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Abstract—EEG signals in emotion recognition absorb special
attention owing to their high temporal resolution and their
information about brain activity. Different brain areas work
together and the activity of brain changes over time. In this
study, we investigate the emotion classification performance using
functional connectivity features in different frequency bands
and compare them with the classification performance using
differential entropy feature, which has been previously used
for this task. Moreover, we investigate the effect of different
time periods on classification performance. Our results on SEED
dataset show that as time goes on, emotions become more stable,
and the classification accuracy increases. Among different time
periods, we achieve the highest classification accuracy using the
time period of 140s-end. In this time period, the accuracy is
improved by 4 to 6% compared to the entire signal. Pearson
correlation coefficient, coherence, and phase locking value fea-
tures and SVM obtain the mean accuracy of about 88%. Using
the proposed framework, functional connectivity features lead to
better classification accuracy than DE features (with the mean
accuracy of 84.89%). Finally, using the best time interval and
SVM, we achieve better accuracy than using RNNs which need
large amounts of data and have high computational costs.

Index Terms—Emotion recognition, Functional brain connec-
tivity, EEG signals, Temporal analysis, RNNs, Transformers.

I. INTRODUCTION

Emotions play an important role in human decisions. Emo-
tion recognition has numerous applications in the enhancement
of human life and human ability [1]. This interdisciplinary
field plays a critical role in the development of psychology,
neuroscience, cognitive science, and computer science [2],
[3]. In the field of computer science, automatic emotion
recognition is used to improve the human-computer interface
[4], [5]. Other applications of emotion recognition include lie
detection, behavior prediction, and health monitoring. Among
these various applications, the human-computer interface is
particularly important [3], [6]. In this application, machines
get the ability to understand the emotional states of people
and so can interact better with them.

There are different approaches to emotion recognition which
can be divided into two categories. The first category is based
on non-physiological signals such as facial expressions, body
movements, and intonation [3]–[7]. The second category is
based on physiological signals such as electroencephalogram,
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electrocardiography, heart rate, and respiration signals [3],
[4]. Physiological signals provide more comprehensive and
complex information and their results are more accurate [3],
[4]. There are a lot of physiological signals and brain imaging
techniques such as fMRI [8], PET, MEG, and EEG [9] that
express brain states, and they are used in emotion recognition
[10]–[12]. Among these methods, although fMRI and PET
have a high spatial resolution, their temporal resolution is
not as well as EEG and MEG signals. On the other hand,
MEG signal has a high temporal resolution as well as EEG
signals, however, MEG instrumentation represents very high
technology like expensive superconducting technology and
heavy magnetic shielding. Therefore, MEG instrumentation
is more expensive than EEG instrumentation with the same
number of channels. In addition, MEG recording restricts the
movements of the head and causes static tension in the muscles
[13]. Therefore, EEG signals receive more attention because
they have a high temporal resolution, which is important for
our research with a focus on the temporal analysis of brain
activities in different emotional states, besides they are cheap
and easy to record [6].

There are different models for expressing human emotions
which can be generally divided into two categories: discrete
basic emotions and continuous emotions. In the discrete
model, emotions are classified into a set of discrete labels
including six basic emotions: happiness, sadness, surprise,
fear, anger, and disgust [14]. In the continuous model, emo-
tions are expressed using two dimensions: valence and arousal
[15]. Valence indicates how much emotion is positive or
negative, and arousal indicates how much a person is excited
or indifferent [6], [16].

Up to now, a wide range of research has been done in the
field of EEG-based emotion recognition. However, most recent
research in the field of emotion recognition has focused on
finding the strong connections, the important frequency bands,
and the important electrodes. Unfortunately, little research
has been done to examine the significant time periods and
the role of functional brain connectivity features in emotion
classification which are the focus of this study. In this paper,
we look for the optimal time period for emotion classification.
Moreover, we examine the performance of recurrent neural
networks to find temporal patterns in emotion classification.

The structure of this article is as follows. Section II gives a
brief overview of related research on emotion recognition us-
ing EEG signals. Section III describes the dataset, preprocess-
ing methods, feature extraction, and classification procedure.
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The results of recurrent neural networks, Transformer, and the
optimal time period are given in Section IV. In Section V, we
discuss our results and compare them against previous work.
In Section VI, the conclusion is presented.

