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Abstract 
 

Industrial workshops often require efficient overhead cranes, and a nonlinear system with 

four degrees of freedom is a standout choice. This system facilitates longitudinal and 

transverse movement of the crane trolley. However, the suspended load may experience 

disruptive vibrations in two directions. To address this, precise control is essential. This 

research focuses on developing two controllers: one based on pole-placement theory and 

another using a model predictive controller (MPC). Designing a pole-placement controller 

involves linearizing the system. Since the system is underactuated, two additional inputs are 

introduced, helping determine alternate poles with desired conditions. The pole-placement 

controller achieves rapid system response, exceeding input limits. The system modeled with 

the MPC controller exhibits a slower tracking process with a consistent 1º vibration in the 

suspended load but stays within input limits. The response of each controller to uncertainties 

is compared. As a result, the pole-placement and MPC controllers create a robust system for 

specific regions and a system with variable vibration frequencies and low amplitudes, 

respectively. These controllers contribute to the efficient operation of overhead cranes in 

industrial workshops, ensuring both precise control and minimal load fluctuations. 

 

Keywords: Overhead Crane, 3D Movement, Pole-Placement Controller, MPC Controller, 

Uncertainty. 

 
 

1.  Introduction 

Overhead cranes consist of one or two parallel horizontal bridges that move within a 

specified range along warehouses or halls. These cranes play a vital role in material handling 

within industrial settings like warehouses, workshops, construction sites, and similar 

environments. The key control challenges for these cranes involve achieving rapid response 

and precision in reaching target locations, as well as quickly stabilizing the hanging load. In 

crane control, there are typically no direct forces applied to the load being moved by the 

crane. Moreover, overhead crane systems are inherently nonlinear and often exhibit various 

limitations, particularly in being underactuated. This means that the number of control inputs 

is fewer than the degrees of freedom, adding complexity to the control problem. These 

systems are susceptible to external disturbances, uncertainties, cable deflections, and may 

experience limitations in actuator force, further complicating the control task. 

Early research on controlling overhead cranes involved the design of controllers using 

both open-loop and closed-loop circuit theories. Open-loop controllers operated without 

feedback, relying on the coordinated movement of the crane trolley and the hanging load to 

achieve desired trajectories and minimize fluctuations. Researchers like N. Sun et al. 

optimized control [1], L. Ramli et al. considered input shaping [2], and Z. Wu and X. Xia 
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employed path modeling [3] to create controllers that effectively controlled load fluctuations 

and trajectory tracking. However, these open-loop controllers may struggle in the presence of 

disturbances and uncertainties. To address these challenges, more advanced open-loop 

controllers have been developed [4]. Nonetheless, the primary emphasis in crane control 

research remains on closed-loop controllers. Various methods have been explored in this 

category while adding different aspects of workspace limitations, including feedback control 

[5], energy-based control, such as energy coupling output feedback control for 4-DOF 

underactuated cranes [6], state-observer-based control [7], neural network approaches [8], 

adaptive control [9], sliding mode control (SMC) [10][11], combined adaptive sliding mode 

control with honey badger algorithm [12] where limitations are added by sorted databases, 

and even advanced variations like P-D sliding mode [13]. Many other controllers have also 

been developed within the framework of closed-loop feedback control.  

In the context of overhead cranes, where disturbances and uncertainties are inherent, 

addressing instability challenges is crucial. Methods [10] and [13] have demonstrated their 

effectiveness due to the robustness but their approach does not seem to be flexible enough 

respecting the mass of the hanging load. Overhead cranes, being underactuated systems, pose 

inherent complexity. To tackle this, some approaches, like [13], linearize the system and 

employ P-D sliding mode control. Recent research has also utilized Lyapunov techniques and 

LaSalle’s invariance principle to design stabilized underactuated control systems, as seen in 

[14] and [15], which also incorporate PID-coupling control. Additionally, fuzzy adaptive 

nonlinear controllers and optimal controllers have been employed, even for double pendulum 

cranes, which can be prone to instability in certain cases [16][17]. A multitude of methods 

and modern approaches, including passivity-based adaptive control [18] and combing it with 

online reinforcement learning for real-time control [19] and also sliding mode [20] for heavy 

and precise duties, are available in the field of overhead crane control. 

Although various methods have shown promising results, recent approaches often 

focus on specific input amplitudes and short trajectory plans for simulations. Given that 

system behavior hinges on minimizing load fluctuations, it's crucial for the trolley to reach its 

target with minimal vibrations. The damping ratio and natural frequency of the system play 

pivotal roles in this regard. Pole-placement theory, known for its simplicity and stability, can 

be effective in achieving rapid responses. Meanwhile, the MPC controller is well-suited to 

operate within input force limitations and handle fluctuation amplitudes. Bao et al. used 

system’s performance as feedback in an MPC algorithm for a 2D bridge crane as a proof of 

the usage of presented controller type in this area [21]. Recognizing these differences, this 

paper explores the use of both a pole-placement controller and an MPC controller to design a 

comprehensive solution that offers a wider range of desired inputs and rapid response 

capabilities. Further details on controller design, simulation, result comparisons, and testing 

under uncertain conditions will be discussed in subsequent sections. 

