a) Winkler-Pasternak foundation, and
(b) Kerr foundation.

Nevertheless, limited research has been carried out to
analyze the 3D thermodynamic behavior of FG structures or
those lying on Winkler, Pasternak, and Kerr foundation [25-
27]. Malekzadeh et al. [25] investigated the three-
dimensional thermal dynamic response of thick FG annular
plates in a thermal environment. The Differential Quadrature
Method (DQM) has been used to drive the 3D thermoelastic
equilibrium equations. Tu et al. [27] have considered the heat
conduction and temperature-dependent material properties to
analyze FG plates' 3D free vibration behavior in thermal
environments using an eight-unknown HSDT. On the one
hand, Parida and Mohanty [6] and Zaoui et al. [28] are the
only researchers investigating the nonlinear thermal
vibration behavior of FG plates based on a displacement field
containing four variables (2D-shear deformation theory). On
the other hand, the main advantage of our study is to use a
displacement field containing the same number of unknowns
(four variables) with 3D theory. Additionally, this model
simplifies the problem and considers the effect of transverse
stretching, which is not considered in the case of 2D-shear
deformation theories.

According to this literature, in all the previously
mentioned research, the thermal conductivity has always
been considered independent of temperature, affecting the
obtained results when the temperature difference is at high
levels. Therefore, this work deals with proposing a new 3D
modelling concept and investigating the nonlinear
temperature field effect on the free vibration behavior of FG
plates resting on various elastic foundations. Even more, the
implications of temperature-dependent material properties,
power-law property index, non-linear temperature rise,
elastic foundation parameters, and aspect ratio and
slenderness ratio are reviewed.

2. FG plates

The considered plates of length (@), width (b), and thickness ()
lie on elastic foundations (Winkler-Pasternak foundation and
Kerr foundation). All the investigated plates are exposed to the
nonlinear temperature change, see Figure 1. Mechanical
characteristics vary progressively with thickness, from the
lower metal surface to the upper ceramic surface.

Significantly, to more accurately describe the behavior of
FG plates at elevated temperatures, the material parameters
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need to be temperature-dependent P(z,7), including
Poisson’s ratio, Young’s modulus, the thermal expansion,
and the thermal conductivity are presented as [29,30]:

P(z,T) = [F(T) = B (DIV; + P (T), (1

where P, (T) and P.(T) denote the effective temperature-
dependent properties of the metal and ceramic, respectively.
V. denotes the ceramic fraction and it is given conforming to
the power law:

k
W=G+9' @)

in which £ is the volume fraction exponent.
Touloukian [31] suggests the material properties as follows:

P(T)i:Po(P_lT_l+1+P1T+P2T2+P3T3), (3)

where i = ¢, m. T is temperature in Kelvin, and P; (j =
-1,1,0,1,2,3) are the temperature-dependent factors, see
Table 1, Mamen et al. [30]. Also, the variation of the effective
temperature-dependent and independent material properties
is illustrated in Figure 2.

Figure 2(a)-(c) show the evolution of temperature-
dependent properties through the FG square plate’s
thickness. The temperature of the lower surface is constant
(T = 300 K), while the upper surface temperature is varied
(T. =300 to 700 K). It can find that the temperature has an
important influence on all material properties except
Poisson’s coefficient. Therefore, in this investigation,
Poisson’s coefficient will be considered a constant
(independent of temperature) and equals 0.28.

Table 1. Factor defining the temperature dependence of SisN4 and SUS304 [30, 40].

Constituents Properties Py Py P P; P;
E (Pa) 201.04e+9 0 3.079¢—4 —6.534e—7 0
SUS304 a (K 12.330-6 0 8.086e—4 0 0
x (Wm'K") 15.379 0 —1.264¢-3 2.092¢—6 —7.223e-10
v 0.3262 0 —2.002e—4 3.797e-7 0
p (kg/m®) 8166 0 0 0 0
E (Pa) 348.43e+9 0 —3.070e—4 2.160e—7 —8.946e—11
a (K 5.8723e—6 0 9.095—4 0 0
Si3Ns x (Wm'K") 13.723 0 —1.032-3 5.466¢e—7 —7.876e—11
v 0.24 0 0 0 0
p (kg/m?) 2370 0 0 0 0
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Figure 2. Temperature-dependent properties through the FG square plates’ thickness (a) Young’s modulus, (b) thermal expansion coefficient, (c)

thermal conductivity, and (d) Poisson’s coefficient.
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3. Nonlinear temperature distribution

Assume the FGM plates are exposed to Non-Linear
Temperature Rise (NLTR). The temperature field
distributes nonlinearly from the upper surface 7. to the
lower surface 7,,=300 K. In this case, the one-dimensional
steady-state heat conduction along the thickness is given
as Salari et al. [32]:

dT(z) B

: [ @T)
——|k(z,
dz (4)

Taking into account the continuous thermal conditions yield to:

z 1
f—h/Z k(z,T) dz
niz 1 iz )
-h/2k(z,T) )
in whichAT =T, —T,.

T(z) = T,, + AT

Eq. (5) can be solved by using an approximation of
polynomial series expansion [30, 33-35]:

Dl(z) h h
- i 1 7 (in+1)j
N (e (25)
Dj(z)_;( Km ) in+1 '’ (7
j=0,1.

where r represents the item numbers in the series and is
chosen equals to five to ensure the computation is accurate.

4. Theory and governing equations
4.1. Kinematics and constitutive relations

The boundary conditions are the main limitation of the
present model compared to computational methods. In other
words, the present model could be only used for simply-
supported plates. However, with a slight modification in
solutions (functions in the double Fourier series), the present
model could effectively predict the behavior of clamped or
simply-clamped FG plates.