II. RELATED WORK

In recent years, due to the development of dry electrode
techniques [17]–[19], EEG signals, possessing high temporal
resolution, are frequently used for emotion recognition. In this
section, we review some of the previous research in the field
of emotion recognition using EEG signals. In [2], differential
entropy (DE), power spectral density (PSD), differential asym-
metry (DASM), rational asymmetry (RASM), and differential
causality (DCAU) in the five frequency bands, which are delta
(1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz)
and gamma (31-50 Hz), are extracted from the public SEED
database [20] and then emotion classification is performed
using deep neural networks. The results of this paper show that
beta and gamma perform better than other frequency bands or
in other words, there exist specific neural patterns in high-
frequency bands for positive, neutral, and negative emotions
through time-frequency analysis. This paper also concludes
that utilizing the electrodes that are located in the temporal
area (FT7, FT8, T7, T8, C5, C6, TP7, TP8, CP5, CP6, P7, and
P8) can increase classification accuracy by 2.66% compared to
using all electrodes. In [3], by examining the DE and energy
spectrum features extracted from their collected dataset, the
authors infer that there is a close relationship between the
emotional state of individuals and information of the gamma
band. In [5], a number of functional brain connectivity features
like PLV, Pearson correlation coefficient, and phase lag index
(PLI) [21] are extracted and then the resulting connectivity
matrices are fed to neural networks using different methods
for the spatial arrangement of electrodes. The purpose of this
paper is to investigate the effect of spatial information in
emotion classification. In [5], the arrangement of electrodes
in the connectivity matrix is investigated and it is discovered
to be effective in classification accuracy. In [22], the graph of
PLV is obtained and then four features are extracted from the
graph. The authors then examine the simultaneous use of four
graph features and local features such as DE and PSD.

They observed that adding graph features to local features
leads to an increase in classification accuracy. Furthermore,
this paper analyzes different frequency bands from which the
PLV graph features are extracted, showing that utilizing the
gamma and beta bands results in better performance compared
to other frequency bands. In [23], the effect of familiar stimuli
on emotion classification is investigated. The stimulus was a
selected collection of music, and participants had an education
in music. Each participant listened to 8 familiar music and 8
unfamiliar music. Finally, results show that the classification
accuracy is higher for unfamiliar music.

In [24], the stable patterns of EEG signals over time in
emotion recognition are studied. The results show that

a) the lateral temporal areas are more active in positive
emotions than negative ones in beta and gamma bands.

b) Brain activity in a neutral state has a greater alpha
response in the parietal and occipital regions.

c) Negative emotions are more active in the delta band in
the parietal and occipital regions.

d) Activity of the gamma band in the prefrontal region is
more in negative emotions.

Li et al. [11] worked on EEG-based emotion recogni-
tion based on multi-task learning with a capsule network
(CapsNet). Employment of Multi-task learning obtains more
data from different tasks of high/low arousal, high/low va-
lence, and high/low dominance classifications, and results in
improvement of generalization and robustness. Furthermore,
in [11], an attention mechanism is used to capture the in-
trinsic relationship between different channels of raw EEG
signals. Finally, the attention mechanism adapts the weight
of different channels to extract important information from
raw EEG signals. By simultaneous use of multi-task learning
and attention mechanism, they achieve higher accuracy in
arousal, valence, and dominance classifications for DEAP
[25] and DREAMER [26] datasets. In [12], a Transformer
neural architecture search based on a multi-objective evolution
algorithm is proposed to find out the best MLP model for EEG-
based emotion recognition. Their end-to-end deep learning
method is directly applied to the raw EEG signals instead of
their extracted features. Their work focuses on three binary
classification tasks: high/low arousal, high/low valence, and
high/low dominance.

Although a lot of works have been done on emotion
recognition using EEG signals, a small number of them studied
functional brain connectivity and the importance of different
time periods during the stimuli which are the focus of this
paper. The framework of our proposed approach is depicted
in Fig. 1. First of all, we processed raw EEG signals and
extracted some features from the preprocessed signal. Then a
feature selection method was employed to decrease the number
of features and select the most informative features. Finally,
we did a temporal analysis and recognized the emotion using
the obtained information in the temporal analysis step. All of
these steps will be explained in detail in Section III.

III. METHODS

A. Data Acquisition

We use the public SEED database [20] in this study.
This database was recorded from 15 participants (7 males
and 8 females, age range: 19-28 years) with self-reported
normal or corrected-to-normal vision and normal hearing.
All participants were selected using the Eysenck Personality
Questionnaire (EPQ). The EPQ is a questionnaire to assess
the personality traits of a person devised by Eysenck et
al. [27]. This questionnaire conceptualizes each personal-
ity based on three independent dimensions of temperament:
Extraversion/Introversion, Neuroticism/Stability, and Psychoti-
cism/Socialization. The subjects who are extraverted and have
stable moods tend to elicit the right emotions throughout the
emotion experiments. Therefore, from the feedback of the EPQ
questionnaires, fifteen subjects are chosen to participate in the
emotion experiments [2].

The stimuli in this database are 15 Chinese clips that create
three emotions positive, negative, and neutral in participants;
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there are five clips for each emotion. The criteria for video
selection were as follows: 1) the clips should not be too long
to tire the participants, 2) the meaning of the videos can be
understood without any explanation, 3) all the moments of
the video convey only one emotion to the subject. The videos
are approximately 4 minutes, and they presented in such a
way that two clips that target the same emotion are not shown
consecutively. The EEG signal of the participants was recorded
for the whole duration that a clip is shown to the participant
using 62 electrodes placed on the head according to the 10-
20 system [24]. EOG signal was recorded to remove the eye
movement artifacts [2]. The location of the electrodes is shown
in Fig. 2.

The sampling rate of the EEG recording was 1000 Hz. The
signals were recorded in three sessions, where the time interval
between two consecutive sessions was at least 7 days. The
stimuli were the same in all three sessions; three sessions were
recorded from each subject, and in each session, the participant
watched all 15 video clips. Fig. 3 shows a detailed protocol
for each session.

