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The objective of this study is to investigate the effects of heat transfer analysis on Casson fluid flow with 
the suspension of solid particles through divergent channels under the influence of magnetic force and 
slip boundary conditions. The governing equations of non-Newtonian fluid (i.e. Casson fluid) are solved 
and presented as the closed-form solution of the problem. The graphical behavior is constructed in 
MATHEMATICA software and discusses the effects of emerging parameters of the current study on 
fluid and particle velocities distribution, stream function, temperature profile, and heat transfer rate. The 
temperature distribution increases against the thermal slip parameter and decreases via the velocity slip 
parameter. The heat transfer rate is a decreasing function of the non-Newtonian parameter, velocity slip 
parameter, Hartman number, and coefficient of particle fraction while this behavior no longer exists 
against the thermal slip parameter, Brinkman number, the Helmholtz–Smoluchowski velocity, and 
electroosmotic parameter. The results of our study can be reduced to the Newtonian fluid by taking 𝑁𝑁𝑝𝑝 →
∞. The current fluid-particle suspension Casson model helps understand the thermal properties of such 
a model under the action of the electric and magnetic field with slip boundary conditions. Further, the 
suspension of dense particles can be useful in solar power plants to restore more energy. 

  

 
1. Introduction 
The theory of multiphase flow is extremely accommodated 
to understanding the physical phenomena of engineering 
environments namely, the production of cement, treatment 
of wastewater, manufacturing of the steel industry, lunar 
ash flow, gas purification, purification of crude oil 
production, paint spraying, transport process, dust 
collection, and environmental pollution motion [1,2], etc. 
The first work on the suspension of solid particles in 
viscous fluid was done by Saffman [3]. He reported the 
stability analysis of laminar dusty gas in his published 
book. After his study, various authors highlighted the 
importance of fluid and particle phases in diverse shapes of  

 
geometries. For this, Bhatti et al. [4] presented the clot 
blood model of fluid and particle phase suspension to report 
the heat transfer analysis in variable annulus under the 
effects of slip boundary conditions. The fluid and particle 
suspension through the ciliated walls of the porous channel 
under the action of magnetic force was investigated by 
Bhatti et al. [5]. Their outcomes revealed that the velocity 
distribution diminished via the magnetic force parameter. 
In another study, Bhatti et al. [6] used the Darcy-Brinkman-
Forchheimer model to report the porous medium effects in 
bi-phase liquid by taking the Sisko non-Newtonian fluid. 
Nazeer et al. [7-9] discussed the suspension of solid 
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particles in Jeffrey fluid, Couple Stress fluid, and third-
grade fluid and presented some important results on 
multiphase fluids in different geometries. Kumar et al. [10] 
discussed the suspension of fluid and particles past a 
stretching surface with thermal radiation effects.  

The flow of electrically conducting fluid under the 
suspension of solid particles has great applications in 
manufacturing industries such as polymer technology, the 
petroleum industry, cooling systems, MHD generators, 
centrifugal separation of matter from fluid and accelerators, 
etc. Many researchers and scholars have studied the 
suspension of solid particles in liquid under the effects of 
magnetohydrodynamics in different regions like flow 
through parallel plates, flow in wavy channels and 
stretching surfaces, etc., and with different boundary 
conditions. Pavithra and Gireesha [11] discussed the heat 
transfer analysis in fluid-particle suspension over a 
stretching sheet by using the numerical technique. Hatami 
et al. [12] selected the two moving parallel plates to discuss 
the fluid and particle suspension in a Newtonian fluid under 
the action of the magnetic field. Jha and Apere [13] 
presented the closed-form solution of the time-dependent 
fluid and particle phase model between two infinite plates. 
The Laplace transformation method is used to solve the 
governed problem and discusses the graphical behavior of 
both phase velocities. In another study, Jha and Malgwi 
[14] studied the hydro-magnetic unsteady flow of fluid 
through the moving wall of the porous channel. Al-Zubaidi 
et al. [15], Ge-JiLe et al. [16], Zeeshan et al. [17], Ellahi et 
al. [18], Bibi et al. [19], and Gad [20], etc. also presented 
the application of fluid and particle phase model under the 
effects of the magnetic field in the diverse shape of 
geometries.  