Based on 2D and 3D higher shear deformation theories,
the fields of displacement are described as follows:

uCx,y,2,t) = up(x,y,t) — 2 %
+K:1f(2) f 0(x,y,t)dx,
dy
+K,f (2) f 0(x,y,t)dy,
w(x, z,t) = wo(x,y,t) + ng(2)0(x,y,t). ®

The undetermined integral in Eq. (8) is simplified and
declared as [36]:

,00(x,y,t)

fH(x,y, t)ydx=A ox 9)
,00(x,y,t)

fe(x,y. t)dy =B oy (10)

Based on Egs. (9) and (10), Eq. (8) takes the following form:

owy(x,y,t
ulx,y,z,t) =uy(x,y,t)—z %

o () 2828,

owy(x,y,t)

3
v(x,y,2,t) = vo(x,y,t) — z
0 ay

e (1) 208,

w(x,y,z,t) =wy(x,y,t) + ng(2)0(x,y,t), (11)

where ug, vg, Wy, and 8 are unknown displacements of the
mid-plane of the FGM plate. where the coefficients (kq, k,)
and (A', B') are defined as:
ky=—-22and A'=—=,
' » (12)

- (13)
Note that 4 and S are defined in Eq. (62).
f(z) represents the shape function defining the

distribution of transverse shear deformation, it is written as
follows [30]:

daf (z)
f(z)=z (% - 922) and g(z) = 12—5?. (14

n is a real number and is given as follows:

{n =0 for 2D
n =1 for Quasi-3D ° (15)

The deformations associated with displacements in Eq. (11)
are:

_ O, 6 Pwo 0%6 (16)
T o AT 55
dv, 2%w, 0?2
Sy:E—Zayz +ka(Z)a 7 (17)
=g'(2)0,
(18)
_ a0
Vxz = a_[klAf '(2) + g(2)], (19)
—[sz’f’(Z) + g(z)], (20)
B auo ) 22w, . Aaf’;aey v,
629 (21)
+k,f(2)B 3y’

where g, &y, and &, are the normal and the transverse strains,
and Yy, Vyz Yxy are the transverse shear strains.

Based on 3D displacement field expressed in Eq. (11),
the linear constitutive relations are given as:
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Ux C11 C12 C13 0 0 0 (gx \
fay] [Cu Gz C3 0 0 O ] | € |
{ UZ }_|C13 C23 C33 O 0 O |{ gZ }
Tyz( |0 0 0 Cu 0 0¥
w| [0 0 0 0 Cx 0 |lyxz
) Lo 0 0 0 0 Collry ©2)

The effective temperature-dependent elastic constants
Cij(z,T) depending on the normal strain &, are given as
follows:

Case of 2D (g, = 0), then Cjj are:
Co = E(z,T)
722279 _y(z,T)?’
_v(z,TE(z,T)
27 1 —v(zT)?’

44 = Ubss = 66_2[1+V(Z;T)]' 29
Case of quasi-3D (g, # 0), then Cj; are:

oo E(z,T)[1-v(zT)]

1= R22 = T oy, D[+ v(z, )]
o v(z,T)E(z,T)

127 M3 7228 T 2y (2, D[+ v(z T)]’
oo E(zT)

4 =55 T 66 T ON Tz, D] (24)

4.2. Governing equations of motion

By employing the Hamilton principle in its analytical form,
the three governing equations are developed as follows [30,
371

ty
S(U+P+V—K)dt =0,
fq ! (25)

in which t; and t; are the initial and end times, respectively.
The change of the total strain energy is represented as
[38]:

oU = J‘O‘ijagij dV,
v
6U =

+5 ra (b 0,0¢y, + 0,6¢, + 0,8¢, dnd
J._QJ;J;(+T )zx, (27)
2

(26)

xz5yxz + Tyz(syyz + Txy(syxy

U =

N dduy , 028w,

* ox ¥ 0x?
hyangs 00y, 0%

X Hx2 Y oy
926w, 3280
Su, , 028w,

b
—My 9y?

S

]
+N,86 + N, 3~ MGy

J.J. dxdy,
o Jo . 0256 adv,

Y 9xdy +
0%50 266
+sz, iym‘l'sz'Q;ZW
vz ay 1 Xz ax
a60

S5, — (28)
+ Xz ax |

where N, M, S, and Q are the force and moment components
represented in the following forms [30]:

&
(Ni.Mib,Mis) = J-_;(l, Z,f(z)) 0;dz, (i (29)
2
=X,5,xy),
*2
Nz = f_ﬁ oAz, (30)
2
A
2
(57?2' S;Z) = f_% (sz' Tyz) g(2)dz, G1)
I
S S 2 1
(QXZ' QyZ) = f_% (sz'Tyz)f (2)dz. (32)

Using Egs. (16)-(22), and (24), N, M, S, and Q can be
represented (see Appendix A).

The effective temperature-dependent stiffness elements
are stated as follows:

A1 Bir Dy Bfl D1S1 H1S1
Ay, By Dy Blsz D1sz H152 =
Age Bss Des Bge Do Hge

h/2 C11(z,T)
| nazr@ar@ @) e
~h/2 C66(Z' T) (33)
(Az2, Byz, Dyy, B3y, D3y, H3,)
= (A11'B11'D11'B1S1'D151'H151)' (34)
L 2 1
{La}thc”(z,r)y z }g’(z)dz,{R“}
R -7 f(2)
=" D) ¢ @P dzand (1= 1,2;j=  (39)
3),
/2
Fj, = F55 = f Ci(z, D[ f'(2)]* dzand (i = 4,5), (36)
—h/2
h/2 .
Ma=xi= [ Q@D @@ dama(= 45, )
/2
A, = Af = f Ci(z,T) [g(2)]? dzand (i = 4,5). (38)
—h/2

The variation of the potential energy of foundations is
given by:

a rb
o7 = [ [ ot frer 0wy . (9)

where f. and fx. are the densities of reaction forces for
the Pasternak foundation and Keer foundation model,
respectively.

