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Abstract. Some Business Process Management Systems (BPMSs) have been developed
in the �eld of smart factories. These systems are typically based on technical or production
areas and technical processes. However, many existing systems, with respect to technologies
used in smart factories and also the dynamic nature of the processes in these environments,
are not able meet requirements of smart factories in the business process execution. The
present study presents a new prototype of BPMS architecture based on smart factories'
characteristics. This prototype has several components. In the monitoring component,
process management can take place through process mining techniques inside a de�ned
data analysis system for collecting event logs from big data. This component could operate
based on control and optimization modules. The control module is applied to discover
process models and their conformity with models extracted from business process analysis
using Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Adaptive Boosting
(AdaBoost) algorithms. Also, the optimization module can improve the processes model
based on Business Process Intelligence (BPI) technique and Key Performance Indicators
(KPIs). The results of the new prototype execution on a case study indicate that the
proposed architecture is highly accurate, complete, and optimal in process management for
smart factories.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

The Fourth Industrial Revolution (Industry 4.0) cre-
ated the smart factory, including new technologies such
as Cyber-Physical Systems (CPSs), the Internet of
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Things (IoTs), cloud computing, big data, and smart
sensors. CPSs can monitor physical and production
processes through di�erent computer algorithms that
communicate with each other and humans using the
IoT structure. Also, produced organizational services
could be applied with other partners using the cloud
environment [1].

A Business Process (BP) contains a set of ac-
tivities in an organizational environment to achieve
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a business goal [2]. Business Process Management
(BPM) consists of principles, methods, and tools that
integrate management sciences, Information Technol-
ogy (IT), and industrial engineering [3]. In fact, BPM
supports the life cycle of BP. In this case, Business
Process Management System (BPMS) can be used as
a software tool for the technical support of BPM.

BPMS architecture [2,4] includes several compo-
nents employed to hold up the BP life cycle. These
components include a main component entitled pro-
cess engine, which is applied for executing modeled
BPs with a speci�c modeling language (e.g., Business
Process Model & Notation 2.0 (BPMN 2.0)) [5]. An-
other key component is a user interface that interacts
between users and the process engine for process man-
agement [6]. Also, control and monitoring of processes
are other functions of inward BPMS. These processes
can be done by data extraction from executed process
instances. In this case, they have been considered to
decide in the context of BPs optimal execution. These
operations can be performed through a new group
of techniques, such as process mining [7]. Process
mining uses digital traces of processes to understand
their visualizations and measure the performance of
BPs [8]. The techniques like process mining have
been applied as an appropriate tool in BPM to en-
rich the management of the smart factory in various
aspects [9].

In this factory, process execution is in a smart
status based on new technologies (e.g., big data, IoT,
and cloud computing). In this case, big data ana-
lytics can provide useful information for information
systems [10]. This function is possible by smartly
collecting and analyzing huge amounts of data from
various sources (e.g., market trends and future de-
mands) [10]. Also, IoT, as a dynamic information net-
work, includes objects connected to the Internet, such
as sensors, actuators, and other smart equipment [11].
Besides, scalable resources have been provided using
cloud computing dynamically [12]. Hence, due to
the dynamic nature of smart factories' business and
their various potentials, including controlling dynamic
BPs [13], di�erent systems and tools (e.g., BPMS)
should be applied to control processes under dynamic
conditions. Initially, a dynamic BP has not a precisely
de�ned execution. Thus, its execution states are
changed at runtime under new conditions (e.g., changes
in business rules at runtime). In static BPs, however,
the sequences of activities execution are determined at
the early stage [14]. Many models and frameworks have
been presented to describe smart factories' character-
istics [15]. One the other hand, traditional approaches
inward information systems architecture do not cover
dynamicity in BPs requirements [14]. As a result,
classic information systems such as BPMSs do not
cover these requirements adequately. Hence, the main

gap is the absence of dynamic BPMS development in
the smart factory.

To obtain competitive conditions in the market,
rapid response to the customer, response to a wide
range of changes in the factory environment, and
further business-IT alignment, smart factories require
a new generation of BPMSs to manage their BPs in
dynamic conditions. Accordingly, this paper presents
a new extension of a dynamic BPMS to BP monitor-
ing and executing in a smart factory. Overall, the
mentioned goal can be achieved by responding to the
following research questions:

RQ 1: What is the best architecture for designing
a new extension of a BPMS based on smart factory
characteristics?
RQ 2: How can the use of the integration of
big data analytics and process mining techniques
in process monitoring inward the proposed BPMS
appropriately?

The �rst research question considers the best
architecture of BPMSs based on the smart factories'
characteristics. In this case, new components are
required to develop. The second research question
focuses on the role of big data analytics and process
mining techniques in processes monitoring inward pro-
posed BPMS. The main contributions of this study are:

� Presenting a new architecture of BPMS which can
apply in smart factories;

� De�ning a data analysis system for collecting event
logs from big data;

� Monitoring the behavior of smart factories' pro-
cesses through process mining techniques inside a
de�ned data analysis system.

The remainder of this paper is organized as fol-
lows: Section 2 presents the literature review. Section 3
de�nes the proposed BPMS architecture. Section 4
provides the performance evaluations. Section 5 dis-
cusses the results. Finally, Section 6 presents the
conclusions and future works.

