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Abstract 

 Induction motors in electrical industries face stress and potential faults. Preventive 

maintenance, including fault detection, is vital for safety and energy conservation. Infrared 

imaging, though underutilized, can monitor machine conditions effectively. In response to this 

gap, this paper presents a novel motor fault identification method employing infrared 

thermography (IRT) in combination with image processing and machine learning techniques, 

with a particular focus on energy efficiency. IRT is harnessed for early fault detection to promote 

energy conservation. The approach involves the extraction of color and texture features from the 

motor's infrared images using the Gabor filter and GNS (Global Neighbourhood Structure) map. 

The proposed method integrates the faster R-CNN (Region-based Convolutional Neural 

Network) with the SURF (Speeded Up Robust Features) algorithm to enhance fault detection and 

classification accuracy. SURF serves as a feature descriptor for faster R-CNN, enabling object 

detection and fault classification based on the extracted features. Additionally, efficiency is 

assessed using the Finite Element Method (FEM) based on stator and rotor power, contributing 

to energy conservation through early fault detection in motors. Notably, the proposed motor fault 

classification is applicable under various loading conditions, consistently achieving accuracy 

rates exceeding 90%.  

Keywords: Motor Fault Identification, Machine learning methods, Infrared thermography, 

integrated faster RCNN-SURF classifier, Finite Element method 
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1. Introduction 

 Induction motors can be mostly used in industrial, commercial and housing applications 

as they give significant merits over other kinds of electric motors. Compared to other rotating 

machines, the induction motors contains some good features such as robust, inexpensive, less 

maintenance, etc. However, faults have risen in induction motor during various construction or 

operating stresses. In induction motors, bearing faults, stator faults, and rotor bars faults can 

occur recurrently. Depending on the survey report, the induction motors’ component percentage 

can be bearing (41%), rotor faults (10%), winding (37%), and others (12%).  These failures will 

direct to high energy consumption or poor efficiency, high production loss and fatal accidents 

can also be happened in some cases.  Therefore, early detection of induction motor faults is most 

significant to the economical operation and energy conservation. Now a day, motor fault 

detection is executed using motor monitoring, initial fault recognition, and fault diagnosis. In the 

production line, the condition monitoring and induction motor’s fault diagnosis is performed as 

the most important process and it is operated as an efficient tool to decrease downtime and 

production losses. 

           The most condition monitoring methods were used to induction motor fault diagnosis 

depending on vibration and current. These vibration and current based methods have been 

applied effectively for various electrical and mechanical related faults detection. Agoston [1] has 

presented few electrical and mechanical failures in induction motors according to the motor 

vibration based condition monitoring. The definite frequencies have been detected using 

monitoring and analysing of the vibration spectrum for the fault detection.  De Araujo Cruz et.al 

[2] have presented a hybrid method that has utilized the data obtained from vibration and current 

sensors for fault detection at an early stage. However, both these vibration and current based 

condition monitoring techniques use costly sensor devices, data acquisition methods and a lot of 

time is consumed for fault diagnosis computation. Chang et.al [3] have enhanced a condition 

monitoring method that contains fault diagnosis analysis (FDA) and operating condition 

monitoring (OCM). The vibration detection approach has been utilized by the OCM depending 

on the ISO 10816-1 and NEMA MG-1 international standards, and the vibration-electrical hybrid 

method was employed by the FDA according to the different indices. In this study, the voltage 

and current sensors were utilized because of their high safety and expediency.  Conversely, it is 
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needed in additional setup or relays to identify the winding fault so, its purpose has been limited 

only to high stress or vital motors due to it most expensive. 

           Existing bearing faults, rotor faults detection methods were used depending on the 

spectrum examination of motor voltage, motor current, and instant input power. Contreras-

Hernandez et.al [4] proposed a motor fault recognition method using quaternion signal analysis. 

In this study, the quaternion coefficients were determined as the motor current capacity values, 

and the variables x, y, and z have been used as the measurements from a triaxial accelerometer 

accumulated on the induction motor framework. But, this method will be hard to attain the 

precise models of faulty motors and also to apply model-based methods. Chen et.al [5] used an 

artificial neural network (ANN) for the fault detection of high-voltage motors. The relationship 

between stator failures and pattern features were established depending on the partial discharge 

(PD) information estimation. However, PD tests can be an offline test, in which a motor 

shutdown is required that will direct to loss of production. Thus, noncontact and online 

monitoring is needed for fault detection. 