In summary, in this context following details and reasons are explained: 

 System mathematical model and considered transportation, its analysis and linearizing 

it by transforming it into a state-space model 

 Designing controllers using pole-placement and model predictive approaches 

 Simulation and closed-loop response analysis 

 Comparison of system behavior with different controllers 

 Final check and uncertainties analysis 

 

2. System dynamics and its nonlinear characteristics 

The dynamical model used in this study, as introduced in [13], is a state-of-the-art and 

comprehensive model that addresses fundamental issues. What sets this model apart from 

others is its three-dimensional nature. As illustrated in Figure 1, in an x-y-z coordinate 

system, a trolley is situated on a bridge capable of moving along its length (the y-axis), and 
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the combination of the bridge and crane trolley can move along the x-axis. Additionally, a 

hanging load is attached to the trolley by a cable. For simplicity in calculations, the weight of 

the cable is disregarded. 

The trolley is positioned on a bridge, where xF  represents the input force to move the 

entire system along the x-axis, dragging the bridge and its contents. yF  is another input force 

used to transport the trolley along the y-axis. The load is suspended from the trolley by a 

rigid, constant-length cable, resulting in fluctuations that manifest as angular deflections, x  

and y . 

The primary system comprises two inputs and four outputs, suggesting the possibility of 

it being an underactuated plant. To address this, additional inputs can be introduced to apply 

torque to the hanging load, reducing its oscillations. Employing the Lagrange method and 

simplifying the results using MATLAB, considering the system's four degrees of freedom, the 

dynamic equations are derived as follows: 

  2 22x p p x x y p y x y p x y x y p x x y p y x y x rxM m x m l C C m l S S m l C S m l S C m l S C F f             (1) 

   2

y p p y y p y y y ryyM m m l C m l S F f       (2) 

 2 2 22 0p x y p x y p x y y y p x ym lxC C m l C m l C S m glS C       (3) 

 2 2 2 0p x y p y p p xy y y p x ym lxS S m lyC m l m l C S m glC S        (4) 

where, xM  stands for the trolley mass, yM  for the trolley mass and the bridge mass 

together, pm  for the payload mass, l for the length of the cable, and g represents the gravity 

coefficient. yS , xS , yC  and xC , are brief words to describe sin y , sin x , cos y  and cos x  

respectively. Also, rxf  and ryf  are friction coefficients through x and y directions. According 

to [22], these coefficients are usually a mixture of hyperbolic and polynomial functions. 

Therefore, in this case, friction has equations like these: 
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The coefficients in the equations above represent friction-related factors, and their 

values have been determined through experimental means. 

 

3. Linearized dynamic system and its State Space configuration 

In the case of underactuated systems, dealing with a nonlinear system presents a 

significant challenge as achieving desired functional results can be problematic when the 

system lacks full controllability. Additionally, working with a nonlinear system can introduce 

complexities into the process. Therefore, to enhance the performance when designing a pole-

placement controller, which relies on precise system state-space matrices, it is essential to 

employ a linearized model. 

The industrial example simulated in this paper is based on the overhead crane system 

introduced in [13]. To facilitate a more convenient comparison between controllers, the same 

parameter values as those introduced in [13] are used. Consequently, xM  and yM  are set to 

6.157 kg  and 15.594 kg , respectively. The mass of the hanging load, pm , is considered as 1 

kg , while the length of the cable l , with its neglected mass, is set at 0.6 m . The gravity 

coefficient is assumed to be 9.8 2/  m s . Finally, for equations 5 and 6, the friction coefficients 

and their respective values are as follows: 



 4 

    23.652 , 20.371 ,  0.01,    0.8,    1.4 rox roy x y rx ryf N f N k k        (7) 

To utilize gathered equations in an actual industrial instance, the work requires a 

linearized system. So, equations 1 to 4 can be directly linearized while being transformed into 

state-space matrices. Therefore, linearization of the system is completed by Jacobian matrices 

and using MATLAB according to the nonlinear system around the operating point. The 

obvious thing is the fact that the final derivatives of state-space variables are x , y , x  and 

y . Thus, the equations 1 to 4 are divided concerning the final derivatives of the variables 

where they also contain lines of the derivatives of the state variables and shown by if  where i 

can be number one to four; furthermore,  nx  is assigned to the variables where n  is the 

number of variables which is set to be 8 due to system information. Similarly  for outputs, jg  

is assigned where j  can be any number from 1 to four and at last, for inputs ku  stands for the 

system force entries where k  has to be one or two. Now, to linearize the system and achieve 

a state-space model, there are no operating points for x and y, and other parameters are 

linearized around the zero-operating point. Due to all the explanations, according to equation 

8, state-space matrices are completely generated. 
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To clarify, the approach employed here is akin to using partial differential methods for 

linearization, which yields a linearized state-space model around the chosen operating points. 