2. Literature review

Several studies have been proposed by di�erent re-
searchers in the context of BPMSs, process mining
techniques, and processes' optimization and control
methods. In this section, previous BPMS-related
studies are reviewed. These studies are described in
the following.

2.1. Process mining techniques
Process mining is employed to analyze the behavior of
an organization by extracting knowledge from event
logs and using techniques to discover, monitor, and
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enrich process models [16]. Process mining consists of
three sections: process discovery involves techniques
employed to discover process models based on event
logs information. Conformance checking includes al-
gorithms used for reasons such as inspecting the con-
formance between the event log and the process model
and checking the conformance between the discovered
model and the observed behavior [17]. Enhancement
contains techniques employed to enrich or develop
process models.

Several process discovery algorithms, such as
alpha, alpha+, heuristic mining, etc., have been pre-
sented in the literature. The alpha algorithm extracts
process models by analyzing the relationships between
activities in an event log. In this regard, Van der
Aalst et al. demonstrated the ability of this algorithm
to discover a class of workow processes [18]. One
of the limitations of the alpha algorithm is that it
does not detect short loops. To solve this problem,
De Medeiros et al. presented an extended version
of this algorithm called the alpha+ algorithm [19].
A heuristic mining algorithm [20] can process noise
event logs. The disadvantage of this algorithm is
the inability to identify non-free choice or non-local
structural patterns.

One of the methods of discovering process models
is using meta-heuristic algorithms. In this regard,
de Medeiros et al. [21] applied the genetic algorithm
to discover process models. They used the genetic
algorithm to take advantage of the global searches
performed by these types of algorithms. In [22], a
combination of Particle Swarm Optimization (PSO)
and simulated annealing algorithms was suggested
for process mining and extraction of optimal process
models. The researchers' goal in the proposed method
was to improve the execution time of the algorithm and
the quality of the extracted models. Also, Alizadeh and
Norani [17] proposed a new algorithm called ICMA to
discover process models. To this end, they integrated
the imperialist competitive algorithm into their pro-
posed algorithm. Xu et al. [23] proposed a combination
of alpha and genetic algorithms to discover process
models. They believe that the proposed algorithm
provides better performance than the alpha algorithm.

Some conformance-checking algorithms have been
proposed in the literature, including Footprint, Re-
play, and Alignment. In [7], these approaches are
mentioned and discussed. Also, in [24], a new token-
based replay technique is suggested to increase speed
and scalability in the �eld of conformance checking.
They believed that this approach could provide more
accurate diagnoses, thereby preventing problems such
as token ooding. This new technique is implemented
by the PM4Py library. Burattin et al. [25] presented an
online conformance-checking method using behavioral
patterns evaluation. These authors aimed to identify

deviations online so that they can be retrieved before
the execution of the process instance is completed. De
Leoni et al. [26] presented a method for aligning event
logs and process models by considering perspectives
such as data and resources. According to these authors,
unlike other conformance-checking methods that focus
on control ows, the proposed method also considers
data and resources when conformance checking of
process.

2.2. BPs monitoring methods
In the modern business world, organizations must reor-
ganize BPs to achieve success in the market [27]. This
goal is achieved by monitoring processes that include
control and optimization. Saraeian et al. [28] devel-
oped a new controller component for inward uncertain
BPMS. This component monitors the critical infras-
tructure in the automatic closed-loop supply chain.
Vera-Baquero et al. [29] presented an architecture that
integrates big data analytics and BPM in a distributed
environment. In this case, users can analyze the results
of BP execution. Also, di�erent tools (e.g., SAS
business intelligence and analytics) are presented to
control the processes. Pourmirza et al. [30] designed
a BPMS reference architecture that can control the
behavior of process instances by using such tools.
Krumeich et al. [31] proposed hybrid architecture of big
data analysis methods and complex event processing
techniques to control processes in a sample company
in the �eld of Industry 4.0. In [32], a solution was
proposed for re-engineering BPs and optimizing them.
The proposed approach can by identifying the priority
of the activities, detect the insigni�cant activities that
consume a lot of time and resources. Duran et al. [33]
presented a method for analyzing BPs based on a
machine-learning algorithm.

In the context of meta-heuristic methods, Vergidis
and Tiwari [34] used a developed version of the ge-
netic algorithm, i.e., Non-dominated Sorting Genetic
Algorithm II (NSGA-II), to optimize the features of
the BPs design. This optimization aims to design
BP through optimal features such as cost and process
execution time. In [35], a resource allocation method
was developed to optimize resource allocation using the
improved PSO algorithm. Also, the proposed method
considers di�erent indicators of process performance
evaluation, such as resource cost and time. Mahammed
et al. [36] presented an extended version of genetic
algorithm to optimize BPs. This method uses a multi-
population genetic algorithm for optimal design of
processes.

As mentioned earlier, process mining techniques
are among the methods of discovering and optimizing
BPs [22]. Jiang et al. [37] presented a new method
to analyze and optimize BP models using the process
mining technique. This method is based on Service-
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Oriented Architecture (SOA). Also, Yang et al. [38]
proposed an architecture to analyze production pro-
cesses through big data and process mining techniques.
Hongtao et al. [39] de�ned a process mining architec-
ture based on BPs optimization. This architecture
uses knowledge about processes and hidden relations
for optimization goals. This architecture employs
a measurement module to investigate the optimized
process's performance.