The participants were alerted 5s before watching the video.
After watching each video, an assessment form was given
to the participant to express their emotions in 45s. 15s after
the assessment was intended for rest [24]. Fig. 3 shows the
Protocol of EEG recording in each session for SEED database.

B. Preprocessing

The raw EEG signals are not appropriate for feature extrac-
tion and a series of preprocessing steps are needed beforehand.
The raw EEG signals are down-sampled to 200 Hz. The EEG
signals are visually checked in order to remove the parts of
the signal that are heavily contaminated with EMG and EOG
[2]. The EOG signals recorded during the experiment are also
used to detect blink artifacts [28]. EEG signals are processed
with a bandpass filter with a frequency band between 0.3 Hz
and 50 Hz [2]. Finally, a fifth-order Butterworth filter is used
to divide the signals into delta (1-4 Hz), theta (4-8 Hz), alpha
(8-14 Hz), beta (14-31 Hz), and gamma (31-50 Hz) frequency
bands and then in the time domain, the signal of each band is
divided into time windows of 2s without overlapping. Time
windowing is helpful to use the stationarity assumption in
each time window because when the length of a time series
is shorter, this assumption is more valid. Finally, features will
be extracted from each of the 2s windows.

C. Features Extraction

In previous studies, various features such as DE, PSD,
DASM, RASM, etc. have been used in emotion recognition.
These features represent the local activity of electrodes and do
not take into account the relationship between the electrodes.
Among the local features, DE has the best performance in
emotion classification [2], [6], [24]. Functional brain connec-
tivity features show the relationship between different brain
regions’ activities which are recorded by different electrodes.
Pearson correlation coefficient, coherence, and PLV which
are three important connectivity features are extracted in this

study. These three features are non-directed and as a result,
their connectivity matrix is symmetric [29].

1) Pearson Correlation Coefficient
Pearson correlation coefficient is a simple criterion of linear

correlation between two time series. This criterion calculates
the linear relationship between the two signals x and y as
follows:

ρxy =
E[(x− µx)(y − µy)]

σxσy

=
1

N

N∑
n=1

(x(n)− µx)(y(n)− µy)

σxσy

(1)

Where N is the number of time samples, µx, µy are mean
of the signals x and y, respectively and σx, σy are standard
deviation of the signals x and y, respectively. This criterion has
a value between -1 and +1. The value of +1 in this criterion
means a positive linear correlation between two signals and
the value of -1 means a negative linear correlation. The value
of zero means that the two signals are not linearly related to
each other.

2) Coherence
Coherence indicates a linear correlation between two signals

in the frequency domain. First, the cross-spectral density
function Sxy(f), is calculated as

Sxy(f) =

+∞∑
τ=−∞

E[xnyn+τ ]e
−j2πfτ (2)

Where xn and yn+τ are the n-th sample of signal x and the
(n+ τ)-th sample of signal y, respectively. Coherence is then
calculated using the cross-spectral density function as follows:

Cxy(f) =
Sxy(f)√

Sxx(f)Syy(f)
(3)

COHxy(f) = |Cxy(f)| (4)

The cross-spectral density function of the signals x and y is
normalized using the spectral density function of signal x and
signal y. The value of coherence is between zero and +1.
The value of +1 means the highest linear correlation at that
frequency. Coherence with the value of zero means that two
signals are linearly independent at that frequency.

3) Phase Locking Value
The most common feature for measuring phase synchro-

nization between different areas of the brain is Phase Locking
Value (PLV). Suppose two signals x1 and x2 are filtered with
a bandpass filter. An analytical signal zi can be defined as

zi(t) = xi(t) + jH(xi(t)) = Ai(t)e
jϕ(t) (5)

where H is the Hilbert transform operator. The phase differ-
ence is calculated using

∆ϕ(t) = arg(
z1(t)z

∗
2(t)

|z1(t)||z2(t)|
) (6)

PLV is then defined as [22]:

PLV = | 1
N

N−1∑
t=0

ej∆ϕ(t)| (7)
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Where t is the time point and N is the number of time samples.
PLV is between zero and one. The value of one indicates a
phase lock, and the value of zero indicates a random phase
distribution over time. The amount of PLV is independent of
the signal amplitude and depends only on the phase difference
between the two signals [30].

D. Classification

Most of the works that have used the SEED database have
considered the first 9 trials of each session as training data and
the final 6 trials of each session as test data. Due to the small
number of trials in this database, it is better to use the Leave-
One-Out cross-validation strategy. The Leave-One-Out cross-
validation strategy decreases the probability of overfitting and
has a higher degree of validity. In this strategy, we consider
one trial as the test and the other 14 trials as training. We repeat
this procedure until every trial is considered once as the test.
Finally, we average the classification accuracies over all folds.
We use SVM with linear kernel for classification and also
the emotion classification is subject-dependent. The number of
samples is equal to number of time windows * number of trials
* number of sessions. The number of time windows depends
on the length of time windows. In this study, the length of the
time window is 2s, and time windows are non-overlapping.
Due to the fact that the length of the videos is not exactly the
same, the total number of samples for happy, sad, and neutral
emotions in this database is equal to 1767, 1686, and 1653,
respectively. Therefore, the distribution of samples is balanced
among different emotions. Given that our final purpose is to
label the trials while samples are time windows, we use a
simple voting scheme to determine the label of a trial using
the label of its time windows; for instance, if there are n time
windows in a trial, we will have a vector of length n of labels
and then, we vote among all the labels in the vector to find
the label of the trial.