           Infrared thermography (IRT) can be utilized as an online and non-contact type condition 

monitoring method and it is mostly utilized to inspect transformers and electrical installations. It 

is operated as a device, in which the infrared energy is captured that can be transmitted from an 

object to its environment and a real-time image will be produced in a color palette [6]. For the 

motor fault diagnosis, this kind of tool is used since the prospect to point out the operating 

condition of the object using its temperature range. Javed et.al [7] applied Machine Vision (MV) 

that has utilized IRT for the inter-turn fault detection in induction motor drive using support 

vector machine (SVM). Mahami et.al [8] proposed an infrared-based method to identify three 

phase’s induction motor faults. For the fault feature extraction, bag-of-visual-word (BoVW) 

method was utilized with SURF method. This method was done using isothermal 

representations, in which the temperature gradient has been visualized and, therefore, the 

localization of the failure source was facilitated. Nevertheless, IRT is left underutilized for 

motor’s health monitoring and fault diagnosis of motors. According to the thermal model, 

temperature evaluation can be flexible and precise; however, it will not respond to the alterations 

in motor thermal distinctiveness. In induction motors, the efficiency of thermographic methods 

for fault recognition will be very reliant on its accurateness during the hot areas identification 
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and its severity level prediction.  Therefore, in this paper, efficient image processing and 

machine learning methods are used with IRT devices to overcome the above issues. 

           Several motor fault detection methods are done depending on the current and vibration 

spectral analysis by applying Fourier transform and wavelet transform [9-11]. In this study, 3D-

DWT is applied for effective image decomposition. Ge et.al [12] utilized a fault discovering 

scheme according to an empirical wavelet transform sub-model hypothesis examination and 

uncertainty correlation categorization to analyse the rolling bearing failures by applying the 

vibration signals. Conversely, the authors determined only on rolling bearing failures. Many 

existing methods have used the ANN and SVM (Support Vector Machine) classifier for the 

induction motor fault classification [13-15]. Agrawal and Jayaswal [16] proposed a comparative 

analysis between SVM and ANN by applying the energy entropy models and the continuous 

wavelet transforms to detect and classify the rolling component bearings. However, accurate 

motor fault classification is not provided by these classifiers because ANN has to discover the 

most suitable training group and SVM can only use two classes for fault classification.  Jayaswal 

and Wadhwani [17] have given a survey on ANN, and wavelet transform, and fuzzy logic that 

has been utilized to identify rotating machinery failures employing raw vibration signals. But, 

this work has given special attention trolling component bearing faults. 

 Machine learning and deep learning methods are used in advanced compared to 

customary image processing methods. The machine learning methods have been utilized widely 

in machine health due to its probable methods of featuring demonstration. Ali et.al [18] have 

presented a practical machine learning-based fault detection system for induction motors. The 

authors have utilized the three classification methods such as SVM, K-Nearest Neighbours 

(KNN), and ensemble, with seventeen various classifiers given in MATLAB Classification 

Learner toolbox. Xu et.al [19] have used a technique according to the deep CNN and random 

forest ensemble learning with a significant presentation; though, the authors only focused on 

bearing fault detection. Lu et.al [20] have applied a probabilistic neural network (PNN) as an 

image classifier using the conversion of signals to images by applying a bi spectrum monitoring 

methods. Though neural networks methods using raw data signals have been used in numerous 

research works for the fault detection and categorization, the data preprocessing can be a very 

significant task in deep learning or machine learning methods [21]. Several research works have 
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utilized time-frequency, frequency, and histograms for the conversion of signals into images to 

classify images [22-24]. Rahmat et.al [25] have presented that the faster R-CNN is not provided 

more accuracy for image classification and it takes more time to execute. Therefore, the faster 

RCNN is integrated with SURF to enhance motor fault classification accuracy. The benefit of 

using R-CNN over a neural network is its ability to develop an internal representation of a two-

dimensional image or a matrix of values. It helps the model to learn the position and scale of 

different structures in the image data or the two-dimensional matrix data. It also helps to reduce 

the number of parameters involved by learning high-level features and via the reusability of 

weights. Khamisan et.al [26] used a SURF method for induction motor thermal image 

segmentation.  The SURF algorithm is used as a good feature descriptor for the image 

classification. Therefore, in this paper, the advantages of RCNN and SURF are used to enhance 

classification accuracy for the induction motor fault detection. Many research works have 

focused only on bearing faults.  But, in this paper, the stator, rotor, and bearing faults are 

detected using improved machine learning methods. 