2.3. Architectures of BPMSs
2.3.1. Reference architectures
In terms of the reference architecture of BPMS,
Hollingsworth provided workow reference architecture
for Workow Management System (WFMS) entitled
workow management coalition. This researcher also
introduced essential components and interfaces of the
WFMS [40].

As shown in Figure 1, this architecture consists of
several components with di�erent functionalities, such
as analysis, modeling, and description of BP using
process de�nition tools. Workow API and inter-
change formats can regulate the relationship between
system components and workow control software.
Also, workow execution service includes one or more
workow engines employed to create, manage, and
execute workow instances. In addition, workow
client applications include software that interacts with
the end user. Moreover, invoked applications include
services, applications, or invoked programs for di�erent
purposes. Finally, the administration and monitoring

tools component can monitor and manage workow
engines.

Grefen and de Vries presented Mercurius as an-
other reference architecture. This reference architec-
ture was designed for a mature WFMS for mobile work-
ow customers in heterogeneous environments [41].
BPMSs have been becoming pervasive since 2005.
These systems are mostly based on SOA technologies
and protocols. In this respect, Arsanjani et al. [42],
proposed a reference architecture for these systems,
entitled service-oriented solution stack. This system,
provides reference architecture based on SOA in nine
layers to enrich the business. A review of di�erent
BPMS architectures characteristics is presented in
Table 1.

Although each of the above architectures consid-
ered signi�cant points (e.g., exibility, proper interac-
tion with end-user, etc.), the critical points that are less
addressed are smart factories' dynamic and scalable
conditions. In real life, managing and monitoring smart
factories' changes is essential. Therefore, considering
dynamic conditions in architectural modeling is a
research gap in this �eld.

2.3.2. Commercial BPMSs
Meidan et al. introduced varieties of open-source or
commercial BPMSs that any organization can use [50].
A review of the features of some of these BPMSs is
presented in Table 2.

Commercial BPMSs cannot support dynamic pro-
cesses [51] and can primarily act in a static state. Also,

Figure 1. Workow Management System (WFMS) architecture.
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Table 1. A review of BPMS architectures characteristics.

References Architecture characteristics

[43] The �rst reference architecture
for scienti�c WFMS is presented using SOA features

[30]
A de�ned reference architecture for the

BPMS entitles BPMS-RA intending to integrate real-time
analysis of BP inward the proposed architecture

[44] A developed BPMS architecture based on
blockchain technology for use in multi-chain environments

[45] A workow that is de�ned by combining workow
and web service technologies. This workow is designed based on SOA

[46]
The architecture of the QoS-aware

fault-tolerant workow-based system is employed
in the cloud computing environments

[47] A scalable BPMS architecture for deployment
in the cloud computing environment

[48] A new workow architecture for
distributed simulation on cloud

[49] A presented architecture called BPMS-RPA based on
the integration of robotic process automation technology in a BPMS

due to the dynamicity of business rules in dynamic pro-
cesses [50], business rule changes cannot be supported
in commercial BPMS. Thus, these types of BPMS do
not have optimal functionality in smart factories.

2.3.3. Academic BPMSs
Delgado et al. [6] created a generic BPMS user portal
using the integration of the process engines (such as
Bonita and Activiti). This BPMS consists of a process
engine and a web user portal. Saraeian et al. [52]
designed an uncertain BPMS based on a new engine
through di�erent standards and interfaces de�nitions.
This BPMS was implemented for managing uncertainty
at runtime. Schulte et al. [53] designed an elastic BPMS
to manage processes that are executed using cloud
resources. This architecture has di�erent capabilities,
such as scheduling and decentralized coordination.
Alexopoulou et al. [54] proposed another BPMS ar-
chitecture using the approach of events-based process
modeling for dynamic processes. These models require
BPMS architecture with an engine that acts based
on receiving events. Vasilecas et al. [14] proposed a
new simulation and modeling method of dynamic BPs

based on context changes and business rules changes at
runtime.

Based on the above studies, it is concluded that
when an event happens, the BPMS must be able to
record information related to the event and notify other
sections to perform some functionalities to deal with
it [54]. As a result, employing a classic BPMS to
execute dynamic processes is inappropriate and avoids
exibility [54]. Hence, there is a need for a BPMS that
fully supports the changes in business rules due to the
dynamic conditions of smart factories.

2.3.4. BPMSs applications in smart factories
Researchers have presented di�erent approaches to
improve smart factories challenges through BPMSs.
Kozma et al. [55] proposed a workow based on
SOA for production systems. They believe that the
proposed approach can meet the requirements of smart
factories such as decentralization, modularity, etc.
Seiger et al. [56] presented an architecture integrating
Industrial IoT (IIoT) and BPM for smart factories.
This approach shows the bene�ts of employing BPM
technology for production processes in IIoT. Gorski et
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Table 2. A review of commercial BPMSs [50].