The study of heat transfer in the suspension of solid 
particles has been attracted by scholars and researchers due 
to its wider applications in polymer processing technology, 
solar power plants, engine oil flow, and many others in 
well-known literature. Particularly, the applications of the 
MHD flow and heat transfer analysis of electrically 
conducting fluids with possible suspension of solid 
particles through channels and pipes occur in MHD 
generators and pumps, nuclear reactors, filtration, 
geothermal systems, etc. In the literature, Chamkha [21] 
formulated the continuum model of fluid and particle 
phases to analyze the heat transfer analysis in two different 
types of geometries (channels and pipes) under the effects 
of the magnetic field. The Fourier cosine and Bessel 
functions are used by him to obtain the closed-form 
solution of fluid and particle phases while the energy 
equation is solved through numerical methods. His results 
revealed that the flow and heat transfer is superior in the 
case of channels as compared to pipes. Ansart et al. [22] 
presented the applications of heat transfer analysis through 
gas-particle suspension in solar receivers by using the 
three-dimensional numerical technique. The application of 

  
Figure 1. The physical sketch of the problem. 
 
dense particle suspension in thermal power plants was 
highlighted by Spelling et al. [23]. The applications of heat 
transfer rate along with slip boundary conditions, Darcy–
Brinkman–Forchheimer porous medium, and magnetic 
field in fluid and particle phase models through the wavy 
channel were reported by Imran et al. [24]. Bhatti and 
Zeeshan [25] also reported the applications of heat transfer 
analysis in particle suspension by using the slip boundary 
conditions in peristaltic waves by considering the Casson 
fluid. Some authors have also presented remarkable studies 
of heat transfer analysis in the suspension of solid particles 
in different environments [26-30]. 

In view of the above-cited analyses, the objective of 
this study is to investigate the effects of heat transfer 
analysis on Casson fluid flow with the suspension of solid 
particles through the divergent channels under the influence 
of magnetic force and slip boundary conditions. To the best 
of our knowledge, no such study has been done before. 
Such type of flow problems are important in the human 
body where the heat transfer process is very important to 
maintain the feasible condition of tissues and circulation of 
the blood through arteries. Furthermore, these types of 
problems are also very useful and interesting in thermal 
technology where the dense suspension of the particle 
provides direct thermal storage due to the maximum heat 
capacity and greater temperature of particle suspension. 
Moreover, the regular heat transfer fluids used in thermal 
power plants have many serious drawbacks (i.e., working 
in a limited temperature domain), and solid suspension of 
particles overcomes these drawbacks as heat transfer fluids. 
The solid particles can also be used as an energy storage 
medium. The governed system equations are formulated by 
using the Poisson equation, continuity equation, 
momentum equation, and heat equations and offered the 
closed solution through MATHEMATICA software. The 
physical outcomes are interpreted through graphs and 
tables and presented as the important results.  

2. Mathematical analysis 
Let us consider the steady flow of Casson fluid suspended by 40% 
Hafnium solid spherical particles in the divergent channel as shown 
in Figure 1. ( ) ( )1 2 1 2, , , ,0fv fv fvu vη η η η  V =  and 𝑉𝑉𝑝𝑝𝑝𝑝 =

�𝑢𝑢𝑝𝑝𝑝𝑝(𝜂𝜂1, 𝜂𝜂2), 𝑣𝑣𝑝𝑝𝑝𝑝(𝜂𝜂1, 𝜂𝜂2), 0�are the velocity vectors of fluid and 
particulate. 
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Geometry: 

 ℎ(𝜂𝜂1) = �𝑎𝑎 − 𝑏𝑏 sin2 �𝜋𝜋𝜂𝜂1
𝜉𝜉
� ,  when  11

7
< 𝜂𝜂1 < 33

7

0.5𝑎𝑎, othwewise
       (1)    

2.1. Mathematical analysis 

The continuity and momentum equation for the fluid phase in 
vector form is defined  as [31-34]: 

𝜕𝜕𝜌𝜌𝑓𝑓
𝜕𝜕𝜕𝜕

+ 𝛻𝛻. �𝜌𝜌𝑓𝑓𝐕𝐕𝑓𝑓𝑝𝑝� = 0,                                                             (2) 

𝜌𝜌𝑓𝑓(1 − 𝑐𝑐𝑚𝑚)
𝑑𝑑𝐕𝐕𝑓𝑓𝑝𝑝
𝑑𝑑𝜕𝜕

= −(1 − 𝑐𝑐𝑚𝑚)𝛻𝛻𝛻𝛻 + 𝛻𝛻.𝐓𝐓𝑖𝑖𝑖𝑖  

   +𝐷𝐷𝑓𝑓𝑐𝑐𝑚𝑚�𝐕𝐕𝑝𝑝𝑝𝑝 − 𝐕𝐕𝑓𝑓𝑝𝑝� + 𝐉𝐉 × 𝐁𝐁 + 𝛻𝛻2𝛷𝛷𝐸𝐸𝜂𝜂𝑝𝑝 + 𝜌𝜌𝑓𝑓𝑔𝑔.              (3) 