For the vibration analysis, specialized equipment is needed like accelerometers and data 

acquisition systems that could be expensive to purchase and maintain. Vibrating machinery 

makes high frequency noise, cause safety problems and direct to ruin in plant operating 

situations. For the current analysis in condition monitoring, it is needed to install MCSA (Motor 

Current Signature Analysis Sensors), conversely, MCSA technique’s presentation was ruined 

through the augmentation of the load directly changing the fault indicator’s amplitude. Besides, 

and as reported by numerous examinations, the frequencies connected with this kind of fault 

depend on the exact motor status. Thus, in this paper, thermography-based method is applied 

since it contains the following advantages non-contact detection, freedom from electromagnetic 

interference, safety, reliability and providing large inspection coverage compared to vibration 

and current based fault detection method. 

 

2. Proposed Methodology 

In this paper, thermal imaging is used as a diagnostic tool for the induction motor’s health 

and energy monitoring by observing the cause of failure. During an operation, IRT is used for 
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monitoring, motor’s abnormal condition identification. By using this tool, an early warning can 

be given to the operator or technician through the rotating machine’s temperature signatures.  In 

the proposed method, the SURF is integrated with faster R-CNN to improve the image 

classification for motor fault detection. The proposed system architecture has been illustrated in 

figure 1. From figure 1, IRT training data is taken for the motor’s energy monitoring and fault 

detection. Initially, image preprocessing is computed by applying the 3D-DWT (3D- Discrete 

Wavelet Transform). Afterward, the Gabor filter and the GNS map are used to extract the color 

and texture features from the decomposed thermal image of induction motor according to the 

bearing, stator and rotor characteristics or temperature variations. Subsequently, the proposed 

integrated classifier model is trained with selected features.  Based on the selected features, the 

classifier classifies the induction motor into fault motor (bearing faults, stator faults, rotor faults, 

or healthy motor).  The motor efficiency is estimated by applying the finite element method for 

energy monitoring.  Hence, the energy can be conserved by early detection of a motor fault. 

 The following phases are used by the proposed method to detect induction motor fault at 

an early stage for the energy conservation: 

 Image acquisition 

 Image pre-processing using 3D-DWT 

 Feature Extraction using Gabor and GNS map 

 Image classification using integrated faster RCNN-SURF 

 Efficiency estimation using FEM 

2.1. Experimental Test Bench For image acquisition 

Experimental test bench is an environment utilized to testing the proposed method with 

the help of software and hardware tools. Figure 2 shows the experimental test bench to compute 

the proposed method. A 0.5 hp, 440 V, 4 poles, the star-connected three-phase induction motor 

can be used for testing the fault conditions treated in this work. Induction motor’s thermal 

images will be captured by using the thermal camera FLIR A615 under different load conditions 

such as full load, half-load and no-load. By using this infrared camera, motor images are 

captured at every second and the infrared camera is fitted with a fire-wire connection. A thermal 

camera is also connected with a portable computer and it can be given with an acquisition and 
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analysis tool Tensorflow. The captured images’ data is stored in the computer and then images 

can be examined using Tensorflow tool. This tool will permit the captured images’ visualization 

and allows precise temperature estimation and its exportation for pre and post-processing using 

effective data mining and machine learning methods. Besides, other measuring devices are also 

connected such as power analyser, digital tachometer, and torque transducer to constantly 

observe speed, electric power, and the mechanical torque to calculate the motor’s efficiency. The 

sample thermal images of induction motor have been illustrated in figure 3. In this work, thermal 

images are acquired using the following conditions: Healthy, Rotor Bar Fault, Abnormal Stator, 

Normal Bearing, Abnormal Bearing, Inner race defect, Outer race defect, and lubrication lack. 