BPMS
name

Modeling
language

Design
(supported

programming
language)

Deployment
metrics

Monitoring &
control

Analysis
metrics

Bonita BPMN2.0 Java Ability to integrate into
other services and systems

Technical monitoring and control,
changing role, resource,
and workload balance

Process veri�cation
and simulation

Activiti BPMN2.0 Java and
JavaScript

Ability to integrate with
other services and systems

Changing role, resource,
and workload balance

Process veri�cation
and simulation

jBPM BPMN2.0 Java
Distributed execution and
ability to integrate with

other services and systems

Changing role
or resource

Process veri�cation and
simulation; Using historical

data for analysis

Process maker BPMN2.0 JavaScript
and PHP

Ability to integrate with other
services and systems

Changing role, resource,
and workload balance

Using historical data for
analysis through events log

uEngine BPM XPDL Java Ability to integrate with
other services and systems

Business monitoring
and control

Using historical
data for analysis

YAWL YAWL Java Ability to integrate with
other services and systems

Changing role, resource,
and workload balance

Process veri�cation
and simulation; Using

historical data
for analysis

Camunda BPMN2.0 Java and
JavaScript

Ability to integrate with
other services and systems

Changing role, resource, and
workload balance

Process veri�cation and
Using historical data

for analysis

Table 3. An overview of some of BPMSs in smart factories.
References Issue/challenges Proposed solution Results

[60]
Delay in reaction time in terms of

interaction between users and
machinery cause low-performance products

Presenting an architecture to
collect data of sensors and

apply them in BPMS using IoT

Production optimization, reducing
reaction time to tasks execution,

and increase tasks execution quality

[61]
Monitoring the status of running processes

and reacting to conditions that
occur during runtime

Proposing an architecture by
employing MAPE-K (Monitor,
Analyze, Plan, Execute, and
Knowledge) control loops for

adaptive WFMS in smart factories

Identify failures and resolve
them autonomously

[62]
The need to orchestrate devices'

services to manage unpredictable conditions
in the manufacturing system

Providing an architecture to
manage business processes based on
Asset Administration Shell (AAS)

Orchestration of device services
by business processes and
AAS and as a result more
interoperability between
manufacturing systems

[63]
Using uncertain processes to
carry out smart productions

in smart factories

Presenting a developed uncertain
BPMS architecture to manage

uncertain processes in
the smart factory

Orchestration of services provided
by uncertain business

processes in the �eld of
smart productions

al. [57] presented a workow for predictive maintenance
in support of manufacturing operations. The results
show that this method can enrich maintenance pro-
cesses. In [58], a workow architecture is suggested
for a production environment in smart factories. This
architecture can provide bene�ts such as reducing the
time and cost of transactions. Li et al. [59] proposed

a new workow for production scheduling in smart
factories. This method can provide optimal scheduling
for production in these environments. In this research,
the authors have used Genetic and Tabu Search algo-
rithms for optimization. Table 3 provides an overview
of BPMSs application inward smart factories.

In general, this research aims to monitor BPs
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and present an architecture based on the dynamic
and scalable structure of smart factories. In the �eld
of BP monitoring, previous studies did not consider
process control and optimization together. Therefore,
in this study, control and optimization of processes
are considered simultaneously in the monitoring com-
ponent. Also, the proposed method fully supports
improving BP rules integrated with big data analysis
to obtain better accuracy and e�ciency. Regarding
architectural design, by studying commercial BPMSs,
academic BPMSs, and reference architectures, it was
concluded that the existing designs did not consider
the dynamic and scalable conditions of smart factories
as they should. Thus, the present research o�ers a new
architecture to model the dynamic conditions of smart
factories.

3. Proposed BPMS architecture

As mentioned before, to �ll the mentioned gap, the

present study develops a new prototype of BPMS
architecture. This architecture aims to enrich the
existing architectures to employ an architecture in
smart factories to execute and control BPs. Figure 2
illustrates di�erent de�ned components in the new
architecture.

These components include several modules inter-
acting with the architecture's central core. The process
enactment service includes one or more process engines
employed to execute BP instances. Also, dynamic
BPs should react to business rules, and environment
changes at runtime [14]. In this case, business rules and
events of the business environment should be de�ned in
the rules engine component. Accordingly, after de�ning
business events, a set of rules are selected to execute
the next activities in BP. The client applications com-
ponent is another main component containing di�erent
applications used for user interactions with process
engines to perform desired activities.

The present study developed new components

Figure 2. The proposed BPMS architecture.
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(e.g., the modeling and monitoring components) con-
taining several modules. They are described in more
detail later.

3.1. Modeling component
Smart factories encounter dynamic processes that can
use real-time data generated with the IoT. Thus,
BPMN2.0, as a common modeling language, is un-
suitable for our purpose due to insu�cient elements
for this type of modeling. Therefore, the present
study developed the BPMN2.0 language with accepted
new elements of reference [64] that provides di�erent
elements for modeling this type of process. These
elements are presented in Table 4.

Therefore, the extended version of the BPMN2.0
language could be modeled di�erent dynamic processes
inward smart factories.

Also, the metamodel of the new extended model-
ing language from the BPMN2.0 language is presented
in Figure 3.