These linearized matrices serve as the foundation for designing both pole-placement and 

MPC controllers. With the state-space model in hand, determining the controllability matrices 

becomes a straightforward process. Following the acquisition of state matrices, controllability 

matrices are computed, setting the stage for controller design under various conditions. The 

state-space matrices are detailed in equation 9. 
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4. Design of Pole-Placement and MPC controllers 

4.1. Pole-Placement Controller Design 

An intelligent system consists of three core components: a sensor, a controller, and an 

actuator. The sensor observes and measures system responses, which are then compared to 

the desired input by the controller. Based on this comparison, the controller generates 

appropriate commands for the actuator to achieve the desired outcome. 

The primary objective of designing a controller using the pole-placement method is to 

manipulate the locations of each pole, thereby ensuring that the system responses align with 

the desired conditions. To begin this process, the controllability of the system is assessed 

using the matrices in equation 9. The controllability matrix takes the form: 

 
2 1              nS B AB A B A B     (10) 

In a fully controllable system, the rank of the S matrix must match the number of state 

variables. In essence, a system achieves full controllability when its controllability matrix is 

invertible. As previously demonstrated, the system encompasses 8 state variables, thus 

confirming controllability through the application of equation 10. 

 
2 3 4 5 6 7, , , , , , ,S B AB A B A B A B A B A B A B     (11) 

After calculating equation 11, it becomes evident that the system has a rank of 2, 

indicating a substantial disparity between the system's rank and the number of state variables. 

In essence, only two of the system's parameters are controllable. 

To address this challenge, two approaches can be considered. Firstly, the system can 

be partitioned into controllable and uncontrollable parts, and a controller designed 

specifically for the controllable portion. Utilizing mappings and transfer matrices, it might be 

possible to control all eight variables. However, it's crucial to verify the stability of the 

resulting poles in this approach. 

Alternatively, when the rank is notably low, an alternative solution is to introduce 

additional inputs to the primary system until it attains full rank, effectively creating a new 

system. The stability of this control system should be rigorously assessed each time additional 

inputs are added, as this may pose a threat. Subsequently, by matching the poles of the 

alternative system with those of the primary system, the results can be evaluated. If the 

response is satisfactory, this adapted approach can often be more straightforward and 

accessible than the first one. In this paper, the second option is employed and successfully 

implemented. 

To put the last paragraph in other words, two more actuators are set on the trolley, and 

their mass is neglected to control the fluctuation of the hanging load. As a result, they have 
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minor effects on friction which can be ignored. To change the main system to an alternate 

one, torque inputs xT  and yT  are added at the right side of equations 3 and 4. Considering 

these changes, matrix A  from equation 9 will stay constant. Still, dimensions of matrix B  

will increase to be four columns as the additional two actuators. Following the application, 

two zero columns are added to the transfer matrix D . Thus, the input matrix will be like 

below: 

 

0 0 0 0

0.16 0 0.27 0

0 0 0 0

0 0.06 0 0.11

0 0 0 0

0.27 0 3.23 0

0 0 0 0

0 0.11 0 2.95

B

 
 


 
 
 
 
 
 
 
 
 
  

 (12) 

As explained before, controllability should be checked one more time. By 

manipulating a generalized equation in equation 10 for systems with multiple entries, 

equation 13 is gained. 

 
2              n mS B AB A B A B     (13) 

where  m is the number of system inputs, this matrix equates to equation 10 and is a 

faster way for reaching the answer. Therefore, for the alternate system with four entries it is 

obtained that: 

 
2 3 4, , , ,S B AB A B A B A B     (14) 

 In equation 14, the controllability matrix is found to be full rank, confirming the full 

controllability of the alternate system as expected through the addition of new inputs. This 

result indicates that by selecting and replacing the appropriate poles, the control system can 

be successfully established for the alternate system. 

In the case of an overhead crane system with a hanging load, optimal performance is 

achieved when the trolley and the bridge smoothly reach the desired destination without 

excessive speed, resulting in a lower settling time. This is particularly crucial when the travel 

distance exceeds approximately 1 meter. High-speed trolley movement can lead to significant 

vibrations in the hanging load, potentially pushing the system out of desirable conditions. 