Importantly, the Pasternak foundation is a two-
parameter elastic model and its distributed reaction force
is expressed as:

0%wy,  0%w,
fe = Kywo — K, o +—ay2 ) (40)
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in which K, and K, are the Winkler and the shear layer
coefficients of the elastic foundation, respectively.

More importantly, the Kerr model foundation is a three-
parameter elastic model, and its distributed reaction force is

expressed as:
2%w, 02w,
) )(sz oy ) (41)

KlKu
K, + K,

in which K is the shear layer parameter, K, is the upper
elastic layer, and Kj is the lower elastic layer.

The kinetic energy variation is represented as you can see
in Box I, Mamen [30].

The dot—superscript convention is used to denote the time
derivative.

( KKy
K, + K,

frerr = (

Iy, 11,15, ]1,]2, K5, Jo and K, are the independent—
temperature mass inertias as you can see in Eq. (44):

o, 11, I3, J1, )2, K2, Jo, Kol =

h
[\ P27 £, 2 . 2@ 97 @1 (g

The variation of work done by thermal loads is written in the
following form:

B. Mamen et al./ Scientia Iranica (2025) 32(2): 6746

0w 0w
8V = f f (NT—+ 2NxTya 3y +NJ 3y >6wdxdy,
(45)
where Ny, Ny ,and Ny, are defined as follows:
+h)2
NT = f 112 T) a(z, T)(T(2) — Ty)dz, (46)
—h/2
+h/2
= Gl DaEDI@ =Tk )
+h/2
NI, = f C1o(2.T) a(z, TY(T(2) — T)dz, 48)
—h/2

As Cy1 = Cpp, we get Ny = Nj = NT.

The variation of work done by thermal loads becomes as
follows:

P NT ’w  9*w
f f ( (axz ay?
+ 2NT, W > Swdxdy
Y 0x0 ’
where T (z)is the nonlinear field of temperature (see Egs. (5)-
(7), and the initial temperature 7y = 300 K.
Substituting Eqs. (28), (39), (43), and (49) into Eq. (25),
the equations of motion are obtained in the Box II:

(49)

a ;b 45
2
6K =f f J-I p(2)(ebuy + Vo6V + WedWy) dxdydz, (42)
0o Jo J-Z
[ . 65W0 aWO 65W0 aWO Y
Io(u05u0 + U06U0 + W06W0) - Il (U.O ox a 6U.0 + UO 6y + W(Svo)
I (0W065W0 6W065W0>
Z\ox ox dy 6y
a rb a0 56 a0
51{ :fo fo +]1 klA an_+ klA a—5u0 + sz 1.70 a +sz 6_6170 dxdy_
i A,awo 659 ’69 a6wy + ,0Wq 966 + 69 aé6wy
Jo |k ox ox z dy ady 6y dy
00956 00956
+K; | (kA ')2—— + (kyB"? 3 9y + Jo(Wo86 + 68vng) + K,056
(43)
Box I
AN, 0Ny i Gl 06
5u0.ﬁ+_ay _IOuO_IIW-i-]lklA a, (50)
s N, +any_1 . Iaw0+ kB,aé
Vor 75— ay ax oVo — 1 dy Jik> ay’ (51)
*ME  0*ME _9*MP, r (0w 0wy r 0%6 626 (07w,
Swoi— -+ 3yt +2 39y —(fo + fierr) + N (a + z>+N (0)< +5 2>+2ny <axay>
2%6 dity OV %W, 92w, 2% 228 .
T 0 0 0 0 Frel EIv
+N g(0)<—6x0y> Iowo+11((3 + ay) I, (—axz + 3 z>+]2< 1A% + k,B y>+]06,
(52)
’aZM; ’ ? S az1\41631 anz aQ}SIZ aS;Z as. JS/Z T zVVO azVVO
80: ~ky A"~ kB 7 YN, + (kA +k,B) +k1A ot kaB 5 oo 3y +N (0)<0x2 + 0y2>
226 02%0 9? 2%6 dily v, 0%, a2,
T 2 4 T 2 — , , 0
+NTg(0) ( +ay)+2Nwiﬂm<aa >+N 9(0) Qua) h(kA = +kg;ay)+b< = +kﬂ?ay2>
926 926
—K, [(k A)2 +(sz)z ]+]0w0+1<09
(53)

Box II
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Egs. (50)-(53) can be expressed in terms of ugy, vy, Wy, and 0
by using Eq. (33) as we can see in Box III.

4.3. Analytical solutions for FGM plate

We are interested here in finding exact solutions for the free
vibration problem of simply-supported FG plate. With the
Navier solution technique, the change in displacement can be
calculated as follows:

ug(x,y,t) = z Z Uy c0s(Ax) sin(By) ei@nt,

in which Uy, Vimn > Win, and 8,,,,, are unknown parameters to
be determined. The boundary conditions are represented as:

a0
Vg =Wy = =E=NX=M,’C’=M§=Oatx=0,a, (63)
a6
uo=Wo=9=a=Ny=M§,’=M35,=0aty=0,b. (64)

Substituting Eq. (58)-(61) into Egs. (50)-(53), respectively,
leads to the Egs. (65)-(68) are shown in Box I'V.
By finding the determinant of the coefficient matrix of