  

2.2. Image Pre-processing using 3D-DWT 

 Initially, the third decomposition level of the 3D-DWT is applied to the induction motor’s 

thermal images for the process of image preprocessing. The DWT method has given efficient 

performance and better ranks all among the decomposition methods. In both frequency and time 

domain, the multi-resolution examination can be executed by this method. Therefore, this paper 

applies the 3D-DWT to attain better image decomposition for further processes such as feature 

extraction and selection, and fault classification. In the 3D-DWT, the thermal image data is 

separated into frequency sub bands and it can give advanced image decomposition than the 2D-

DWT method. 3D data cubes correlation has been measured in this process that can be used to 

enhance the compression. The fundamental design will be to provide a signal as a wavelet 

superposition. 3D-DWT is computed on thermal images using one-dimensional DWT filter 

banks on three spatio-spectral dimensions. The wavelet decomposition is applied on target image 

to three spatial directions  , ,a b c  and then three-dimensional wavelet components are attained. 

The 3D-DWT is constructed by a tensor product: 

 
       

, ,
                                  

a b c a a b b c cTI L H L H L H         (1) 

 In equation (1), ⊕denotes the direct sum and ⊗ represents the tensor product. , ,  a b c

represents directions in the horizontal and vertical domains, and the spectral dimension of the 
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thermal image. L denotes the low pass filter and H can be the low and high-pass filters along 

three dimensions. 

 Two-level of 3D-DWT has been established in figure 4. In this process, low pass and 

high pass filters can be employed to a-dimension to filter the  , ,f a b c  volume to get sub-bands 

L and H. Subsequently, filters are utilized along to b -dimension and hence LL, LH, HL, and HH 

images will have happened. 3D-DWT can filter the c-dimension of these four sub-bands. As a 

result, the eight sub-bands of the target thermal image will be attained such as LLL, LLH, LHL, 

LHH, HLL, HLH, HHL and HHH. 

2.3. Feature Extraction using Gabor and GNS map   

        After the image decomposition, a technique is used to extract color features such as 

skew, entropy, mean, standard deviation, and kurtosis from thermal images using Gabor filters-

GNP map to the data for classification work. In this method, the RGB image is transformed to 

L* a* b* color space, therefore, it contains three values such as L, a and b. The values of L can 

represent the grayscale color space from these values for the texture feature extraction whereas 

the color feature is represented by the a and b values. 

The macro-texture is extracted by Gabor filters using the following equation (2): 
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 In the equation,   denotes the sinusoidal factor’s wavelength parameters.   will be acted 

as  the wave’s inverse of the frequency  in the Gabor function with a value of
1

 f


 .   can be 

the standard direction of the Gabor function’s equivalent lines and its value is established 

between 0
o
 and 360

o
. The phase offset is represented by   as a factor in the cosine Gabor 

function and its value in the range betwee0
o
and 180

o
.     Indicates the Gaussian factor’s standard 
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deviation that establishes the support size of the Gabor function and the value of   will not be 

firmed straight however it may be altered only using the bandwidth value (b).   can be the 

spatial aspect ratio, in which Gabor function’s eclipse shape is determined. Shape is in the form 

of circle if 1  . Elongated shape is formed in the orientation function when  1  . 

 The micro-texture will be extracted by applying the GNS map. In this kind of feature 

extraction method, the intensity similarities are measured between the pixels present in the 

thermal image. The given pixel x ’s intensity similarities to its surrounding pixels within a 

definite local region or search window Ws is used and it is estimated through the Euclidean 

distance and it is given by: 

                                     2 2, || ||x yd x y v N v N                                                                       (3) 

where pixel x  is positioned at the m m  search window’s centre point and  xv N  represents the 

neighbourhood pixel values vector around  x that has been surrounded by the n n adjacent 

window nW . Besides, y  denotes the search window’s all pixels and  yv N  can be operated as 

the adjacent pixels vector within the adjacent window. The Euclidean distance between 

neighbourhood pixels  xN and 
yN  can be represented by ||.||  and it has been more effectual to 

produce generated texture features to be extremely robust to arbitrary noise compared to 

Euclidean distance  estimation in individual pixel values. After that, the local neighbourhood 

structure map will be produced using every Euclidean distance replacement with the search 

window’s every pixel value. 

 For extracting features from the thermal image, a GNS map is computed and the local 

neighbourhood structures average is measured for the chosen pixels. Each entry q  can be located 

in the GNS map and it is given by: 

                                   21
,

p X

GNS q d p q
n 

                                                                             (4) 
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 In equation (4), X  can be the set of chosen thermal image pixels,  2 ,d p q  represents 

any entry in the region structure map produced for pixel p  in X , and n  denotes the number of 

GNS maps in the set X  that perform normalization. 