3.2. Data analysis
Due to using new technologies such as the IoT and
big data in smart factories, there is a large amount
of data for mining. In addition to the structured data,
streaming data related to IoT (such as IoT sensor data)
are also considered in the proposed architecture. Since
traditional approaches to batch data processing cannot

be used for streaming data, big data analysis techniques
can be used to process streaming data. Figure 4
demonstrates the method used to analyze big data.

As shown in Figure 4, the proposed data analysis
method considers both structured data and stream-
ing data. First, to analyze streaming data, parallel
and real-time processing is performed on this data
using Apache Spark Streaming tool. The result of
the processing is stored in the Hadoop HDFS �le
system. Then, from the structured data, event logs
are extracted and stored in HDFS. In this study, the
Apache SparkSQL tool was used to create a query on
HDFS. Using the above tools allowed for preparing log
�les for the process mining.

3.3. Monitoring component
The proposed monitoring component in the new ar-
chitecture provides the control of executed processes
status. This component includes control and optimiza-
tion modules with several functionalities, described in
the following sections.

3.3.1. Control module
In the proposed architecture, the control module allows
controlling the status of executing processes. This
control includes two types of functions: 1) a control
of the behavior of executing process models and 2)
a control of running process instances. First, the

Table 4. New extension elements of the BPMN language [64].

Element Symbol Description

Actuation task Data or commands that are sent to an actuation device

Sensing task Data that is read or received by a sensor device

Mobility A process, action, or activity performed by a mobile device

Real world data object A data object used by an IoT device

Real world data store Storage of data, such as a repository to collect sensor data

IoT device An IoT device includes its components, e.g., sensor and actuator.
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Figure 3. Metamodel of the integration of BPMN2.0 version and extended version.

Figure 4. Data analysis method.
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behavior of the process models is evaluated using the
Process Model Controller function, and then the Pro-
cess Instance Controller function controls the running
process instances. Hence, these functions' inward
control module provides strong support for monitoring
processes.

Process model controller function
As mentioned earlier, the executable data is provided
as an event log concerning BPMS. The process model
controller function could be controlled the behavior
of BPs through the process mining technique. Thus,
conformance checking step inward process mining can
compare process model execution with past process
models extracted from event logs using the discover
operation. The executions can continue if the pro-
cess models run truly; otherwise, the improvement
operation should be performed for investigated process
models (Figure 5).

In this paper, NSGA-II, as an extended version of
the Genetic Algorithm (GA), has been used to discover
the optimal process models. The advantages of this
algorithm are as follows:

� It provides a solution close to the Pareto optimal
solution using non-dominated sorting techniques;

� It uses crowding distance techniques to maintain
diversity in solutions;

� It preserves the best solution of the current popu-
lation in the next generation by using elitist tech-
niques.

The remarkable point is that conventional process
mining algorithms can produce a single process model
that may not describe recorded behavior well. In this
case, NSGA-II could be employed for generating several
process models from event logs [65]. In general, a
process model can be de�ned as a casual matrix as
follows [22,66]:

CM = f(In (ai) ; Out (ai)) ; 8i = 1:::ng ;
where ai is considered an activity (or task) in the event
log, In(ai) includes the set of activities preceding the ai
activity, Out(ai) includes the set of activities following
the ai activity, and n is the total number of activities.
Also, in discovering process models using NSGA-II,
individuals are casual matrixes. In other words, all
individuals in a population are de�ned by a set of
activities. The owchart of this algorithm is presented
in Figure 6.

In the process mining technique, NSGA-II starts
by creating an initial population of individuals (chro-
mosomes). Each individual is associated with a process
model. This algorithm can calculate the �tness metrics
for each individual. Also, the algorithm performs
the �tness evaluation and sorting of the population
based on a �tness function and dominating conditions,
respectively. In this case, two individuals in the pop-
ulation who have the highest �tness value are selected
as parents. This selection should be performed based
on the lower individual`s rank and its high crowding
distance.

Figure 5. Description of process model controller.
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Figure 6. The owchart of the NSGA-II for process model discovery.

In the next step, the initial population is inte-
grated using an obtained population from the mutation
and crossover operators. Thus, the members from
the top of the sorted list are selected, and other
remaining population members are discarded. These
selected members can make the next generation of the
population. All the mentioned steps are repeated until
the desired generation (the most optimal individuals)
as models can be employed.

Also, crossover and mutation operators were
used to create the individuals of the next generation.
Crossover is used to recombine existing individuals in

the current population. In fact, these individuals can
be generated by combining a subset of the causality
relations in the population. The pseudo-code of the
crossover operator is shown in Algorithm 1.

Also, in the mutation, some changes occur in
an individual. In other words, the mutation operator
may change a population's existing casualty relations.
Algorithm 2 presents the pseudo-code of the mutation
operator.

The discovered process models should be applied
in comparison with executing process models. This
comparison was made through the Adaptive Boost-
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Algorithm 1. Crossover operator [21,67].

Algorithm 2. Mutation operator [21,67].
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Algorithm 3. Pseudo-code of AdaBoost algorithm [66].

ing (AdaBoost) algorithm. AdaBoost is one of the
important algorithms in the machine learning �eld
with signi�cant characteristics such as computational
accuracy and simplicity [66]. Algorithm 3 presents the
AdaBoost algorithm to check the conformity of process
models.