This is because the cable and rod connecting the trolley to the hanging load in the actual 

model are not rigid bodies, emphasizing the importance of maintaining a small angle. 

To initiate the process, the system's poles must be determined. Using matrix A from 

equation 9, the poles of the system are extracted. Notably, matrix A remains constant in both 

the main and alternate systems. 

  0,0, 384.14,  0.003 4.04 , 130, 0.004 4.04poles j j        (15) 

The distance between a pole and the imaginary axis in pole placement dictates its 

influence on the system's performance. The system's behavior is primarily determined by its 

dominant poles. To optimize performance, the approach is to position six poles close to the 

imaginary axis to achieve a faster response without imposing high input forces. The 

remaining two poles are designated as the dominant poles. 

 Concerning these facts, settling time can be assumed around 10 seconds, which can be 

sufficient, and for maximum overshoot, roughly 3%  can be a good value. By these 

conditions, dominant poles are calculated, and to reduce the effects of the other poles, they 

should be set far away from the imaginary axis. Using equations for maximum overshoot and 

settling time, the natural frequency n  and the damping ratio   of the desired system are 

found as: 
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Thus, the achieved desired poles are: 

  2

1,2 1,21 0.4 0.3584np p j           (18) 

 3 4 5 6 7 85,  6,  7,  8,  9,  10p p p p p p             (19) 

So that the gain matrix K  shown below is pulled out for the alternate system with four 

actuators and ready to be manipulated. 

 
4 8
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13.8 1.7 26.9 8.3 12.9 1.7 4.9 4.0

K 

  
 

    
 
 
 
    

 (20) 

To evaluate the performance of the achieved gain, regulation responses for K  are 

examined. Initial values are assigned to each state variable, and a regulation diagram is 

generated by solving the differential equation. This process serves as a test of the controller's 

effectiveness. In the context of pole-placement theory: 

 u Kx   (21) 

Here, u  represents the problem inputs, while x  denotes the state variables accessible 

through the state estimator. As illustrated in Figure 2, the regulation responses for each state 

variable demonstrate a clear and stable behavior, with reasonable maximum overshoots given 

the initial conditions. With this favorable system behavior confirmed, these poles can be 

tested in the main system. Utilizing the two inputs and the B matrix in equation 12, the 

controller gain is determined as per equation 22. 

 2 8

50.3 2210.7 3.3 29.4 494.4 11.1 75.1 12.5

911.1 449.2 372.4 1489.5 145.9 234.5 1402.9 106.6
K 

     
  

     
(22) 

By using equation 21 and solving the regulation equations once again, but with the 

main system dynamics, and using gain in equation 22, according to equation 23 with different 

initial values, Fig 3 is obtained. 

 
 

x Ax Bu

u kx

 



 (23) 

As depicted in Figure 3, the system variables converge to zero from their initial 

conditions at an appropriate pace, with the error stabilizing at zero. It's evident that the 

replaced poles from the alternate system not only perform exceptionally well in the main 

system but also result in lower maximum overshoot factors for specific variables. 

Consequently, the pole-placement controller is designed using the obtained gain from 

equation 22 and subsequently applied in the simulation. 

 

4.2. Model Predictive Controller (MPC) Design 

Model Predictive Control (MPC) is a powerful strategy for Multi-Input Multi-Output 

(MIMO) systems, known for its ability to provide precise control while accommodating 

various constraints. This method involves optimizing the controller's actions over a set 

horizon to minimize a cost function, gradually reducing the error to zero. 

In essence, MPC is rooted in optimal control principles. It predicts the system's future 

behavior and then selects the most desirable inputs to achieve optimal control. However, 

MPC relies on the system's initial states, as reflected in the state-space model equations 

detailed in equation 9. These equations provide a linear, time-varying model with matrices for 

use in MPC. 
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When discussing MPC controllers, it's often more convenient to work with a discrete-

time model. This approach yields a linear, time-invariant, and discrete-time model that aligns 

better with the MPC framework. 
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The linear discrete-time model is preferable for explaining MPC concepts simply and 

effectively. One of the notable advantages of MPC is its ability to manage constraints and 

keep the system within predefined limits. The inputs in the system have bounds, and MPC is 

adept at handling these constraints. 
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E e
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States are not exempt from these constraints, so when the need arises to control and 

manage the states, the boundaries are defined as: 

              0Fx k f k    (27) 

F  and f  processes like E  and e , respectively [23]. In a time-varying system, the 

linear quadratic regulator or LQR is given as a cost function [24][25]. 