E. Dimension Reduction

It is known that an imbalance between the length of the
feature vector and the number of samples can cause overfitting.
The length of the feature vector for local features such as
DE is equal to the number of channels which is equal to
62 in the SEED database. Coherence, PLV, and Pearson
correlation coefficient are non-directed, and their connectivity
matrix is symmetric. Therefore, the upper or lower half of
the connectivity matrix is sufficient for classification. As a
result, the length of the vector of connectivity features is equal
to (62*61)/2=1891, which is large relative to the number of
samples which is approximately 4700. Thus, we should use
dimension reduction techniques to prevent overfitting. In this
study, we use Fisher score to reduce the dimension. The Fisher
score assigns a score to each feature where a higher score for
a feature shows that the feature is more discriminative for
classification. The score of a feature is obtained as follows
[31]:

F (i) =

∑c
k=1(x̄k,i − x̄i)

2∑c
k=1

1
nk−1

∑nk

j=1(xk,j,i − x̄i,k)2
(8)

where x̄i is the mean of the i-th feature in all samples, xk,j,i

is the i-th feature of the j-th sample in the k-th class, x̄i,k is
the mean of the i-th feature in the k-th class and nk represents
the number of samples in the k-th class.

F. Recurrent Neural Networks

A recurrent neural network (RNN) is a type of neural net-
work in which connections between nodes form a graph along
a sequence [32]. RNNs [33] are widely used in text analysis
[34], [35], text generation [36], [37], speech recognition [38],
time series prediction [39], and processing of time signals such
as electroencephalogram [40]. The main idea of RNNs is the
use of hidden states which are used as the network memory
and are responsible to store the information from past inputs.
In RNNs, the output yt at each time t is calculated by the
hidden state ht at time t. The hidden state ht at time t is
also updated with the input xt at time t and the hidden state
ht−1 at time t − 1. Mathematically, there are two important
equations at each time step in RNNs as follows [32]:

ht = σ(Whxxt +Whhht−1 + bh) (9)

yt = softmax(Wyhht + by) (10)

Whx, Whh and Wyh are the weight matrices. bh and by are
bias parameters which are utilized to learn the offset and σ is
the sigmoid function.

These networks need a large number of samples for training.
The number of our samples in the SEED database is small.
Therefore, we select Gated Recurrent Units (GRUs) [41]
which are a cell type of RNNs and their few parameters make
them a suitable choice for small datasets [42]. In addition,
we increase the number of samples by adding Gaussian noise
with standard deviations of 0.001, 0.004, 0.008, and 0.012 to
the samples according to [4]. The utilized network consists
of a GRU layer that has 16 units and a fully connected layer
for emotion classification. The filtered signal is then divided
into time-sliding windows of 180s with a step length of 2
seconds as the input of the network. We choose 180s as the
length of our inputs because the signals in the SEED database
have different lengths but their minimum length of signals is
180s. We also opt step length of 2s to cover the end part of
signals and also increase the number of inputs of the network.
The Leave-One-Out cross-validation strategy is chosen for
calculating accuracy in this section.

G. Transformer

Transformers have garnered significant attention in recent
years due to their high speed and efficient performance,
making them widely used in various domains such as natural
language processing [43], image recognition [44], and time
series analysis [45]. One of the key strengths of transformers
lies in their ability to capture long-range dependencies in
sequential data.

In a transformer model, the input sequence is divided into
fixed-length segments or tokens, with each token associated
with an embedding vector. The transformer architecture com-
prises multiple layers of self-attention and feed-forward neural
networks, as depicted in Fig. 4.
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The self-attention mechanism in transformers operates by
allowing each token to interact with all other tokens in the
sequence. The importance or attention assigned to each token
is determined based on its relevance to the others. This
attention information is then used to compute a weighted sum
of the embeddings of all tokens, resulting in a context-aware
representation for each token. Mathematically, this process can
be expressed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dh

)V (11)

Q, K, and V are query, key, and value matrices, respectively,
with a size of N×dh, where dh represents the dimensionality
of Q, K, and V matrices. N represents the actual length of the
input sequence. The attention mechanism enables the model to
capture dependencies and relationships between different time
intervals without relying on recurrent connections.

For this work, one encoder with two-head self-attention
mechanism is employed to better capture the dependencies in
the input sequence. Each attention head attends to a different
subspace of the input representation and generates its own set
of attention weights. Finally, the outputs from all attention
heads are concatenated and linearly transformed to obtain the
final representation for each token. It’s important to note that
the input format for the transformer model remains the same
as that of the GRU, including the number of samples and their
size.