2.4. Image classification using integrated faster RCNN-SURF    

In this proposed method, the SURF and faster R-CNN methods are combined after the 

feature extraction to acquire accurate induction motor fault detection and classification in 

thermal images. The enhanced classification algorithm uses only the advantages of SURF and 

faster R-CNN. The classification process has been illustrated in figure 5. The extracted features 

are become the input of SURF, in which set of features are selected and described with the 

predicted scores. In this process, the SURF is used as a feature descriptor of faster R-CNN to 

detect and classify the faults. Firstly, extracted features between reference and target thermal 

image are described and pre-matched by the SURF algorithm, then faster R-CNN is to classify 

the faults into bearing, stator, rotor, or other faults according to the described and matched 

features by eliminating the false object matching.  

The proposed integrated faster RCNN-SURF architecture is given in figure 6.  The faster 

RCNN-SURF classification is done using the following phases: 

Input Layer: The extracted features are given as input to the SURF feature descriptor through 

the CNN.  

Proposed Region: In this phase, the features are matched with reference images using the SURF 

feature descriptor. Afterward, ROI pooling is generated by faster R-CNN to generate a fixed-size 

feature map from non-uniform selected and matched features that has made by SURF using max-

pooling on the inputs. This ROI pooling can be used to speed up the training and test time. 

Fully connected Layers: Subsequently, two various fully-connected layers are utilized to 

produce detection for every one of the objects in the thermal images. It can detect and classify 

the thermal images in computer vision. 

Output Layer:  Finally, the classified images are produced in the output layer 

Proposed faster RCNN-SURF Algorithm 
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Input: Extracted features, Feature vector V or Feature point 

Output: Classified Images 

Step 1:  To read the Feature vector V 

Step 2: To initialize feature point V with SURF method based on the extracted color and texture 

features (CO2 emission, Temperature, Torque, speed, air gap, etc) 

Step 3: To fix the feature point in the main position’s main direction depending on the chosen 

length’s main direction that has been divided into 4 x 4 sub-regions 

Step 4: To compute feature descriptor by SURF algorithm using the following feature vector: 

                                , ,  , V dx dy dx dy                                                                      (5) 

 Where,  dx  denotes the Haar wavelet response in the horizontal direction, dy  represents 

the Haar wavelet response in the vertical direction.  

Step 5:  To gather dx  and dy  response in a horizontal and vertical direction independently in 

every sub-region and afterward, to gather dx  and dy  separately for getting the 

intensity variation’s polarity in the thermal image. 

Step 6:  To compute the matching process, in which the feature point’s SURF descriptor of the 

target inductor thermal image can be matched with the feature point’s SURF descriptor 

of the reference inductor thermal image. 

Step 7: To use matched features as the input of faster R-CNN that establishes a set of regions 

with the predicted values. 

Step 8: To train a faster R-CNN model with extracted and matched features. 

Step 9: To re-match the features of the target thermal image with features of reference images by 

R-CNN with the help of the training and testing process to eliminate mismatched features 

that have been made by SURF for the fault detection and classification accuracy 

improvement. 
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Step 10: To detect and classify Induction motor’s Fault into bearing, stator, and rotor faults in the 

target thermal image according to the accurately matched features 

Step 11: Stop 

 By using this proposed classifier, the motor faults are detected and classified at an early 

stage. The early detection can be used to reduce the energy consumption in induction motor and 

also used for energy preservation. 

2.5. Efficiency estimation using Finite Element Method 

 Finally, the efficiency of a healthy induction motor can be estimated by applying the 

finite element method through the Tensorflow tool. Every finite element simulations can be done 

in the stator and rotor flux reference frame. In the finite element simulations, both stator and 

rotor currents will be imposed. A resulting induction machine flux distribution’s snapshot for 

stator current 0.55A and 1280rpm speed has been established in figure 7.  In figure 7, rotor and 

rotor bars, stator and stator bars, shaft, and air-gap are separated using the finite element method 

to estimate input and output power of induction motor for the efficiency estimation of induction 

motor. 