Theoretically and empirically, this algorithm is a
powerful ensemble learning algorithm [68]. First, this
algorithm is trained through the discovered process
model. Hence, the algorithm trains weak classi�ers
constantly. Weak classi�ers focus on samples misla-
beled in the previous steps. Therefore, process model
execution is evaluated using the trained algorithm.

After controlling the behavior of executing pro-
cesses, smart factory performance criteria are calcu-
lated based on Key Performance Indicator (KPI) in the
process instance controller function. Calculating these
criteria is necessary to evaluate the performance of the
optimization process.

Process instance controller function
This function inward control module can control the
execution of process instances based on real-time data
of execution through Business Process Intelligence
(BPI) techniques. BPI can measure the activities of
a company and show the optimality and bottlenecks of
processes [69]. Smart factory performance indicators
are calculated based on runtime data. As shown
in Figure 2, the process evaluator is responsible for
evaluating performance indicators. These indicators
will use in the optimization module.

There are di�erent evaluation criteria to evaluate
di�erent sorts of processes. In this paper, the process
evaluator evaluates the process instances based on
Eqs. (1), (2), and (3) [70]. These criteria have been
identi�ed and used following the KPI standard.

� Time: Process duration utility was generated from
the activity ow, as follows [70]:

Time =
1
n

nX
i=1

����� mPj=1
R (ai;j)� Expi (ps)

�����
Expi (ps)

; (1)

where n is the number of end products in the process
ps, Expi is the expected duration for the ith product
in ps, and R(ai;j) is the real duration of the jth
activity of the ith product in ps.

� Cost: The total cost-utility of the process [70]:

Cost =

���� zP
i=1

P cos t (ps; ti)� P cos te (ps)
����

P cos te (ps)
; (2)

where z is the process cycle is divided into z parts
and P cos t(ps; ti) is the running cost of process ps
in time ti.

� Quality: Better process quality is achieved when
the cost e�ciency of transforming the process cost
into the value of the external customers is high [70]:

Quality = w � (1� CRPi) + (1� w)

� (1� PAi) ; (3)

where CPRi is the cost e�ciency of a certain process
that satis�es the external customers' demands, PAi
denotes the cost e�ciency of the process in support-
ing the primary activities to achieve their targets,
and W is a lower weighting (w) when there is more
concern about customer satisfaction.

3.3.2. Optimization module
As mentioned earlier, the process should be optimized
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when there is a di�erence between the running process
model and the model extracted from log �les. In this
paper, a BPI approach is used for process optimization
to identify and evaluate the e�ectiveness of BPs. In
this module, process-related rules are retrieved from
the rules engine, and the appropriate values are placed
in the process attributes. Regarding the multiplicity of
BPs and the high volume of data resulting from imple-
menting processes, determining the overall structure of
BPI depends on the expected output of organizational
managers. In this paper, analysis and optimization of
production processes are considered. The parts used
for optimizing the process model are shown in Figure 2.

1. Change rule: In this step, the de�ned rules of the
process are retrieved from the Rules Engine module
and are applied to the process model.

2. Metric analysis: The evaluation of smart factory
performance indicators is recalculated after apply-
ing new rules to the process model.

Optimizing process models will improve KPI in-
dicators and ultimately enhance the satisfaction of
organizational managers.

4. Performance evaluation

The proposed architecture was evaluated by consider-
ing a medium-sized food production smart factory. The
plant uses industry 4.0 technologies, including IoT and
collaborative robots. Event processing and production
management are performed in real-time. The factory
structure is designed based on a 3-layer model. The
bottom layer, called the physical layer, includes all the
physical devices. The next layer, called the data layer,
transfers data from machines to higher layers. Finally,
the highest layer, i.e., the control layer, controls and
optimizes the process.

For evaluation, we �rst simulated a virtual pro-
totype of the smart factory using Digital Twin tech-

nology. Digital Twin is a virtual set of infrastructures
and facilities that simulate a product in industry and
factories. We used DC-E DigitalClone software to
simulate the conditions of the smart factory.

4.1. Evaluation of the monitoring component
Control and optimization modules' inward monitoring
component was evaluated separately in the following
subsections.

4.1.1. Evaluation of the control module
The performance of the control module was assessed by
applying Python programming language and the ProM
6.10 tool. Several cases were tested through the latest
ProM version. This version uses extended versions
of plug-ins, which can provide better results than
other versions. Also, Hadoop 3.3.0, and Spark 3.3.1
were used in these experiments. Experiments were
performed on a computer with a triple-core processor,
12 GB of RAM, and 1 TB of hard disk space. The
features of the log �les are presented in Table 5.

Evaluation metrics
The process model discovery algorithm was evaluated
using �tness functions based on Eqs. (4) to (8) [66]
are shown in Box I: Also, the conformance-checking
algorithm was evaluated through the following concepts
and metrics with Eqs. (9) to (12) [7,66]:

� True Positive: Process instances successfully de-
tected as correct instances;

� False Negative: Process instances predicted as
incorrect instances but should be detected as correct
instances;

� True Negative: Process instances successfully
detected as incorrect instances;

� False Positive: Process instances predicted as
correct instances but should be detected as incorrect
instances.