Lt & (58) the above equations and setting this multinomial to zero, we
can find natural frequencies w,,:
AN . dyy diy diz dag
— 3 lwnt
170 (xl y’ t) - z Z v‘mn Sln(/’{x) COS(ﬁy) e n ’ (59) det d21 dzz d23 d24, — 0
m=in=i d3; dz; d3z di, ’
- - d41 d42 d4-3 d4-4- (69)
here the different components of the previous matrix are
wy(x, y,t) = Z Z sin(Ax) sin elont W ) -omp p
0%y, 1) — W Sin(Ax) sin(6y) (60) presented in Appendix B.
AN 5. Findings and discussion
0(x,y,t) = z z B Sin(Ax) sin(By) e'@nt, g
me1n= (61) Evaluations are made with analytical and numerical results
y
published by various researchers. Additionally, the solutions
. _mm o (62) in the tables and graphs are revealed in non-dimensional
with 4 = a’ and f§ = B’ formulas that are proposed as follows:
0%u, d%u, 0%v 3wy 3wq s s , .. 03
Sug i A1 —=— 922 + Ao 5> 3y? >+ (Ag2 +A66) 155 —(Byz + 2366)6 2 + [Bi2k2B" + Bis (k1 A’ + k3B )]W
,639 a0 ) W a0 (54)
+Bllk1A ox 3 La = Iouo - 11 W +]1k1A a,
2%u, 9%v, 9%v, 3wq 63WO 236
: (Agz +3A66) axdy +A22 a2 >+ Age 922 — By y? — (B2 + 2366) + [Bi2k1 A’ + B (k1A' + sz)] %20y
+B§2k2316 0+L60 Ioﬁo _116_+]1sz1%,
ay3 " "oy ay dy (55)
3u, 3u, 63 3v *wy *wq 9*wq
Swy: B11W+ (Biz + 2366)6 )2 + (Byp + 2366) + By—=—= 9y3 >+ 2(Dyz + 2D66) ax%0y? — Dy, oyt ~ Do
0% 4 ,a 029 0% a%wy  0%wq
+D5 ki A'— It — [(Df, + 2D§,) (k1 A’ + kB =—=— Ix70y? +D22sz +La( a =—) — Kywo + K, T + 3y7
KlKu KSK‘U. ) 62W0 02W0 T 62W0 02W0 T 620 629 T 6 Wy
(1(1 YK, W") + (1(1 Tr)\ a2 T2 )TN G T TN IOz T 552) 2N | Gaay
926 Aty OV 92w a W, ] 926
T 0 0 0, % Wo , 56
+2N,,"g(0) <axay> 10w0+11(a + 6y) I <6x2 ) ( +sz 5y >+10 (56)
50 — Bk A" [BE kB4 By A+ ey BY] Sl — (B ey A7+ B (kA + kB )] ol — B3, ey 22
11 14 9x3 12K2 661 2 Iy 9xdy? 121 661 2 9x20 22 24 ay?
*w, Wy d*wy 9 2“0
+Di1 kA" —— E + [(D{; + 2Dgg) (k1 A" + kB )] %20y + D3,k B —— oy - Hi1 (kA )2 — H3,(k,B")? 3y
4 620
—[ZHlszklA’sz’ + (k A"+ sz')ZHgs] W — [2Rk. A" — Fsss(klA’)z —2XEk, A’ — Ags] =l
, 62 aZWO auO avo Wo aZWO
~[2RkB' — F(keB)? = 2X3ala B = Al 55+ La ( ot —2> -L (W + W) Ra8 + NTg(0) ( o3z T ay2 >
., (076 8%8 , OZWO v (0% il A
NGO (554 53 ) + 2y 9 0) + 2N, g(0) I (klA 04 koB 6y>
,0%, 02, 5 29‘ ,0%0
+]2 klA a 2 + sz ay KZ (klA) + (sz) y +]0W0 + K09 (57)

Box III.
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[—A114% = AgeB? — lown* Tty + [—(A11 + Ase)ABVmn + [B114° + (Biz + 2Bse)AB? + Liw,* Alwyyy,
+[_k1A_’]11wn2 - (szsz, + BgG(klA’ + szl))lﬁZ - BflklA’lg + Ll]emn = 0, (65)

[—(A12 + Age) ALty + [_Azzﬁ2 - A66AZ - Iownz]vmn + [llwnzﬁ + Bzzﬁ3 + (B + ZBee)lzﬁ]Wmn
+[—k2371ﬁwn2 - (Bf2k1A'+ Bis(ki A"+ sz'))B)lz — B5,k,B'B% + Lﬁ]gmn =0, (66)

[lLw,?A + B3 A% + (Byy 4 2Bsg) AR umn + [Lhwn?B + Bya 3 + (Biz + 2Bee) A2 Blvmn
_wnz(lo + 1 2+ :32)) = 2(Dyp + ZDee)lzﬁz - Dzzﬂ4 - D11/14