IV. RESULTS

A. Investigation of frequency bands

Previous research in the field of emotion recognition has
shown that higher frequency bands have more information
about emotional states and the gamma band has the best per-
formance in emotion classification [2], [3], [6], [22], [24], [46].
However, most of them do not investigate the performance
of different frequency bands for functional brain connectivity
features. In this research, in addition to DE features, we
investigate the performance of different frequency bands for
coherence, PLV, and Pearson correlation coefficient. Table I
shows the classification accuracy for our features in different
frequency bands before dimension reduction.

As seen in Table I, the gamma and beta bands have better
classification accuracy rather than other bands. Specifically,
DE achieves its maximum accuracy in the beta band while
functional brain connectivity features perform best in the
gamma band. The classification accuracy of DE feature in
the gamma band is 0.88% less than the beta band while in
functional connectivity features, the accuracy of the gamma
band is at least 0.89% more than the beta band. Moreover,
our focus in this research is on functional brain connectivity
features, so we select the gamma band for further analysis.
We also do dimension reduction for all features only on the
gamma band.

B. Dimension Reduction Results

We apply the Fisher score for DE, Pearson correlation
coefficient, coherence, and PLV features in the gamma band

because, in Section IV, we investigate the performance of
different frequency bands and we observe that the gamma band
has better performance in emotion recognition. We calculate
F-score for all features and then sort them in order to find
the first 100, 200, 300, 400, 500, 600, 700, 800, and 1200
selected features for coherence, PLV, and Pearson correlation
coefficient. We also calculate F-score for DE features and
then sort them in order to find the first 10, 20, 30, 40, and
50 selected features for DE. The optimal number of selected
features for DE, Pearson correlation coefficient, coherence,
and PLV are 40, 700, 200 and 400, respectively. Classification
accuracy versus the number of functional connectivity features
and DE are shown in Fig. 5 and Fig. 6, respectively. Fig. 5
and Fig. 6 show the importance of feature selection; If the
number of selected features is little, then the features will not
be discriminative and the classification accuracy will be low.
On the other hand, if the number of features is too large,
the accuracy of classification is reduced because overfitting
happens. Table II shows the classification accuracy before and
after performing Fisher on our features.

C. Emotion Classification Using Fusion of DE and Functional
Brain Connectivity

According to our results in the previous part and a wide
range of research in the field of emotion recognition, we
carry out our experiments only in the gamma band. It is
worth mentioning that from this part to the end of this study,
we utilize all features in the gamma band after dimension
reduction for our analysis. In this part, we investigate the effect
of the fusion of functional connectivity and DE features on the
classification accuracy in emotion recognition. This decision-
level fusion uses the probability vectors of functional con-
nectivity and DE features to make decisions. The probability
vector of each feature is defined as (Psad, Pneutral, Phappy),
where Psad, Pneutral, and Phappy express the probability that
a trial belongs to a sad, neutral, or happy class, respectively.
Then, the probability vector for the decision-level fusion is
defined as follows:

Pfusion =0.5 ∗ (Psad, Pneutral, Phappy)connectivity features

+ 0.5 ∗ (Psad, Pneutral, Phappy)DE features

(12)

where connectivity features can be Pearson correlation co-
efficient, coherence, and PLV features. Finally, the class which
has the maximum probability in Pfusion vector is assigned to
the trial label. Table III shows classification accuracy using
a decision-level fusion of functional connectivity and DE
features.

The classification accuracy using the DE feature in the
gamma band is equal to 80.90% with 16.87% std. Table
III shows that the fusion of functional connectivity and DE
features improves classification accuracy. However, because of
our focus on the temporal pattern of functional connectivity
features, we do not fuse the functional connectivity and DE
features in the rest of this article to purely observe the
temporal pattern of functional brain connectivity features. It
is also worth mentioning that we investigated the fusion of
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different connectivity features together but no improvement
was observed.

D. Analysis of Temporal Pattern

Recent works mostly investigated the location and frequency
of brain activity during emotional stimuli. To the best of
the authors’ knowledge, brain activity during an emotional
stimulation interval has not been yet studied in the literature.
The length of stimulus in the SEED database is approximately
4 minutes. In this section, we want to find the temporal patterns
over different time periods during each trial. To this end, we
consider a one-minute sliding window with a step length of 20
seconds and calculate classification accuracy in each sliding
window. Table IV shows the classification accuracy in different
time periods of signals.

As seen in Table IV, there is a temporal pattern in the
classification accuracy in which, as time goes on, the mean
accuracy increases. The best time period is 140s-end in which
the mean accuracy is maximum and the standard deviation
is minimum. Comparing the results of Table III and Table IV
shows that the mean accuracy in 140s-end interval is increased
compared to the entire signal by 3.99%, 4%, 6.22%, and 5.77%
for DE, coherence, PLV, and Pearson correlation coefficient,
respectively. The standard deviation in 140s-end interval is
also decreased compared to the entire signal.