 The efficiency can be defined in the form of the ratio between output to that of input and 

it is given by: 

                                        
Output

Efficiency
Input

                                                                            (6) 

 In this study, 0.5hp three-phase induction motor’s rotor and stator efficiency are 

estimated using the following equations (7) and (8): 

                   
2

       
 

   

mProtor output Gross mechanical power developed
Rotor efficiency

rotor input rotor input P
               (7) 

                         
   

 
 

Stator output
Stator Efficiency

stator input
                                                              (8) 
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 The 0.5hp induction motor efficiency is calculated using the ratio between motor’s 

electrical input to the motor and power developed at shaft and it is given by: 

                    
     

     
       

out

in

Ppower developed at shaft
Motor Efficiency

electrical input tothemotor P
                                          (9) 

 The efficiency between healthy and fault induction motor has been illustrated in 

figure 8, from the below comparison chart 8, the faulty motor has taken low efficiency compared 

to the healthy motor because of bearing fault motor can take high voltage output power during 

the operation; as a result, the energy consumption is increased. Hence, the energy is preserved by 

using the proposed method through the early detection of motor faults.  

3. Results and discussions 

.  The experimental of the proposed method can be done under the various load conditions 

such as full load, half-load, and no-load using the Tensorflow tool.  In this work, the image 

preprocessing and the proposed machine learning methods are written in python 3.5 with the 

Tensorflow as backend and run on the Windows 64-bit operating system shown in table 1. The 

specifications of the induction motor and the thermal camera have been summarized in table 2. 

In this experimental result, the attained induction motor’s thermal images will be 132 (22*2*3).   

The sample images of this study are given in figure 9. In figure 9, the experimental thermal 

images of healthy and faulty induction motor are demonstrated. The image data details are given 

in table 3 for the feature extraction and classification. 

 Figure 10 shows the output images of color features representation in the RGB color 

space to classify motor faults. From chart 10, the color features entropy, mean, skew, and 

kurtosis are varied based on the standard deviation in the healthy and faulty induction motor.  

These feature graphs are obtained from the Tensorflow tool, in which, green color represents the 

rotor fault, red represents the stator fault, black represents the bearing fault, and blue represents 

the healthy motor. Hence, according to the five-color features, the three-phase induction motor 

faults are classified. Figure 11 shows the confusion matrix for induction motor fault detection in 

trail results.  
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 The performance of the proposed method is estimated through no load, half load, and full 

load conditions, in which i.e. each data set regarded as of 33 thermal images that have been 

divided into two groups such as training and testing data sets for the fault classification. The 

acquired thermal images can be compared under the healthy and faulty conditions in the 

induction motor. Besides, the performance of the proposed method is compared with existing 

methods ANN, CNN, and SVM [27] in terms of Accuracy, Sensitivity and Specificity, error rate, 

and false classification ratio. Finally, the efficiency of the healthy and faulty motor is compared 

through finite element analysis.  

 In this work, thermal images are captured at three load conditions such as no-load, half 

load, and full load. Thermal signatures are provided based on temperature range at no load, half 

load, and full load conditions that have been illustrated in figures 12, 13, and 14. 

           The accuracy, sensitivity, and specificity of proposed fault classifier and existing methods 

have been estimated using the following equations (10-12): 

                           
TP

Sensitivity
TP FN




                                                                         (10) 

                          Specificity
TN

TN FP



                                                                         (11) 

              
TP TN

Accuracy
TP FN TN FP




  
                                                            (12) 

Where TP indicates the True Positive, TN represents the True Negative; FP will be the 

False Positive, and FN represents the False Negative. A number of properly detected and 

classified motor fault pixels in the thermal image have been defined by the TP and the number of 

imperfectly detected and classified motor fault pixels has been explained by the TN.  FP will 

determine the number of incorrectly detected and classified fault part pixels of the thermal 

image, and the number of incorrectly detected and classified non-fault part pixels in the thermal 

image is defined by FN. 

Figure 15 shows the proposed and existing methods’ performance analysis. From figure 

15, the proposed fault classifier has taken 95.8% accuracy; 94% sensitivity, and 93.9% 
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specificity during the motor fault detection in the specificity of the thermal image than existing 

methods ANN, CNN, and SVM. Hence, the proposed fault classifier can provide effective 

performance.   

The selection of thermography over vibration and current-based techniques for motor 

fault detection, Table 4 emphasizes thermography's unique advantages and its quantitative edge. 

Despite the higher initial cost of thermographic cameras, their extensive utility, coupled with 

lower maintenance needs, provides significant cost-effectiveness.  