+ KK KK,
—K,, — K,(1? 2—( ”)—( =
w = Kp (" + 5% K +K, K +K,

) G2 + )+ NTGZ + 52 - 20, ") |

—wn?(=J2 (ki A2 + k3 B'B?) + o) + Di1kiA2* + (D7, + 2Dge) (ke A'+ sz’)AZ,BZ] P
+D3,k, BB — Lo(2 + ) + NTg(0) (22 + ) — 2Ny, g (0)(A) mn = 5 ©7)
[_klA 7110)712 - (szsz, + BgG (klA’ + sz’))A‘BZ - BflklA’lg + Ll]umn
+[—k;B'1 Bwn? — (Bizki A’ + Big(kyA'+ k2B))BA? — B3y ky BB + LB Vimn
+ [—w,* (=, (ki A'X? + k,B'B?) + o) + D1 ki A'A* + (D5, + 2Dg) (ky A’ + sz’)AZ,BZ] w
| +D5,k, B'B* — Lo(A? + B%) + g(0)NT (2% + B?) — 2N,," g(0)(AB) m
[—wy* (K, (k1 A)? A% + (k,B)?B?) + Ko) — (kyAD)?Hi;A* — (k,B)?H3,B*
—(2H,k A'K,B'+ HE (k A"+ k,B)?) 2252 6 —o
| (=5 (kA% + 2k, AR — 20, AXE, — AS) A mn =
[ +(=F4(kyB)? + 2k,B'R — 2k, B'X3, — A34)B* — Ra + N"g(0)? (2% + %) — 2N, " g(0)*(28) (68)
Box IV.
Table 2. Comparison of 3D fundamental frequencies 8 for square FG plate Alo/AlOs with E, = 380 GPa, E,, = 70 GPa, p, =
K K
3800 £ pj, = 2702 S and v, = v, = 03.
k
o]
a’h Mode N°(m, n) Source 0 05 1 3 10
11, 1) Zaoui et al. [28]-5v 0.2126 0.1829 0.1663 0.1411 0.1320
’ Present (quasi-3D) -4v 0.2127 0.1832 0.1663 0.1410 0.1321
5 2(1,2) Zaoui et al. [28]-5v 0.4674 0.4052 0.3687 0.3052 0.2817
’ Present (quasi-3D) -4v 0.4674 0.4058 0.3687 0.3049 0.2817
32,2) Zaoui et al. [28]-5v 0.6783 0.5911 0.5381 0.4389 0.4018
’ Present (quasi-3D) -4v 0.6778 0.5914 0.5377 0.4383 0.4014
131, 1) Zaoui et al. [28]-5v 0.0579 0.0495 0.0450 0.0390 0.0369
’ Present (quasi-3D) -4v 0.0578 0.0495 0.0449 0.0389 0.0369
10 2(1,2) Zaoui et al. [28]-5v 0.1383 0.1186 0.1078 0.0924 0.0868
’ Present (quasi-3D) -4v 0.1384 0.1188 0.1079 0.0923 0.0869
32,2) Zaoui et al. [28]-5v 0.2126 0.1829 0.1663 0.1411 0.1320
’ Present (quasi-3D) -4v 0.2127 0.1832 0.1663 0.1410 0.1321
20 131, 1) Zaoui et al. [28]-5v 0.0148 0.0126 0.0115 0.0100 0.0095
’ Present (quasi-3D) -4v 0.0148 0.0126 0.0115 0.0100 0.0095
4v: Four variables, 5v: Five variables.
5 Pc K, = kwbo g _ kpDo (73)
ﬁ - wnh EC! (70) w a* p a?
kyD, kyD ksD,
K =-30 K, = =50 Ko =—=37, (74)
= Pm . _ _ Egh®
Y = w,h E,/ 1) where: Dy = 20D
po and E, are the parameters of metal at ambient temperature
(300 K).
) a?\ |po(1—vy?) The proposed shear deformation theory results, based on
W = Wy i E—o’ (72) four variables, are verified in Table 2 by comparing the

fundamental frequencies of FG square plates Al,/AlO; with
where: v, = 0.28: the exact results published by Zaoui et al. [28] using five
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variables. Furthermore, the fundamental frequencies are
given for different slenderness ratios (a/h=5, 10, and 20) and
the first three modes. The comparison concludes that the
proposed theory functions correctly and matches the results
previously published by Zaoui et al. [28].

Additionally, the proposed theory’s results are compared
with those published by Zaoui et al. [28] and Mengzhen et
al. [39] for FG square plates Al,/AlO; lying on elastic
foundations by considering different power-law indexes (see
Tables 3 and 4).

Finally, the fundamental frequencies of FG plates
composed of (SizN4-SUS304) are compared with those
published by Huang and Shen [3]; Parida and Mohanty [6],
and Zaoui et al. [19] for (a/h=5 and 20) (see Table 5).
Calculations are performed for these FG plates with the
subsequent properties: a/b=1, a=8 h, p~2770 kg/m?,
pn=8166 kg/m’, and v~ v,=0.28, K.=9.19 W/mK, and
K,=12.04 W/mK. Importantly, the present results reported in

Table 5 agree satisfactorily with the published ones. The present
method can successfully calculate the 3D dynamic response of
FG plates exposed to NLTR.

As mentioned in Figure 2, the thermal conductivity will be
considered temperature-dependent to meet the required results.
Notably, the examination of Table 6 reveals that the natural
frequencies in temperature-dependent are lower than those in
temperature-independent plates.

Variations of fundamental frequencies of the FGM plates
lying on Winkler/Pasternak and Kerr foundations at different
temperatures on the ceramic side are shown in Tables 7 and 8,
wherein the first five modes of free vibration are presented. The
fundamental frequencies are evaluated for different k. The
temperature of the bottom side is kept constant at 7,,= 300 K,
while two different temperatures of the top side are considered
with a rise of 100 and 300 K from reference temperature
(Tv=300 K).

Table 3. Comparison of first 3D fundamental frequencies 1 for square Alo/AlO; plate lying on Winkler/Pasternak foundation.