It is noteworthy that the length of stimuli in many datasets
for EEG-based emotion recognition such as DEAP [25] is less
than two minutes while the temporal analysis of SEED shows
the importance of brain activities that occur after two minutes
from the onset of stimuli. Therefore, we conclude that the
appropriate length of stimuli in emotion recognition is about
3 to 4 minutes so that not only the subjects do not get tired
but also there are the best periods for emotion recognition.
In this study, we watched the videos and confirmed that all
parts of the videos express the same emotion as the label of
the video. Although we can understand the label of the video
from the beginning part of it, over time the emotion becomes
more stable in our mind, and consequently, the final intervals
have better performance in emotion classification. We can also
observe this phenomenon in our ordinary life, for instance,
when a person tells a funny sentence, you feel happy and if that
person tells a sequence of funny sentences, you feel happier
and even a few minutes after telling those funny sentences,
you still feel happy. Therefore, it seems that the length of
stimuli in emotion recognition has an optimal interval at which
the subject reaches the peak of his emotions. If the length
of stimuli is less than the optimal value then, the subject’s
emotions are not well expressed, and if the length of stimuli
is greater than the optimal length, the subjects get tired.

The results shown in Table IV are the averaged classification
accuracies over different subjects. Another approach is to
obtain the best interval for each subject separately. By using
the second approach, we found that the best interval is not the
same for all subjects, however, the best interval is 140s-end
for 13, 11, 10, and 11 subjects (out of 15 subjects) in DE,
coherence, PLV, and Pearson correlation coefficient features,
respectively. The best interval for other subjects occurs 120s,

100s, 80s and 100s after the onset of stimulation for DE,
coherence, PLV, and Pearson correlation coefficient features,
respectively. To visualize the results of the temporal analysis,
the accuracy using each time interval is shown in Fig. 7,
separately for each feature. In this figure, squares with higher
intensity are indicators of better classification accuracy.

Table V shows the comparison between the results of
these two approaches: 1) averaging between subjects and then
finding the best interval (first row of Table V), 2) finding the
best interval for each subject and then averaging between the
maximum accuracy of each subject (second row of Table V).

The results of Table V show that the average accuracy in
the second approach compared to that in the first approach
increases by 1.33% to 4%. Therefore, regarding the different
characters and reactions of different subjects, it is a wise idea
to find the best time interval for each subject independently
and then predict the subject’s emotions.

E. Classification Using RNN and Transformer

In the previous section, we found the best time interval
using SVM. In this section, we investigate the performance of
recurrent neural networks [32] and transformer in finding the
temporal pattern of brain activity during emotional stimulation.
In order to provide a fair comparison, we augment the training
set by adding Gaussian noise to the training samples and
then adding them to the training set. We also employ GRUs
with few parameters for compatibility with the size of the
dataset. Data augmentation and reduction of the number of
parameters of the network prevent overfitting of the classifier
to train samples. Table VI compares the results of the recurrent
neural network and transformer with the results of the previous
section obtained using SVM.

According to the results presented in Table VI, the Trans-
former model demonstrates the highest performance among all
brain connectivity features analyzed in this study. However, it
is worth noting that its performance is closely comparable to
that of the SVM model. This is significant because neural
networks typically demand substantial amounts of data and
come with a high computational cost. Therefore, the proposed
time-interval selection method provides both advantages of
relatively high accuracy and low computational cost for the
task of emotion recognition.

V. DISCUSSION

In this study, our aim was to examine the functional
connectivity features in more detail as well as the temporal
analysis of the brain’s response to emotional stimuli, which
have been rarely studied in the field of emotion recognition.
In this section, we compare our results with previous works.
However, it is difficult to compare the classification accuracy
of our method with previous works because they have used
different datasets with different numbers of subjects and
various methods of representing emotions. Moreover, even in
the works that use the SEED dataset for their experiments,
the first 9 trials are considered as training and the final 6
trials as test data. As a result, due to the small size of this
dataset, the accuracy reported by those methods may not be
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much reliable. In order to obtain more reliable results, we
used the Leave-One-Out strategy on the trials to calculate
the classification accuracy for each subject. Consequently, our
classification accuracy might be lower than some of those
reported in the literature due to our different strategies for
constructing train and test sets but it is more valid. Therefore,
in this comparison, it is important to note that firstly, we used
a more reliable method to measure the classification accuracy,
and secondly, our goal was to find optimal time intervals and
analyze temporal patterns, but not to propose a method to
increase the classification accuracy in emotion recognition.

We summarize the accuracy rates of emotion classifica-
tion in previous works in Table VII. In [2], [3], [6], [24],
frequency analysis for some features like DE and PSD have
been investigated, but the functional connectivity features have
not been investigated except in [22]. In [22], it has been
shown that using the gamma and beta bands results in better
performance compared to using the other frequency bands
for emotion classification. As discussed in Section IV-A, the
results of our frequency analysis on the functional connectivity
features using the SEED database confirm the results of
previous articles. It can be concluded that these two frequency
bands contain more discriminative information related to the
emotional states of individuals’ brains.

Regarding temporal analysis, unfortunately, none of the pre-
vious works has studied the temporal patterns during stimuli,
but we examined this for the first time. We observed that each
subject has an optimal time interval in which the classification
performance is higher than the accuracy of using the whole
signal. It is noteworthy that, as discussed in Section IV-D, the
optimal time interval for all subjects in this database occurs
80 seconds after the onset of stimuli. Therefore, the different
subjects behave relatively similarly to each other.