Thermography's broad fault detection capabilities, effectively identifying both 

mechanical and electrical issues, mark a substantial advantage. It excels in early overheating 

detection, a key indicator of potential failures, thus enhancing preventative maintenance 

strategies.  

Thermography's ability to remotely detect faults is particularly beneficial for motors in 

hard-to-reach places, such as high altitudes or deep pits, ensuring safe and effective monitoring 

without direct access. The non-invasive nature of thermography provides a substantial advantage 

in these contexts. It enables remote inspection capabilities, eliminating the need for direct 

physical interaction with the equipment. Conversely, the application of vibration analysis in such 

settings is hindered by the logistical difficulties associated with the placement and maintenance 

of sensors in these hard-to-reach areas. While current analysis methods are somewhat more 

manageable, as they primarily require access to the electrical connections of the motor, issues 

related to the positioning and ongoing maintenance of these sensors still present notable 

challenges in such environments. 

Figure 16 shows the various analysis comparisons for fault detection. Figure 16 has 

demonstrated that the thermography method has given high percentage of fault detection 

accuracy in condition monitoring compared to the vibration and current analysis. 

 The comparison chart of error rate in proposed and existing methods has been established 

in figure 17. The proposed automated motor fault detection and classification system have given 

the low percentage of error rate during the fault detection and classification in the motor’s target 

thermal image compared to existing methods. 
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 The false fault classification ratio of presented and existing works is given in figure 18. 

From the comparison chart, it clearly says that the proposed integrated faster R-CNN-SURF 

classifier system can give a low percentage of false classification ratio in the process of motor 

fault classification compared to existing methods ANN, CNN, and SVM. Hence, an improved 

classifier can give effective fault classification in the target thermal image at an early stage. 

 Figure 19 shows the efficiency of the proposed efficiency and existing efficiency 

estimation method. In this study, efficiency has been estimated with the help of finite element 

analysis according to the speed and torque. In figure 19, the proposed method has given high 

efficiency compared to the existing theoretical efficiency estimation method. 

4. Conclusion 

 In this paper, improved image processing and machine learning methods have been 

used to detect and classify induction motor faults at an early stage using thermal images. 

Thermography emerges as a formidable method for motor fault detection, offering 

comprehensive benefits in operational safety, efficiency, and fault detection range. This makes it 

an invaluable tool in predictive maintenance, particularly in challenging operational conditions, 

thereby standing as a strong alternative and complement to vibration and current-based 

techniques. It is worked on thermal images of induction motor at various loading conditions and 

faulty conditions.  The image preprocessing has been done with second level 3D-DWT and the 

macro color texture features are extracted using Gabor filter, and micro color and texture features 

are extracted by GNS map. The faster R-CNN was integrated with the SURF method to improve 

the fault classification accuracy. In this enhanced classifier, the feature descriptor has been used 

with SURF for the feature selection and matching process and afterward, faster-RCNN is 

computed to fault classification by eliminating the mismatches according to the selected features. 

The induction motor faults such as bearing faults, stator faults, and rotor faults has been detected 

and classified at an early stage.  Finally, the efficiency of the healthy and faulty motor is 

estimated with the help of finite element analysis. Hence, the energy will be preserved through 

early fault deletion using this proposed method during the operations. 
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Figure 3 Sample thermal images (a) Healthy motor, (b) Rotor Bar Fault (c) Abnormal 

Stator (d) Normal Bearing (e) Abnormal Bearing (f) Inner race defect (Bearing) (g) Outer 

race defect (Bearing) (h) Healthy Bearing (i) Lubrication Lack (Bearing) 
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.Figure 4 Two-level 3D-DWT 

    

 

 

 

 

 

 

 

 

 

  

 

 

Figure 5 Integrated faster RCNN-SURF  
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Figure 6 Proposed faster RCNN-SURF Architecture 

 

 

 

Figure 7 Induction Motor flux distribution in 2D view for 0.55A stator current and 
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Figure 8 Efficiency between healthy and fault induction motor  
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Figure 9 Sample images with no load, half load, and full load for healthy and bearing faults 

  

  