(kw, kp) h/a Source 0 05 lk > 3
0.05 Zaoui et al. [28]-5v 0.0406 0.0387 0.0380 0.0376 0.0378
’ Present (quasi-3D) -4v 0.0406 0.0387 0.0379 0.0376 0.0378
(0, 100) 0.1 Zaoui et al. [28]-5v 0.1594 0.1525 0.1497 0.1483 0.1489
’ ’ Present (quasi-3D) -4v 0.1595 0.1527 0.1498 0.1483 0.1489
02 Zaoui et al. [28]-5v 0.6015 0.5795 0.5701 0.5652 0.5662
’ Present (quasi-3D) -4v 0.6036 0.5828 0.5730 0.5671 0.5674
0.05 Zaoui et al. [28]-5v 0.0298 0.0257 0.0236 0.0219 0.0208
’ Present (quasi-3D) -4v 0.0298 0.0257 0.0236 0.0218 0.0208
(100, 0) 0.1 Zaoui et al. [28]-5v 0.1164 0.1007 0.0924 0.0854 0.0809
’ ’ Present (quasi-3D) -4v 0.1164 0.1008 0.0924 0.0853 0.0809
0.2 Zaoui et al. [28]-5v 0.4290 0.3737 0.3433 0.3161 0.2948
’ Present (quasi-3D) -4v 0.4293 0.3745 0.3436 0.3156 0.2948
0.05 Zaoui et al. [28]-5v 0.0411 0.0393 0.0386 0.0383 0.0385
Present (quasi-3D) -4v 0.0410 0.0393 0.0386 0.0383 0.0385
(100, 100) 0.1 Zaoui et al. .[28]—5V 0.1614 0.1548 0.1522 0.1509 0.1517
Present (quasi-3D) -4v 0.1614 0.1549 0.1522 0.1509 0.1517
02 Zaoui et al. [28]-5v 0.6093 0.5884 0.5797 0.5754 0.5770
) Present (quasi-3D) -4v 0.6115 0.5918 0.5827 0.5774 0.5784
4v: Four variables, 5v: Five variables.
Table 4. Comparaison of first 3D fundamental frequencies ) for square Al2/AlOs plate lying on Kerr foundation.
(ku, ky) h/a Source 0 05 1 k 3 3
0.05 Mengzhen et al. [39]-5v 0.0294 0.0253 0.0231 0.0212 0.0202
’ Present (quasi-3D) -4v 0.0294 0.0253 0.0231 0.0212 0.0202
(100, 0) 01 Mengzhen et al. [39]-5v 0.1149 0.0988 0.0903 0.0830 0.0783
’ ' Present (quasi-3D) -4v 0.1150 0.0990 0.0904 0.0830 0.0783
02 Mengzhen et al. [39]-5v 0.4225 0.3659 0.3345 0.3059 0.2837
' Present (quasi-3D) -4v 0.4237 0.3673 0.3353 0.3060 0.2839
0.05 Mengzhen et al. [39]-5v 0.0356 0.0329 0.0316 0.0307 0.0305
Present (quasi-3D) -4v 0.0356 0.0329 0.0316 0.0307 0.0305
(100, 100) 01 Mengzhen et al. [39]-5v 0.1395 0.1292 0.1243 0.1210 0.1198
’ ’ Present (quasi-3D) -4v 0.1396 0.1293 0.1244 0.1210 0.1198
02 Mengzhen et al. [39]-5v 0.5218 0.4873 0.4705 0.4580 0.4522
) Present (quasi-3D) -4v 0.5237 0.4898 0.4724 0.4589 0.4522

4v: Four variables, 5v: Five variables.
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Table 5. Comparaison of first fundamental frequencies @ for SisN4-SUS304 square plates in nonlinear thermal environments with a/b=1 and

a=8 h.
Present Parida and Zaoui et al. [19]-
T k (quasi-3D) Present (2D) Huang and Shen [3]-2D Mohanty [6]-2D 2D
SizNa 12.537 12.503 12.495 12.587 12.508
7,300 K 0.5 8.640 8.607 8.675 9.094 8.610
7.-300 K 1.0 7.572 7.542 7.555 7.656 7.545
" 2.0 6.791 6.769 6.777 6.78 6.771
SUS304 5.425 5.410 5.405 5.445 5411
SizNa 12.332 12.299 12.397 12.387 12.308
_ 0.5 8.514 8.483 8.615 8.615 8.454
;C:;%(())i 1.0 7.468 7.440 7.474 7.51 7.399
" 2.0 6.701 6.680 6.693 6.642 6.632
SUS304 5.318 5.304 5.311 5.311 5.279
Si3N4 11.932 11.901 11.984 11.971 11.887
_ 0.5 8.266 8.236 8.269 8.272 8.119
7]};2(())(())112 1.0 7.260 7.235 7.171 7.186 7.082
" 2.0 6.522 6.503 6.398 6.327 6.323
SUS304 4.979 4.964 4.971 4.989 4.945

Table 6. 3D fundamental frequencies @ for Si3sN4-SUS304 square plates in thermal environments with a/b=1 and ¢=8 h.

T K Modes
a1 a,2) 2,2) a,3) 2,3)
SizN4 12.411 29.147 44.196 53.498 66.566
7.=300 K 0.5 8.637 20.270 30.718 37.170 46.228
7.-300 K 1.0 7.601 17.785 26.882 32.373 40.188
" 2.0 6.836 15.986 24.157 29.185 36.224
SUS304 5.495 12.873 19.469 23.530 29.216
Si3Ns 12.204 28.757 43.655 52.843 65.786
T=400 K 0.5 8.510 20.049 30.425 36.813 45.814
T»=300 K 1.0 7.490 17.555 26.454 31.810 39.200
Temperature dependent 2.0 6.746 15.844 23.986 28.974 35.995
SUS304 5.395 12.709 19.270 23.275 28.939
SizN4 12.336 29.061 44.114 53.398 66.475
T=400 K 0.5 8.5734 20.197 30.648 37.084 46.151
Tw=300 K 1.0 7.540 17.702 26.815 32.233 40.015
Temperature independent 2.0 6.777 15915 24.091 29.099 36.149
SUS304 5.434 12.797 19.401 23.436 29.138
Si3Na 11.799 28.033 42.677 51.657 64.394
T=600 K 0.5 8.264 19.639 29.894 36.164 45.073
T»=300 K 1.0 7.286 17.233 26.055 31.343 38.713
Temperature dependent 2.0 6.571 15.580 23.673 28.585 35.579
SUS304 5.086 12.140 18.521 22.323 27.851
SizN4 12.185 28.890 43.950 53.198 66.293
T=600 K 0.5 8.445 20.049 30.509 36910 45.996
Tw=300 K 1.0 7.417 17.558 26.680 32.060 39.862
Temperature independent 2.0 6.656 15.773 23.959 28.927 35.999
SUS304 5.309 12.644 19.265 23.245 28.981

Additionally, the variation of fundamental frequencies with
change in temperature of the upper side is also shown in
Tables 7 and 8.