      
0

1 1

2 2

T
T T TJ x Qx u Ru dt x T Px T    

in which 0Q  , 0R  , 0P   are positive, symmetric definite matrices. In MPC 

controller, since the discrete-time model is used, this cost function is transformed to a 

summing equation as: 

               
1

0

0

1 1
,

2 2

N
T T T

k

J x u x k Qx k u k Ru k x N Px N




    (28) 

In the formula above, N  represents the number of time steps into the future 

considered. Symmetry matrices are selected to be diagonal, indicating the weight of each 

parameter. The controller's objective is to use collected data to predict the system's behavior 

by minimizing the cost function and driving u  to converge to zero. 

Choosing the optimal LQR weights can be done in various ways [24], but in this 

study, effective parameters are set using software tools, allowing for an automated process. 

The sample time, denoted as sT  is a critical factor in controller design. Longer sample 

times introduce more uncertainties and disturbances with delayed reactions, while shorter 

sample times result in a faster system but increase error comparisons. Given the system's pole 

locations and the need for performance, the sample time cannot be less than 1 second, and, in 

this case, sT  is set to 1 second. 

The prediction horizon p , determines how far into the future the controller predicts 

the system's behavior. Choosing p  too small leads to wasted time due to delays and 

prolonged settling times, while a too-large p  amplifies the impact of uncertainties and 

disturbances. To optimize performance, equation 29 is used to select a suitable p , ensuring 

that the system exhibits desirable behavior. 

 . s spT t  (29) 
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The settling time, denoted as st , is set to 10 seconds, consistent with previous parts, 

while sT  remains at 1 second. This configuration results in a prediction horizon p  equal to or 

greater than ten seconds, and thus p  is set to 10 seconds in subsequent calculations. 

Moving forward, the control horizon m  is the next factor to consider, primarily aimed 

at reducing error comparisons. Consequently, it should not fall below a certain limit. Similar 

to determining the prediction horizon, m  can be calculated using equation 30: 

 0.1 0.2p m p   (30) 

while having p  on 10 seconds, m  is considered on 1 second. 

The next step involves setting constraints and weights for the system parameters, a 

notable feature of the MPC controller. Depending on the situation, MPC can accommodate 

two types of constraints: soft and hard. In this specific problem, hard constraints are preferred 

for the system inputs, limiting them to 400 N . This constraint is chosen to prevent excessive 

trolley speed, which could lead to increased fluctuations in the hanging load. Additionally, 

constraints are imposed on the vibration amplitude, restricting it to no more than 2 degrees in 

both directions, disregarding air drag forces. As a result, the system is expected to respond 

cautiously rather than rapidly, given the constraints placed on input forces. 

In a similar vein, when determining the weights, it's essential to consider that using 

the full control power to manage vibrations may not be ideal. Given the greater weight of the 

trolley and its impact on angles, excessively sensitive control may not yield better 

performance. In this particular problem, the primary emphasis is on achieving the system's 

appropriate behavior, with the approach being either aggressive or robust. 

Moreover, it's evident that enhancing robustness may result in higher input forces, 

which is not desirable in this specific industrial context. Therefore, the controller parameters, 

as detailed in Table 1, are configured to prioritize the system's suitable performance. 

Subsequent to simulation, further adjustments can be made to fine-tune the controller, 

depending on the specific conditions and environment in which the machine will operate. 

 

5. Simulation, system response analysis & discussion 

This section aims to simulate the system using both controllers and analyze their 

responses. The desired performance criteria are achieving speed while mitigating fluctuations 

resulting from trolley movement. 

 

5.1. System Simulation with Controller Designed by Pole-Placement Method 

A system equipped with a pole-placement controller is represented by a schematic 

block diagram in Fig 4. Here, r  denotes the desired input, and x  represents the system's state 

variables. The desired destination is set at point (3,4) meters on the Cartesian coordinates for 

the main system. By conducting simulations using the controller design's K  value, the 

system's responses are depicted in Fig 5. 

In Fig 5a, the system response exhibits a slight maximum overshoot, which is deemed 

adequate. The response achieves a smooth and desirable pace in reaching the destination, with 

a settling time of approximately 10 seconds, aligning with expectations. In Fig 5b, although 

the response initially exhibits rapid fluctuations, the amplitude reaches 10 degrees at the 

outset but quickly stabilizes around the equilibrium point. This behavior was anticipated, as 

the system prioritizes rapid destination attainment, as evident from Fig 5a. 

Subsequently, the input forces are examined, as displayed in Fig 6. Notably, the force 

reaches approximately 2200 N , which is consistent with operational conditions and is 

deemed reasonable but not optimized. The majority of this input force is allocated to 

achieving movement speed and promptly mitigating vibrations, as anticipated in the response. 