The extra stress tensor  (Τ𝑖𝑖𝑖𝑖) for the Casson fluid can also be 
expressed as [35,36]:  

𝑻𝑻𝑖𝑖𝑖𝑖 = �
2 �𝜇𝜇𝑏𝑏 +

𝛻𝛻𝜂𝜂2
√2𝜋𝜋

� 𝑒𝑒𝑖𝑖𝑖𝑖 , 𝜋𝜋 > 𝜋𝜋𝑐𝑐

2 �𝜇𝜇𝑏𝑏 +
𝛻𝛻𝜂𝜂2
√2𝜋𝜋

� 𝑒𝑒𝑖𝑖𝑖𝑖 , 𝜋𝜋 < 𝜋𝜋𝑐𝑐
                                (4) 

In the above mathematical expression 𝑻𝑻𝑖𝑖𝑖𝑖 is known as the  (i,j)th  
components of the stress tensor, the plastic dynamic viscosity of 
a non-Newtonian fluid are denoted by 𝜇𝜇𝑏𝑏, the yield stress of the 
fluid is 𝛻𝛻𝜂𝜂2 , 𝑒𝑒𝑖𝑖𝑖𝑖  is the (i,j)th  components of deformation rate, 𝜋𝜋 is 
expressed as �𝜋𝜋 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖� that is the product of components of 
deformation rate with itself, and 𝜋𝜋𝑐𝑐 is called the deformation rate 
of non-Newtonian fluid.  

2.2. The physical model of the particle phase 

The continuity and momentum equation for the particle phase in 
vector form is defined as: 

𝜕𝜕𝜌𝜌𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝛻𝛻. �𝜌𝜌𝑝𝑝𝐕𝐕𝑝𝑝𝑝𝑝� = 0,                                                             (5) 

𝜌𝜌𝑓𝑓𝑐𝑐𝑚𝑚
𝑑𝑑𝐕𝐕𝑝𝑝𝑝𝑝
𝑑𝑑𝜕𝜕

= −𝑐𝑐𝑚𝑚𝛻𝛻𝛻𝛻 − 𝐷𝐷𝑓𝑓𝑐𝑐𝑚𝑚�𝐕𝐕𝑝𝑝𝑝𝑝 − 𝐕𝐕𝑓𝑓𝑝𝑝�.                        (6) 

To discuss the thermal transport analysis, the heat equation is 
expressed as [37,38]: 

𝜌𝜌𝑓𝑓�𝑐𝑐𝑝𝑝�𝑓𝑓
𝑑𝑑𝑇𝑇𝑓𝑓,𝑝𝑝

𝑑𝑑𝜕𝜕
= 𝐾𝐾𝛻𝛻2𝑇𝑇𝑓𝑓,𝑝𝑝 + 𝜇𝜇𝑠𝑠𝜙𝜙.                                          (7) 

The above equations are expressed in component form as: 
𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂1

+
𝜕𝜕𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

= 0,                                                                      (8) 

𝜌𝜌𝑓𝑓(1 − 𝑐𝑐𝑚𝑚) �
𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂1

+ 𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

�

= −(1 − 𝑐𝑐𝑚𝑚)
𝜕𝜕𝛻𝛻
𝜕𝜕𝜂𝜂1

+ 𝜇𝜇𝑠𝑠(1 − 𝑐𝑐𝑚𝑚) �1 +
1
𝑁𝑁𝑝𝑝
�

�
𝜕𝜕2𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂12

+
𝜕𝜕2𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂22

� + 𝐷𝐷𝑓𝑓𝑐𝑐𝑚𝑚�𝑢𝑢𝑝𝑝𝑝𝑝 − 𝑢𝑢𝑓𝑓𝑝𝑝�         

−𝜎𝜎Β02𝑢𝑢𝑓𝑓𝑝𝑝 + �
𝜕𝜕2Φ
𝜕𝜕𝜂𝜂12

+
𝜕𝜕2Φ
𝜕𝜕𝜂𝜂22

� 𝐸𝐸𝜂𝜂1 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

,                    (9) 