Variations of the fundamental frequencies versus
foundation parameters of plates lying on Winkler and
Pasternak elastic foundation are respectively shown in Figure
3(a), (b), and Figure 3(c), (d) for different power-law index k
and modes 1 and 3. All the plates are subjected to a nonlinear
thermal rise of 400 K. It is noted that by increasing the power-
law index, the fundamental frequencies decrease whatever the
type of foundation. This decrease is because an increase in the
power-law index decreases the elasticity modulus. In other
words, the plate becomes softer as the metal’s volume fraction
increases, thus decreasing the frequencies’ values.

The variation of Winkler foundation stiffness slightly
affects the fundamental frequencies only in the first mode, see
Figure 3(a). Otherwise, its influence is neglected (Figure 3(b)).
However, the results presented in Figure 3(c) and (d) show that
the fundamental frequencies of the plate increase with the
increase of Pasternak foundation’s stiffness, whatever k, and
the mode vibration. Because when the parameter £, increases,
it increases the bending stiffness of the plate and therefore
entrains the increase of the natural frequency.

Variations of the fundamental frequencies of FG plates
subjected to nonlinear temperature difference and resting on
Winkler/Pasternak elastic foundation are respectively shown
in Figure 4(a) and (b) using a power-law index A=1. The
maximum values of fundamental frequencies are obtained for
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Table 7. 3D fundamental frequencies @ of FG square plates lying on Winkler/Pasternak foundations with a/b=1 and a=8 h.

T ko ky k Modes
1,1 1,2) 2,2) 1,3) 2,3)
Si3Na 12.204 28.757 43.655 52.843 65.786
0.5 8.510 20.049 30.425 36.813 45814
0 0 1.0 7.490 17.555 26.454 31.810 39.200
2.0 6.746 15.844 23.986 28.974 35.995
SUS304 5.395 12.709 19.270 23.275 28.939
Si3Na 13.290 29.216 43950 53.083 65.976
0.5 9.361 20.410 30.656 37.001 45.963
100 0 1.0 8.278 17.891 26.671 31.989 39.342
2.0 7.483 16.159 24.189 29.140 36.126
7,400 K SUS304 6.092 13.008 19.463 23433 29.064
Tn=300K Si3Na 26.363 46.247 62.808 72.820 86.782
0.5 19.297 33.482 45.187 52234 62.046
0 100 1.0 17.348 29918 40.140 46.193 54.487
2.0 15.890 27.344 36.708 42.312 50.097
SUS304  13.550 22.938 30.540 35.002 41291
SisNg 26.883 46.533 63.013 72.994 86.926
0.5 19.686 33.698 45.343 52.367 62.156
100 100 1.0 17.702 30.115 40283 46316 54.589
2.0 16.216 27.527 36.840 42.426 50.192
SUS304  13.962 23.415 31.126 35.725 42.121
SisNg 11.799 28.033 42.677 51.657 64.394
0.5 8.264 19.639 29.894 36.164 45.073
0 0 1.0 7.286 17.233 26.055 31.343 38.713
2.0 6.571 15.580 23.673 28.585 35.579
SUS304 5.086 12.140 18.521 22.323 27.851
SisNg 12.919 28.503 42.978 51.903 64.587
0.5 9.138 20.007 30.130 36.356 45224
100 0 1.0 8.094 17.575 26276 31.524 38.857
2.0 7.326 15.900 23.879 28.754 35.712
7,600 K SUS304 5.819 12.452 18.721 22.488 27.981
Tw=300K Si3Na 26.178 45.800 62.132 71.964 85.732
0.5 19.190 33.239 44.835 51.784 61.507
0 100 1.0 17.262 29.732 39.883 45.876 54.140
2.0 15.817 27.194 36.508 42.053 49.807
SUS304  13.673 23251 31.006 35.621 42.034
Si3Na 26.701 46.089 62.340 72.140 85.877
0.5 19.582 33.458 44.992 51918 61.617
100 100 1.0 17.617 29931 40.027 45.999 54.243
2.0 16.145 27379 36.642 42.167 49.901
SUS304 13.841 23.105 30.662 35.108 41.379

(kw=k,=100); this is due mainly to the inclusion of the shear
layer, which stabilizes the lateral movement of the plate.
However, the minimum ones are reached for plates without
shear layer (k,=0). The fundamental frequencies decrease
with the increase of the environment temperature’s change.

The reason is that increasing the temperature results in a
decrease of the material rigidity while the system's mass
remains constant.

Figure 5 gives the fundamental frequencies of various
plates versus Kerr foundation’s parameters (k;, k,, and k)
under a nonlinear temperature change of 400 K using a

different power-law index. Whatever the power-law index,
all the curves exhibit almost the same evolution. The
fundamental frequencies fall rapidly when the parameter of
the lower elastic layer is small (£<30), while they slowly
change when k>30 (Figure 5(a)). However, they rise rapidly
when the parameter of the upper elastic layer is small
(k.;<30), while they slowly change when £,>30 (see Figure
5(b)). More importantly, Figure 5(c) gives the fundamental
natural frequency versus shear layer parameter for different
FG plates. Notably, the fundamental frequencies increase
considerably as the shear parameter (k) increases.
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Table 8. 3D fundamental frequencies @ of FG square plates lying on Kerr foundation with a/b=1, a=8 h and k=100.