Using DE features extracted from the gamma band we
obtained a mean accuracy of 84.89%. More details regarding
the comparison between our result and the previous works are
as follow. In [2], the accuracy of 79.19% using DE features
extracted from the gamma band and Deep Belief Networks
(DBN) as the classifier has been achieved. In [24], the mean
accuracy of 91.07% using the concatenation of DE from all
frequency bands and Graph regularized Learning Machine
(GELM) has been obtained. Despite the good accuracy ob-
tained in [24], the computational complexity of GELM is
higher than SVM which is utilized in our study. In [3],
the accuracy of 84.25% using DE features from the gamma
band has been achieved. In [3], the authors collected their
own dataset which contains only two positive and negative
emotional states, while in our research, the number of classes
is three. In [6], the average accuracy of 83.36% using DE fea-
tures from the gamma band and Graph Convolutional Neural
Networks (GCNNs) has been obtained on the SEED dataset.
Despite the good performance of Graph Neural Networks, their
computational cost is higher than SVM which is used in our
work. In [4], the maximum accuracy of 75% has been reached
using DE features and ResNet [47] on the SEED dataset.
Due to the small size of the SEED dataset, in [4] first data
augmentation methods are used to provide sufficient data for
training of the network.

Using functional connectivity features, we have achieved
mean accuracy of 88%, 88.44%, and 88.44% for coherence,
PLV, and Pearson correlation coefficients, respectively. More
details regarding the comparison between our results and the
previous works are as follow. In [5], the accuracy rates of
93.80% and 96.62% using a two-layer Convolutional Neural
Network (CNN) as the classifier and Pearson correlation
coefficients and PLV matrices as features have been achieved,
respectively. In [5], only the results of high and low valence
classification are reported, which are on the DEAP dataset.
They have not reported their accuracy No results on the arousal
classification have been reported. In [22], 33% accuracy on
the SEED dataset using the SVM classifier and ENP features
extracted from the gamma band using the PLV graph has
been achieved. In [48], first of all, the Pearson correlation
coefficients and coherence were extracted then three topologi-
cal features of strength, clustering coefficient, and eigenvector
centrality were calculated for each connectivity indices. By
using the feature-level fusion method, these three topological
features were concatenated. Finally, they obtained an accuracy
of 79.16% and 78.15% on Pearson correlation coefficients and
coherence indices.

It can be seen that although there are a few works with better
accuracy rates on the SEED dataset, the accuracy that we have
obtained using the optimal time intervals and a simple SVM
classifier is competitive with the results of previous works
while it has less computational costs.

VI. CONCLUSION

In this study, we examined the applicability of functional
brain connectivity for the emotion recognition task. Our results
indicate that by using functional connectivity features better
emotion classification accuracy can be obtained compared to
using DE features. In order to study the temporal variation of
different features in terms of classification accuracy, we used
a one-minute sliding window on the signals. Classification
accuracy increased with sliding window progress leading us to
the conclusion that using the 140s-end interval results in the
best performance compared to using other intervals as well
as compared to using the entire signal in the SEED dataset.
The mean accuracy and standard deviation using this interval
(140s-end) for DE, PLV, coherence, and Pearson correlation
coefficient are 84.89%/13.20%, 88.44%/10.53%, 88%/13.38%,
and 88.44%/12.20%, respectively, showing 4-6% improvement
compared to using the entire signal. Although the temporal be-
havior of each subject is different, the selected interval (140s-
end) is the best period for at least two-thirds of the subjects.
The results show that by using the best time interval, we can
achieve high accuracy with relatively low computational cost
and a limited number of training samples.

VII. FUTURE WORKS

In future works, a dataset with more participants can be
collected because at the moment, there is not any large
database for EEG-based emotion recognition. A larger dataset
smooths the path to present results with a higher level of
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validity and generalization. In addition, a large dataset pro-
vides an opportunity for us to apply complex deep neural
networks without concern about overfitting. Furthermore, we
can investigate multimodality learning by using brain imaging
techniques besides brain signals simultaneously. For instance,
a combination of brain imaging techniques that have good
spatial resolution such as fMRI images and EEG signals is
utilized to have a better understanding of spatial and temporal
patterns simultaneously, being very valuable in neuroscience.
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Fig. 5. Average accuracy of classification over different

subjects versus the number of selected functional connectivity
features with Fisher score.

Fig. 6. Average accuracy of classification over different
subjects versus the number of selected DE features with Fisher.

Fig. 7. Visualization of the emotion classification’s accuracy
for each subject in different time intervals for DE, coherence,
PLV, and Pearson correlation coefficient.
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Fig. 1: The framework of our proposed approach for emotion recognition using raw EEG signals

Fig. 2: Location of 62 electrodes in SEED database [2].

Fig. 3: Protocol of EEG recording in each session for SEED
database [2].

Fig. 4: The overview of Transformer. L is the number of
encoders which is one in our case.

Fig. 5: Average accuracy of classification over different
subjects versus the number of selected functional

connectivity features with Fisher score.
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Fig. 6: Average accuracy of classification over different
subjects versus the number of selected DE features with

Fisher.

Fig. 7: Visualization of the emotion classification’s accuracy
for each subject in different time intervals for DE,

coherence, PLV, and Pearson correlation coefficient.