These results are obtained when the system is required to reach a destination exceeding one 

meter. 
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The simulation is set similarly to track the point (0.3,0.4) meters for minor 

transportation like less than one meter and gathered diagrams are set in Figs 7 and 8. It can 

even be helpful to compare the results to the one gained in [13]. This should be noted that in 

previous sections the settling time is set for 10 seconds which is higher than [13] so the 

system comprises better damping on fluctuations and more than 1 meter destinations. 

In Fig 7a, the settling time remains consistent with the previous simulation. 

Consequently, the system response is slower than in Fig 6a. Fig 7b demonstrates that the 

system's fluctuations are effectively damped and do not exceed 1 degree. This design proves 

to be highly responsive for transportations less than one meter. 

Changes in the input force are presented in Fig 8. Notably, the input force experiences 

a significant decrease, falling below 220 N . This reduction is attributed to the shorter travel 

distance, allowing the system to operate at a smoother and slower pace without saturating the 

actuator. 

 

5.2. System Simulation with Controller Designed by MPC approach 

Similar to subsection 5.1, the system block diagram is configured as shown in Fig 9. 

The state estimator feeds the variables into the controller, and the MPC theory focuses on 

minimizing the cost function. It achieves this by predicting the system's behavior within the 

specified prediction horizon and subsequently transmitting the control signal to the trolley 

and crane system. 

During the simulation, Table 1 is configured for the MPC controller plant, while all 

other factors are automatically generated. Once the simulation is complete, the responses for 

the desired (3,4) meters location are presented in Fig 10. 

In Fig 10a, the system takes approximately 30 seconds to reach its desired location, 

which is longer than our specified settling time. Notably, there is no maximum overshoot, and 

the system exhibits overdamped behavior. Fig 10b illustrates that the system experiences 

steady-state vibrations with a 2-degree amplitude after approximately 20 seconds, as 

expected. These vibrations should ideally be damped by friction from air drag force, which 

was not accounted for in our model. Finally, Fig 10c presents the input forces. 

Due to the constraint on input force set at 400 N, the actuator force remains within 

limits for a sample time of 1 second, demonstrating the system's response. These outcomes 

are observed when the desired input movement exceeds 1 meter. To facilitate comparison, the 

analysis is repeated for a target point of (0.3,0.4) meters, mirroring section 5.1. The results are 

depicted in Fig 11. 

In Fig 11a, the settling time is under 30 seconds, with no maximum overshoot 

observed. Compared to Fig 10b, the system exhibits a slower response. As a result, Fig 11b 

shows fluctuations not surpassing 1 degree, indicating that this controller effectively mitigates 

vibrations for shorter destinations. Changes in input force are illustrated in Fig 11c. Here, the 

input force remains below 120 N, adhering closely to its constraints. An increase in this factor 

enhances system speed, leading to greater amplitudes in hanging load vibrations. 

 

6. Comparison of the performance of designed controllers 

In the previous sections, we designed different controllers using pole-placement and 

MPC approaches, observing their distinct responses when applied to the system. These results 

exhibit variations, with each controller having specific conditions for optimal use. 

Consequently, it's essential to compare these designed controllers and elucidate their 

operational characteristics. Furthermore, we outline the differences between our controllers 

and the PD-SMC controller from [13]. 

The simulation results reveal that the movement of the trolley in Cartesian coordinates 

yields diverse responses and behaviors, not only across different controllers but also in 

scenarios involving short or long distances. Plots are provided in Figs 12 and 13 to illustrate 

these outcomes. 
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In Fig 12a, it's evident that for distances less than one meter, the pole-placement 

controller exhibits slightly higher speed compared to the MPC controller. However, the MPC 

controller, represented by the dotted lines, showcases smoother movement without overshoot, 

even when the maximum overshoot for the pole-placement controller remains below 3%. 

Regarding oscillations, Figs 12b and 12c demonstrate that the pole-placement 

controller leads to quicker convergence to zero and equilibrium point, while the MPC 

controller allows for vibrations of approximately 1 degree. This minimal angle is acceptable, 

especially in scenarios with longer cables between the load and trolley. The MPC controller 

dampens vibrations at a slower rate than the pole-placement controller, but eventually reaches 

a zero equilibrium point, which simulates the presence of drag force in real-world situations. 

In terms of input forces, Fig 13 reveals that the MPC controller applies lower input force to 

the system compared to the pole-placement controller, which uses about twice the force. 

In summary, for distances less than one meter, the choice between controllers depends 

on system speed and the need to quickly dampen fluctuations. The pole-placement controller 

excels in these conditions, provided the actuator can deliver the necessary force. However, if 

there's a force input limit and overdamping is desirable, the MPC controller is a cost-effective 

option. 