T K ke Modes
@y 1,2) 2,2) 13) 2,3)
SisNa 12.759 28.987 43.803 52.963 65.881
0.5 8.946 20.230 30.541 36.907 45.888
100 0 1.0 7.894 17.726 26.562 31.912 39.296
2.0 7.124 16.002 24.087 29.057 36.060
SUS304 5754 12.859 19.367 23354 29.002
SisNg 12.204 28.757 43.655 52.843 65.786
- 0.5 8.510 20.049 30.425 36.813 45.814
T=00K 0 100 1.0 7.490 17.557 26.454 31.823 39.225
2.0 6.746 15.844 23.986 28.974 35.995
SUS304 5395 12.709 19.270 23.275 28.939
SisNg 20.878 38.682 54.206 63.720 77.084
0.5 15.168 27.730 38.614 45.266 54.604
100 100 1.0 13.594 24.654 34.081 39.744 47.546
2.0 12.421 22.462 31.088 36.331 43.677
SUS304  10.586 18.840 25.887 30.150 36.136
SisNa 12372 28.269 42.828 51.780 64.491
0.5 8.712 19.824 30.012 36.260 45.148
100 0 1.0 7.701 17.404 26.165 31.430 38.779
2.0 6.959 15.741 23.776 28.670 35.646
SUS304  5.465 12297 18.622 22.406 27.916
SisNa 11.799 28.033 42.677 51.657 64.394
- 0.5 8.264 19.639 29.894 36.164 45.073
o 0 100 1.0 7.286 17.233 26.055 31.339 38.706
2.0 6.571 15.580 23.673 28.585 35.579
SUS304  5.086 12.140 18.521 22.323 27.851
SisNa 20.644 38.146 53.421 62.740 75.899
0.5 15.032 27.436 38.200 44.743 53.986
100 100 1.0 13.483 24.425 33.775 39.362 47.123
2.0 12328 22278 30.849 36.025 43.339
SUS304 10429 18.457 25.330 29.419 35.270

S
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Figure 3. Variation of @ of square plates versus the elastic foundation parameters (kw and kp) under nonlinear temperature gradient (47=400
K) (a) effect of kw in first mode, (b) effect of &w in fourth mode, (c) effect of 4y in first mode, and (d) effect of & in fourth mode.



B. Mamen et al./ Scientia Iranica (2025) 32(2): 6746

—=—k,=k,=0
|| —&—k,=100, k,=0

[| —— k,=k,=100

—o—k,=0, k,=100 1

s 20 a/h=10, a/b=1, k=Si,N,
18
16 .
14} _
|
10 1 1 1 1 1
0 100 200 300 400 500
AT
(@)

13

18 [ T T T T T ]
— A
]
16 § = ky=k:=0 .
—&—K,=100, k,=0
14 || ——Kk,=0, k,=100 ]
TR0 | opmt0, a1, k=1
18121 i
10 .
—
6 L L 1 L L
0 100 200 300 400 500 600
AT
(b)

Figure 4. 3D fundamental frequencies @ depending on the nonlinear temperature change 4T of the square plates lying on different elastic
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The effect of parameters (ki, ki, ks, AT) on the

fundamental frequencies of square plates are also studied,
(see Figure 6).
Based on the variation of slope of fundamental frequencies,
it is observed that increasing (k;, k., ks) has an insignificant
influence on the effect of the AT on the frequency of
homogenous as well as FG plates. In other words, whatever
the Kerr foundation’s parameters, the fundamental
frequencies decrease slightly as A7 increases. However, the
lower spring, upper spring, and shear layer parameters have
rising effects on the fundamental frequencies of FG plates.

Figure 7(a), (b) and Figure 7(c), (d) display a 3D analysis of
fundamental frequency versus slenderness ratio a/h for
homogenous plate (k=0) and FG square plates lying on two
types of foundation and exposed to various nonlinear
temperature changes: 0, 100, 200, 300, and 400 K, respectively.
As highlighted in Figure 7, the first natural frequencies are
almost constant at 47=0, whatever the foundation type. But, for
high-temperature changes, the frequencies fall with growing a/h
until it becomes zero. Therefore, the critical slenderness ratio for
plates lying on the Winkler-Pasternak foundation is higher than
that on the Kerr foundation.
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Figure 8 (a), (b) and Figure 8 (c), (d) show the influence
of the aspect ratio b/a on the fundamental frequencies of the
homogenous plate (k=0) and FG square plates lying on two
types of foundation and exposed to various nonlinear
temperature changes: 0, 100, 200, 300, and 400 K,
respectively. Importantly, it is found that increasing b/a
reduces the frequencies of the structures significantly. More
importantly, the fundamental frequencies drop rapidly when
the aspect ratio is small (b/a <6) while they become constant
b/a>6 (Figure 8(a)). Furthermore, the frequencies are
decreased with increasing the temperature change 47, and

this effect becomes more remarkable with increasing the
aspect ratio b/a.

6. Conclusions

In this study, the new four-unknown shear deformation theory
is used to analyze the 3D free thermal vibration of Functionally
Graded Martial (FGM) plates for the first time. The governing
equations are established based on Hamilton’s principle.
Validation studies have been performed to confirm the
relevance of the current theory formulation. The obtained results
are very similar to those published by various researchers.
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Figure 8: 3D fundamental frequencies @ of square plates lying on two types of foundations and exposed to various nonlinear temperature
changes (47) versus the plate aspect ratio (a-b) Homogenous plate (&=0) and (c-d) FG plate (k=1).

e The increase in elastic foundation parameters would
enhance the free-vibrational response of homogenous
and FG plates in the same manner. However, this
increase has an insignificant influence on the effect of
the temperature change (47) on the fundamental
frequencies of these structures,

e The increase in the temperature change (47) softens
the FG plate and reduces the natural frequency. This
reduction is related to the compressive stress caused
by the thermal gradients,

e The effect of the plate’s configuration is more
significant when the nonlinear temperature difference
(47) is at high levels,

e Even at high temperatures, the Pasternak/Kerr
foundation models are suitable for performing free-
vibrational analysis of Functionally Graded (FG)
plates using large values of shear layer stiffness,

e Pasternak foundation model is better suited for the
free-vibrational response of FG plates than the Kerr
foundation model. For large values of upper spring
modulus, the Kerr model tends to that of Pasternak.
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