TABLES

TABLE I: THE MEAN ACCURACIES AND STANDARD
DEVIATIONS (%) OF DIFFERENT FREQUENCY BANDS

Delta Theta Alpha Beta Gamma
DE 64.44 ±18.97 58.67 ±15.97 65.33 ±18.72 81.32± 16.17 80.44 ±16.03
Coh 40.44 ±17.36 51.11 ±21.03 66.67 ±19.52 77.78 ±18.97 79.56± 17.54
PLV 26.67 ±17.81 40.89 ±21.21 60.44 ±22.17 75.56 ±18.11 76.45± 17.97

Pearson 35.11 ±10.83 49.78 ±19.00 65.78 ±19.97 75.56 ±17.02 78.22± 18.25

TABLE II: THE MEAN ACCURACIES AND STANDARD
DEVIATIONS (%) BEFORE AND AFTER DIMENSION

REDUCTION

DE Coh PLV Pearson
Before fisher 80.44 ±16.03 79.56 ±17.54 76.45 ±17.97 78.22 ±18.25
After fisher 80.90 ±16.87 84.00 ±15.49 82.22 ±16.65 82.67 ±14.21

TABLE III: THE MEAN ACCURACIES AND STANDARD
DEVIATIONS (%) OF FUNCTIONAL CONNECTIVITY

FEATURES AND FUSION OF FUNCTIONAL
CONNECTIVITY FEATURES WITH DE FEATURE

Coh PLV Pearson
Brain connectivity 84.00 ±15.49 82.22 ±16.65 82.67 ±14.21

Brain connectivity + DE 84.00 ±15.28 83.11 ±13.58 84.44 ±13.72
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TABLE IV: THE MEAN ACCURACIES AND STANDARD DEVIATIONS (%) OF DIFFERENT TIME INTERVALS
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DE 65.33 ±20.65 64.89 ±18.07 69.78 ±17.43 72.89 ±16.61 77.33 ±16.09 81.33 ±14.29 81.78 ±11.39 84.89± 13.20
Coh 61.33 ±22.70 69.33 ±18.82 74.22 ±19.00 77.78 ±15.46 82.67 ±13.75 86.67 ±15.11 86.22 ±15.82 88.00± 13.38
PLV 59.56 ±22.17 68.44 ±19.75 72.00 ±19.38 76.00 ±16.67 81.33 ±16.36 85.33 ±16.56 85.33 ±13.84 88.44± 10.53

Pearson 60.44 ±20.84 69.78 ±19.00 72.89 ±18.59 77.33 ±15.69 81.78 ±16.22 86.22 ±15.82 87.11 ±13.20 88.44± 12.20

TABLE V: THE MEAN ACCURACIES AND STANDARD
DEVIATIONS (%) OF APPROACH 1) AVERAGING

BETWEEN SUBJECTS AND THEN FINDING THE BEST
INTERVAL, APPROACH 2) OBTAIN THE OPTIMAL

INTERVAL FOR EACH SUBJECT

DE Coh PLV Pearson
Approach 1 84.89 ±13.20 88.00 ±13.38 88.44 ±10.53 88.44 ±12.20
Approach 2 86.22 ±11.94 92.00 ±11.32 91.56 ±10.53 91.11 ±10.59

TABLE VI: THE MEAN ACCURACIES AND STANDARD
DEVIATIONS (%) OF SVM AND GRU FOR
FUNCTIONAL CONNECTIVITY FEATURES

Coh PLV Pearson
SVM 88.00 ±13.38 88.44 ±10.53 88.44 ±12.20
GRU 84.00 ±11.37 87.11 ±12.46 81.78 ±11.94

Transformer 88.44± 12.46 88.89± 11.27 88.89± 13.27
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TABLE VII: THE ACCURACY OF EMOTION CLASSIFICATION IN PREVIOUS WORKS

Study Year Data Features Frequency band Classifier Number of classes Description Accuracy
Zheng et al [2] 2015 SEED DE Gamma band DBN 3 - 79.19%
Duan et al [3] 2013 Collected DE Gamma band SVM 2: positive and

negative emotions
- 84.25%

Wang et al [4] 2018 SEED DE Concatenation of all
frequency bands

ResNet 3 - 75%

Zheng et
al [18]

2019 SEED DE Concatenation of all
frequency bands

GELM 3 - 91.07%

Song et al [6] 2020 SEED DE Gamma band GCNN 3 - 83.36%
Our method - SEED DE Gamma band SVM 3 - 84.89%

Moon et al [5] 2018 DEAP PLV, PCC Concatenation of all
frequency bands

CNN (two
layers)

2: low and high
valence

- 96.62%
93.80%

Li et al [22] 2019 SEED ENP (extracted
from PLV graph)

Gamma band SVM 3 - 33%∗

Wu et al [48] 2019 SEED Three topological
features (for PCC
and Coh indices)

Concatenation of all
frequency bands

SVM 3 Feature-level fusion
method was used to

fuse topological
features

79.16%
78.15%

Our method - SEED Coh, PLV, Pearson Gamma band SVM 3 - 88.00%
88.44%
88.44%

PCC stands for Pearson correlation coefficient
* They achieved 79% classification accuracy using GELM.
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