Completeness =
all parsed activites of casual matrix� penalty

number of event log activites
; (4)

Penalty =
all mising relations of casual matrix

number of traces log � number of traces missing relation + 1
; (5)

Pr ecision = 1�max f0; Pd; Prg ; (6)

Pd =
1

all enabled activites of the discovered model
; (7)

Pr =
1

all enabled activites of the real model
: (8)

Box I
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Table 5. Features of the log �les.

Event log name Description Size on
disk

Number of
cases

Number of
events

Log1 of the
food production

Data about the food production system 72.8 MB 20135 309036

Log2 of the ERP Data of an ERP system 4.84 MB 34723 103469
Log3 of the SCM Data of supply chains containing structured data 91.1 MB 20652 180519
Log4 of the SCM Data of supply chains containing unstructured data 91 MB 3340 469977

Table 6. Selected parameters for the genetic algorithm.

Population
size

Generation Extra behavior
punishment

Mutation
probability

Crossover
probability

10 100 0.025 0.2 0.8

Table 7. Selected parameters for the heuristic algorithm.

Long distance Length two loops Loops length one Dependency

0.9 0.9 0.9 0.9

Table 8. Selected parameters for the NSGA-II algorithm.

Population size Generation Mutation probability Crossover probability

10 100 0.2 0.8

True positive rate =

# true positive
# true positive + # false negative

; (9)

False positive rate =

# false positive
# false positive + # true negative

; (10)

Accuracy =
# true negative + #true positive

N
; (11)

N = # true negative + # false negative

+# true positive + # false positive: (12)

Evaluation results of the control module
To compare the performance of the NSGA-II algorithm
with other algorithms, Tables 6, 7, and 8 show the list
of parameters selected for them. Also, Table 9 shows
the evaluation results of the process discover step based
on the log �les characteristics presented in Table 5.

In general, evaluating the metrics revealed that
NSGA-II and inductive miner are more suitable mining
algorithms. Inductive miner provided a better com-
pleteness value than NSGA-II, but its precision is less
than NSGA-II. As a result, new traces may be found
in the discovered model that is not seen in the event

log. Therefore, if the discovered process is not accurate
enough, the evaluation of deviations in it will not be
accurate. Hence, a more accurate algorithm is more
important in our work. Also, as shown in Table 9, when
a trade-o� between completeness and precision is re-
quired, and the overall quality of the discovered model
is important, the NSGA-II algorithm is a more reliable
option. On the other hand, a conventional process
discovery algorithm produces a single process model at
a time, but NSGA-II can simultaneously produce a set
of models by constructing a Pareto front process model.
In this way, the user can choose a process model with a
trade-o� between quality dimensions based on his/her
preferences. Therefore, based on a general evaluation,
it can be concluded that the NSGA-II provides better
performance in discovering process models.

Table 10 shows the evaluation results of the
process conformance check step based on the log �les
characteristics presented in Table 5.

Table 10 presents the robustness and optimal
performance of the AdaBoost algorithm to conform
process models based on di�erent logs. Obviously, the
high accuracy of this algorithm is the main reason for
obtaining optimal results.

4.1.2. Evaluation of the optimization module
As mentioned in Section 3, optimization occurs when
there is a di�erence between the executable model
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Table 9. Comparison of the NSGA-II algorithm in the process discovery step with other algorithms.

Algorithm name Completeness (%) Precision (%)

Alpha 61.4 79.34
Overall: 70.37

Genetic 0.78 0.48
Overall: 0.63

Heuristic 25.42 52.99
Overall: 39.20

Inductive miner 85.64 75.51
Overall: 80.57

NSGA-II (this paper) 80.29 100
Overall: 90.14

Table 10. Validation results of the AdaBoost algorithm in process conformance step.

Event log
name

True positive
rate (%)

False positive
rate (%)

Accuracy
(%)

Iteration

Log1 100 10.94 98.26 64
Log2 97.6 0 97.2 61
Log3 99.99 20.8 0.99 65
Log4 100 20.92 99.08 32

Table 11. Results of implementing the optimization module.

Process
ID

Total execution
time (executed

model)

Total execution
time (log �le

extracted model)

Need
optimization?

Optimization result
(executed model)

P#34 215 198 X 198
P#42 155 155 { {
P#59 94 115 X 115

and the model extracted from the log �les. Process
instance optimization is performed at the time of
process execution. Therefore, the optimization module
must be evaluated in real conditions.

Evaluation metrics
In a smart factory, each process follows some rules,
including threshold values based on standard KPI.
These thresholds are about the features of the process,
such as cost, time, and quality. In this study, some
rules are considered about the production processes as
follows:

� Rule 1: The maximum total execution time of a
production process is 200 ms. If the total execution
time of the executable model is more than 200 ms,
set a lower execution priority for the process;

� Rule 2: The minimum total execution time of a
production process is 100 ms. If the total execution
time of the executable model is less than 100 ms (i.e.,
the process failure), put the process in the process
queue for the next execution.

Evaluation results of the optimization module
After running the proposed BPMS in the simulation
environment, event logs are collected in log �les. If the
executable model is di�erent from the model extracted
from log �les, the related rule must be fetched from the
rules engine, and appropriate values must be applied to
the process. Table 11 presents the result of running this
procedure in the virtual smart factory.