Hottest 

Region 

HEALTHY WITH NO LOAD 

OUTER RACE DEFECT WITH HALF LOAD 

OUTER RACE DEFECT WITH NO LOAD 

HEALTHY WITH HALF LOAD  

HEALTHY WITH FULL LOAD  OUTER RACE DEFECT WITH FULL LOAD 

INNER RACE DEFECT WITH NO LOAD 

INNER RACE DEFECT WITH HALF LOAD 

INNER RACE DEFECT WITH FULL LOAD 



29 
 

 

  

Figure 10 Features presentation in RGB color space for the fault classification: (a) Entropy 

versus standard deviation, (b) Skew versus standard deviation, (c) Mean versus standard 

deviation, (d) Kurtosis versus standard deviation 

  

  

(a) 
(b) 

(c) (d) 



30 
 

 

Figure 11 Confusion matrix for fault detection   

 

 

 

 

 

 

Figure 12 Thermal signatures at no load condition 
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Figure 13 Thermal signatures at half load condition 

 

Figure 14 Thermal signatures at full load condition . 

 

Figure 15 Performance analysis of proposed method 
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Figure 16 Comparison chart of various analysis for fault detection 

 

Figure 17 Error rate 

 

Figure 18 False classification ratio 
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Figure 19 Efficiency of proposed and existing methods 

Table 1 Technical Specifications 

Parameters Specifications 

Processor Intel core I3 

Hard Disk         500 GB 

Monitor 15 VGA Color. 

Mouse Logitech 

RAM  2GB 

Operating System Windows 7, 64 bit 

Program Software TensorFlow Tool 

Program Language Python 3.5 

 

 

Table 2 Specifications of induction motor and thermal camera 

S.No. Device Name Specifications 

1. Induction motor Power Supply : 3 phase, 440V, 50Hz, 0.55A 

Power : 0.5 HP 

Speed:  1280rpm 

2. Thermal Camera Storage Temperature range: -20°C to +2000°C 

Spectral Range : 7.5 to 13 m 

Thermal Sensitivity: <0.05
o
C@30

o
C 

Pixels: 640 × 480 

Focal Length: 13.1mm 
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Table 3 Image data details 

Machine 

conditions 

Data 

file 

Image 

data 

dimension 

Total 

data 

file 

No.of features 
Features dimension 

at each level 

Healthy 33 

640480 132 

Five features 

(Skew, entropy, 

mean, standard 

deviation, and 

kurtosis) 

120   6 
Stator Fault 33 

Rotor Fault 33 

Bearing Fault 33 
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Table 4 Comparison between motor fault detection methods 

Parameter 
Thermography-

Based 
Vibration-Based Current-Based 

Detection Method Non-contact 
Contact (requires 

accelerometers) 

Contact (requires 

MCSA sensors) 

Fault Types 

Detected 

Both electrical and 

mechanical faults 

Primarily mechanical 

faults 

Primarily electrical 

faults 

Early Detection of 

Overheating 

Very effective in 

early detection of 

overheating 

Less effective in 

early detection of 

overheating 

Less effective in early 

detection of 

overheating 

Preventive 

Maintenance 
Very effective 

Effective for certain 

issues 

Effective for certain 

issues 

Inspection 

Coverage 
Large coverage 

Limited to specific 

areas where sensors 

are installed 

Focused on electrical 

characteristics; 

limited mechanical 

insight 

Interference and 

Environmental 

Independence 

Free from 

electromagnetic 

interference and 

environment 

independent  

Sensitive to external 

noise and vibrations 

Performance can be 

affected by load 

changes 

Applicability in 

High-Voltage 

Settings 

Yes 
May require 

additional measures 

Yes (depending on 

the sensors) 

Reliability 
High (consistent in 

diverse conditions) 

High (accurate for 

mechanical issues) 

Moderate (can vary 

with load conditions) 

Cost (Long-Term) 

Cost-effective (broad 

detection, less 

maintenance) 

Higher (due to 

maintenance and 

installation) 

Moderate 

Safety and 

Operational Impact 

High (non-intrusive, 

no direct access 

needed) 

Moderate (noise, 

installation 

challenges) 

High 

Performance in 

High Heights/Deep 

Pits 

Very effective 

(remote operation 

advantageous) 

Challenging (access 

and sensor placement 

issues) 

Effective (limited by 

sensor placement, but 

feasible) 

Equipment 

Requirement 

Standard 

thermographic 

equipment 

Requires specialized 

vibration analysis 

equipment 

Requires specialized 

MCSA sensors 
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