Comparing to [13], the PD-SMC controller performs well, with even lower input force 

as shown in Fig 13. However, this performance is primarily optimized for distances less than 

one meter. When distances increase to around 4 meters, the system experiences more 

vibrations and approaches the limit of desired performance. Moving forward, the focus shifts 

to comparing controller behaviors when moving the trolley to a long-distance point like (3,4) 

meters, and evaluating which one performs better in different conditions in Figs 14 and 15. 

In Fig 14a, the differences between both systems are evident, with the pole-placement 

controller maintaining a consistent settling time of 10 seconds. Similar to Fig 12a, the MPC 

controller displays a smoother behavior but at a slower speed compared to the pole-placement 

controller. This reduced speed keeps the fluctuation amplitudes shown in Figs 14b and 14c 

within the constraints of 2 degrees in a steady-state condition. 

For the pole-placement controller, however, there is an initial deviation of 10 degrees 

from the equilibrium point, which is expected due to its high speed. This is not a desirable 

performance, but it is quickly damped and doesn't persist like in the MPC controller. 

Regarding input forces, the MPC controller doesn't exceed the 400 N saturation limit 

set for the actuator. In contrast, the pole-placement controller applies a significant input force 

to the system. Therefore, the pole-placement controller designed without input force limits 

performs exceptionally well and handles the 10-degree deflection without issue. It is also 

suitable when a fast system is needed, especially for distances greater than one meter. 

On the other hand, the MPC controller provides smoother movement while adhering 

to input force constraints, making it a favorable choice when overshoots are to be avoided in a 

scenario with limitations on input forces. 

 

7. Analyzing the control system behavior in the presence of uncertainties 

In this section, a brief analysis of the control system's robustness is conducted. Real-

world systems are subject to changing conditions over time, and a controller must be able to 

adapt to these variations. For example, in our scenario, parameters like the mass of the 

hanging load, trolley mass, and cable length can change over time, affecting the system's 

behavior. To evaluate the robustness of our controllers, we introduce 10% uncertainties by 

either adding or subtracting this percentage from each of these parameters. The results of this 

robustness analysis are as follows: 

 

0.9 5.54 

1.1 1.1 

1.1 0.66 

x x x x

p p p p

M M M M kg

m m m m kg

l l l l m

    


     
     

 (31) 
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In this robustness analysis, both controllers, the pole-placement controller and the 

MPC controller, were subjected to variations in system parameters. The simulations showed 

that both controllers exhibited suitable robustness, with minimal sensitivity to changes in the 

system parameters related to the trolley's movement to reach the desired point, as depicted in 

Fig 16. 

However, when it came to the fluctuations of the hanging load, the pole-placement 

controller displayed a more robust performance in the presence of uncertainties, as evident in 

Figs 17 and 18. The MPC-controlled system exhibited different responses with varying 

frequencies over time when uncertainties were introduced. 

This analysis suggests that the pole-placement controller may offer better robustness 

in scenarios involving hanging load fluctuations. Further research in this field may yield 

additional insights into the sensitivity and robustness of different control systems for 

overhead cranes, as these systems continue to receive attention in the academic world. 

 

8. Conclusions 

In conclusion, this paper has explored the control of an overhead crane with four 

degrees of freedom and nonlinear dynamics, presenting various controller designs and their 

associated behaviors. Specifically, the pole-placement and MPC controllers were designed 

and simulated under realistic operational conditions. The pole-placement controller, designed 

for the underactuated system, employed two alternate inputs to simplify gain measurement. 

This controller exhibited excellent performance for both short and long-distance movements, 

although its high-speed operation led to increased vibrations in the hanging load. While it 

occasionally required high input forces, it demonstrated robustness in damping uncertainties. 

Conversely, the MPC controller, which minimizes a cost function based on system 

parameters, provided smoother and slower system responses with reduced hanging load 

fluctuations. It effectively constrained input forces, ensuring system performance met the 

constraints in both movement and oscillations. The choice between controllers depends on the 

specific application and operational requirements. 

In summary, as demonstrated in Table 2, each controller offers distinct advantages, 

making them suitable for different scenarios. The process under uncertainty involvement 

conditions should be considered as well. The selection of the appropriate controller should be 

based on the specific needs and conditions of the system's operation. 
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10. Captions 

Figures 

 

Figure 1: Three-dimensional overhead crane with two inputs and four outputs system 

dynamics 

Figure 2: Displacement (a), Velocity (b), Angle Between Hanging load and Vertical Axis (c) 

and Angular Velocity Between Hanging load and Vertical Axis (d) Regulation Diagrams 

along the x-axis (blue line) and y-axis (orange line) by using Pole-Placement in the Alternate 

System with four inputs 

Figure 3: Displacement (a), Velocity (b), Angle Between Hanging load and Vertical Axis (c) 

and Angular Velocity Between Hanging load and Vertical Axis (d) Regulation Diagrams 

along the x-axis (blue line) and y-axis (orange line) by using Pole-Placement in the Main 