𝜌𝜌𝑓𝑓(1 − 𝑐𝑐𝑚𝑚) �
𝜕𝜕𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂1

+ 𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

�

= −(1 − 𝑐𝑐𝑚𝑚)
𝜕𝜕𝛻𝛻
𝜕𝜕𝜂𝜂2

+ 𝜇𝜇𝑠𝑠(1 − 𝑐𝑐𝑚𝑚)�1 +
1
𝑁𝑁𝑝𝑝
�

�
𝜕𝜕2𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂12

+
𝜕𝜕2𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂22

� + 𝐷𝐷𝑓𝑓𝑐𝑐𝑚𝑚�𝑣𝑣𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑓𝑓𝑝𝑝�          

−𝜎𝜎𝛣𝛣02𝑣𝑣𝑓𝑓𝑝𝑝 + �
𝜕𝜕2𝛷𝛷
𝜕𝜕𝜂𝜂12

+
𝜕𝜕2𝛷𝛷
𝜕𝜕𝜂𝜂22

� 𝐸𝐸𝜂𝜂2 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

,                  (10) 

𝜌𝜌𝑓𝑓(𝑐𝑐𝑝𝑝)𝑓𝑓

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜕𝜕
+ 𝑢𝑢𝑓𝑓𝑝𝑝

𝜕𝜕𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜂𝜂1

+𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜂𝜂2 ⎦
⎥
⎥
⎥
⎤

= 𝛫𝛫 �
𝜕𝜕2𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜂𝜂12
+
𝜕𝜕2𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜂𝜂22
� 

+�1 +
1
𝑁𝑁𝑝𝑝
�

⎣
⎢
⎢
⎢
⎡2�

𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂1

�
2

+2�
𝜕𝜕𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

�
2

+ �
𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

+
𝜕𝜕𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂1

�
2

⎦
⎥
⎥
⎥
⎤

,              (11) 

𝜕𝜕𝑢𝑢𝑝𝑝𝑝𝑝
𝜕𝜕𝜂𝜂1

+
𝜕𝜕𝑣𝑣𝑝𝑝𝑝𝑝
𝜕𝜕𝜂𝜂2

= 0,                                                                   (12) 

𝜌𝜌𝑓𝑓𝑐𝑐𝑚𝑚 �
𝜕𝜕𝑢𝑢𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑝𝑝𝑝𝑝
𝜕𝜕𝑢𝑢𝑝𝑝𝑝𝑝
𝜕𝜕𝜂𝜂1

+ 𝑣𝑣𝑝𝑝𝑝𝑝
𝜕𝜕𝑢𝑢𝑝𝑝𝑝𝑝
𝜕𝜕𝜂𝜂2

� 

           = −𝑐𝑐𝑚𝑚
𝜕𝜕𝑝𝑝
𝜕𝜕𝜂𝜂1

+ 𝐷𝐷𝑓𝑓𝑐𝑐𝑚𝑚�𝑢𝑢𝑓𝑓𝑝𝑝 − 𝑢𝑢𝑝𝑝𝑝𝑝�,                                   (13) 

𝜌𝜌𝑓𝑓𝑐𝑐𝑚𝑚 �
𝜕𝜕𝑣𝑣𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑝𝑝𝑝𝑝
𝜕𝜕𝑣𝑣𝑝𝑝𝑝𝑝
𝜕𝜕𝜂𝜂1

+ 𝑣𝑣𝑝𝑝𝑝𝑝
𝜕𝜕𝑣𝑣𝑝𝑝𝑝𝑝
𝜕𝜕𝜂𝜂2

� 

           = −𝑐𝑐𝑚𝑚
𝜕𝜕𝛻𝛻
𝜕𝜕𝜂𝜂2

+ 𝐷𝐷𝑓𝑓𝑐𝑐𝑚𝑚�𝑣𝑣𝑓𝑓𝑝𝑝 − 𝑣𝑣𝑝𝑝𝑝𝑝�.                              (14) 

The boundary conditions are: 

𝑢𝑢𝑓𝑓𝑝𝑝(𝜂𝜂2 = ℎ) = −𝑙𝑙 �1 +
1
𝑁𝑁𝑝𝑝
��

𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

+
𝜕𝜕𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂1

�, 

𝑢𝑢𝑓𝑓𝑝𝑝(𝜂𝜂2 = −ℎ) = 𝑙𝑙 �1 + 1
𝑁𝑁𝑝𝑝
� �𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓

𝜕𝜕𝜂𝜂2
+ 𝜕𝜕𝑝𝑝𝑓𝑓𝑓𝑓

𝜕𝜕𝜂𝜂1
�,                         (15) 

𝑇𝑇𝑓𝑓,𝑝𝑝(𝜂𝜂2 = −ℎ) = 𝑇𝑇0 + 𝑘𝑘1 �
𝜕𝜕𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜂𝜂2
�, 