Table 11 compares all process models with models
extracted from log �les based on the total execution
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time criterion. If the total execution time of the
executable model is di�erent from the model extracted
from the log �le, the rules related to the total execution
time are called and applied to the process to obtain the
desired result at the execution time of the processes.

5. Discussion

With the advent of smart factories and the need to
use the latest technologies, such as the IoT, big data,
and cloud computing, BPM has become increasingly
essential. However, one of the major challenges is
that existing BPMSs is not optimized enough to be
used in today's industries with high data volumes, high
dynamicity, and high scalability. In this regard, classic
BPMSs have a limited ability to execute BPs in a
dynamic environment such as smart factories. There-
fore, this paper presents a new architecture of a BPMS
for smart factories. In the proposed architecture, the
integration of Apache Big Data Analysis tools and
process mining techniques has been used for real-time
processing. In this way, big data processing is done
with considerable speed, and log �les are provided to
other modules more e�ciently.

Since the elements used in BPMN2.0 are not
su�cient for modeling dynamic IoT-based processes,
this paper developed a new extension of the BPMN2.0
language with accepted new elements of reference [64]
in the modeling component. The new extension makes
it possible to design dynamic business models more
accurately and in accordance with the dynamic nature
of smart factories.

As mentioned in the article, the conditions of
smart factories should be monitored according to their
changing status. These continuous changes are not
su�ciently considered in most existing BPMSs. There-
fore, the proposed architecture includes a monitoring
component. This component comprises a control
module to discover process models and their conformity
with models extracted from BP analysis. The NSGA-II
algorithm is used to discover the process models, and
the AdaBoost algorithm is used to check the conformity
of the process models. The monitoring component also
includes an optimization module to improve the BP
model based on the BPI approach and KPIs. Overall,
the ability of the optimization module to change the BP
rules is another advantage of the proposed architecture
over other BPMSs.

In the control module, the NSGA-II algorithm is
evaluated based on completeness and precision criteria.
Regarding its signi�cant advantages, such as non-
penalty constraint handling, it outperforms other algo-
rithms presented in Table 9. The AdaBoost algorithm
was evaluated by examining the false positive rate, false
negative rate, and accuracy criteria. Based on the
results obtained in Table 10, this algorithm has high

accuracy and a low error rate. The remarkable point in
this regard is that the AdaBoost algorithm has adapted
process models more accurately and quickly after using
big data solutions.

The process models are improved in the optimiza-
tion module using the BPI technique. As mentioned, to
increase exibility, a BPMS must be able to change the
BP rules. This requirement was met in the optimiza-
tion module. The evaluation results of the module in
Table 11 indicate the dynamics of the proposed system
in di�erent conditions.

Based on the suggested solutions, the proposed
architecture is suitable for implementing in a smart
factory with IoT and big data technologies. In fact,
the proposed architecture led to further aligning the
business with IT. In addition, it will be possible for
managers to achieve competitive conditions in the labor
market, respond quickly to customers, and response to
a wide range of changes. However, some constraints
in this paper have not been considered. Given the
uncertain nature of business conditions, considering
the uncertainty of BPs is a challenging issue that has
not been addressed in this study. In addition, due
to the variable conditions of the smart factory, the
management of the rules stored in the rules engine
is essential for managers and supervisors. Therefore,
changing the threshold values in the rules requires a
method not mentioned in this study.

6. Conclusions and future works

This paper presented an extended Business Process
Management System (BPMS) architecture prototype
to monitor a smart factory's processes. As illustrated
earlier, process characteristics in this type of factory are
based on new Information Technology (IT) technolo-
gies (e.g., big data, IoT, and cloud computing) and in
a smart status. Also, due to the dynamic nature of the
processes in smart factories, di�erent systems and tools
(e.g., BPMS) should be applied to control processes
in dynamic conditions. In this regard, classic BPMSs
have a limited ability to execute BPs in a dynamic
environment such as smart factories. Therefore, based
on the presented research questions, to answer the
�rst research question (RQ 1), this study developed
a new architecture of a BPMS by combining existing
architectures with functions provided by modern tech-
niques such as process mining and big data analytics
for smart factories. Also, the second research question
(RQ 2) has been answered in the way that in the
proposed architecture, the integration of Apache Big
Data Analysis tools and process mining techniques has
been used for processes monitoring. This paper mainly
attempted to propose a robust BPMS architecture
related to the smart factory features. This prototype
expands the current BPMS architectures by:
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� IoT-based dynamic processes modeler according to
the environmental conditions;

� A de�ned data analysis system for gathering event
logs from big data;

� Monitoring component that can control the behavior
of processes using control and optimization modules
inside powerful algorithms;

� The improvement in control of dynamic processes
due to using process mining techniques.

For future works, we envisaged several appropri-
ate research directions as follows:

� Employing a new component in the proposed ar-
chitecture to investigate security issues and prevent
possible attacks in cyber-physical environments;

� De�ning interoperability attribute inward proposed
architecture to reuse the components of this archi-
tecture in other architectures;

� Presenting the new proposed architecture through a
user-friendly graphical user interface with usability
for non-technical end users and appropriate software
development standards.
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