System with two inputs 

Figure 4: Block Diagram of a System with Pole-Placement Controller [26] 

Figure 5: Diagram of the Location of the Trolley (a) and the Fluctuations of the Hanging 

Load (b) Controlled by Pole-Placement Controller to Reach (3,4) meters Point along the x-

axis (blue curve) and y-axis (orange curve) 

Figure 6: Diagram of the Input Force to the System Controlled by Pole-Placement Controller 

to Reach (3,4) meters Point along the x-axis (blue curve) and y-axis (orange curve) 

Figure 7: Diagram of the Location of the Trolley (a) and the Fluctuations of the Hanging 

Load (b) Controlled by Pole-Placement Controller to Reach (0.3,0.4) meters Point along the 

x-axis (blue curve) and y-axis (orange curve) 

Figure 8: Diagram of the Input Force to the System Controlled by Pole-Placement Controller 

to Reach (0.3,0.4) meters Point along the x-axis (blue curve) and y-axis (orange curve) 

Figure 9: Block Diagram of a System with MPC Controller [27] 

Figure 10: Diagram of the Location of the Trolley (a), the Fluctuations of the Hanging Load 

(b), the Input Force (c) to the system Controlled by MPC Controller to Reach (3,4) meters 

Point along the x-axis (blue curve) and y-axis (orange curve) 

Figure 11: Diagram of the Location of the Trolley (a), the Fluctuations of the Hanging Load 

(b), the Input Force (c) to the system Controlled by MPC Controller to Reach (0.3,0.4) meters 

Point along the x-axis (blue curve) and y-axis (orange curve) 

Figure 12: Comparison between Location considering blue for x-axis and orange for y-axis, 

dashed line for MPC and straight line for Pole Placement (a), Fluctuations of the Hanging 

Load along the x-axis (b) and y-axis (c) of the Trolley Controlled by MPC Controller and 

Pole-Placement Controller for reaching (0.3,0.4) meters point 

Figure 13: Comparison between Input Forces of the System Controlled by MPC Controller 

and Pole-Placement Controller for reaching (0.3,0.4) meters point 

Figure 14: Comparison between Location considering blue for x-axis and orange for y-axis, 

dashed line for MPC and straight line for Pole Placement (a), Fluctuations of the Hanging 

Load along the x-axis (b) and y-axis (c) of the Trolley Controlled by MPC Controller and 

Pole-Placement Controller for reaching (3,4) meters point 

Figure 15: Comparison between Input Forces of the System Controlled by MPC Controller 

and Pole-Placement Controller for reaching (3, 4) meters point 

Figure 16: Comparison between Location along the x-axis (a) and y-axis (b) of the System 

Controlled by MPC Controller and Pole-Placement Controller for reaching (0.3, 0.4) meters 

point with and without 10% of Uncertainties where blue and orange lines indicated MPC and 

Pole Placement and dashed lines illustrates uncertainties in each of them 

Figure 17: Comparison between Fluctuation of the Hanging Load along the x-axis (top) and 

y-axis (down) of the System controlled by Pole-Placement Controller for reaching (0.3, 0.4) 

meters point with and without 10% of Uncertainties 
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Figure 18: Comparison between Fluctuation of the Hanging Load along the x-axis (top) and 

y-axis (down) of the Main System (blue) and the Uncertain System (orange) controlled by 

MPC Controller for reaching (0.3, 0.4) meters point with and without 10% of Uncertainties 

Tables 

 

Table 1: Detailed information of parameters used in MPC controller 

Table 2: Statistical specifications of the main behavior parameters of the system responding 

to pole-placement controller and MPC 
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Figure 18 

 

 

sT  1 s  

p  10 s  

m  1 s  

x Weight 2 

y Weight 2 

x  Weight 1 

y  Weight 1 

x Constraints   ,inf inf  

y Constraints   ,inf inf  

x  Constraints  2 ,2     

y  Constraints  2 ,2     

xF  Constraints   ,400 inf N  

yF  Constraints   ,400 inf N  

Table 1 

 

 

Controller 

Short Trajectory Long Trajectory 

Max. Overshoot Set. Time (s) 
Max. 

Input 

Force 

(N) 

Max. Overshoot Set. Time 
Max. 

Input 

Force 

(N) 
Avg. 

Dist. 

Avg. 

Angle 

Avg. 

Dist. 

Avg. 

Angle 

Avg. 

Dist. 

Avg. 

Angle 

Avg. 

Dist. 

Avg. 

Angle 

Pole-

Placement 
3.75% 10.5° 10 10 225 3.75% 10.5° 10 10 2250 

MPC - 1° 20 15 110 - 3.5° 30 15 400 

Table 2 
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