𝑇𝑇𝑓𝑓,𝑝𝑝(𝜂𝜂2 = ℎ) = 𝑇𝑇1 − 𝑘𝑘1 �
𝜕𝜕𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜂𝜂2
� .                                        (16) 

The dimensionless quantities are: 

�̄�𝜂1 =
𝜂𝜂1
𝜆𝜆

, �̄�𝜂2 =
𝜂𝜂2
𝑎𝑎

, ū𝑓𝑓𝑝𝑝 =
𝑢𝑢𝑓𝑓𝑝𝑝
𝑢𝑢0

,         ū𝑝𝑝𝑝𝑝 =
𝑢𝑢𝑝𝑝𝑝𝑝
𝑢𝑢0

,     

�̄�𝑣𝑓𝑓𝑝𝑝 =
𝑣𝑣𝑓𝑓𝑝𝑝
𝛿𝛿𝑢𝑢0

, �̄�𝑣𝑝𝑝𝑝𝑝 =
𝑣𝑣𝑝𝑝𝑝𝑝
𝛿𝛿𝑢𝑢0

, 𝜒𝜒1 =
𝑘𝑘1
𝑎𝑎

, ℎ̄ =
ℎ
𝑎𝑎

, 

�̄�𝛻 =
𝑎𝑎𝛿𝛿𝛻𝛻
𝑢𝑢0𝜇𝜇𝑠𝑠

, β =
𝑏𝑏
𝑎𝑎

,   𝜒𝜒2 =
𝑙𝑙
𝑎𝑎

, �̄�𝛷 =
𝛷𝛷
𝜁𝜁

, δ =
𝑎𝑎
𝜉𝜉

, 

𝐵𝐵𝐵𝐵 = 𝑢𝑢0𝜇𝜇𝑠𝑠
𝐾𝐾(𝑇𝑇1−𝑇𝑇0)

, Uℎ𝑠𝑠 = −𝜀𝜀𝜀𝜀𝛦𝛦𝜂𝜂1
𝑢𝑢0𝜇𝜇𝑠𝑠

, 
2

= ,o

b m

n
aez

h T
Λ

ε
 

Ha = 𝑎𝑎𝐵𝐵𝑜𝑜�
𝜎𝜎
𝜇𝜇𝑠𝑠

, �̄�𝑇𝑓𝑓,𝑝𝑝 =
𝑇𝑇𝑓𝑓,𝑝𝑝 − 𝑇𝑇0
𝑇𝑇1 − 𝑇𝑇0

 .                                (17) 
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After removing the bars, the dimensionless form of the given 
problem is given by:  

𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂1

+
𝜕𝜕𝑣𝑣𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

= 0,                                                                    (18) 

�1 +
1
𝑁𝑁𝑝𝑝
�
𝜕𝜕2𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂22

−
𝛨𝛨𝛼𝛼2

(1 − 𝑐𝑐𝑚𝑚)𝑢𝑢𝑓𝑓𝑝𝑝 

     [ ]
[ ]

2
2

1

cosh 1 0
cosh

hs

m m

u p
c h c

η
η

ΛΛ ∂
− − =
(1− ) Λ (1− ) ∂

                    (19) 

𝜕𝜕𝛻𝛻
𝜕𝜕𝜂𝜂2

= 0,                                                                                    (20) 

𝜕𝜕2𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜂𝜂22
+ 𝐵𝐵𝐵𝐵 �1 +

1
𝑁𝑁𝑝𝑝
��

𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

�
2

= 0,                                 (21) 

𝜕𝜕𝑢𝑢𝑝𝑝𝑝𝑝
𝜕𝜕𝜂𝜂1

+
𝜕𝜕𝑣𝑣𝑝𝑝𝑝𝑝
𝜕𝜕𝜂𝜂2

= 0,                                                                   (22) 

𝜇𝜇𝑠𝑠
𝑎𝑎𝛿𝛿𝜉𝜉

𝜕𝜕𝛻𝛻
𝜕𝜕𝜂𝜂1

= 𝐷𝐷𝑓𝑓�𝑢𝑢𝑓𝑓𝑝𝑝 − 𝑢𝑢𝑝𝑝𝑝𝑝�,                                                   (23) 

𝜕𝜕𝛻𝛻
𝜕𝜕𝜂𝜂2

= 0,                                                                                    (24) 

The boundary conditions are: 

𝑢𝑢𝑓𝑓𝑝𝑝(𝜂𝜂2 = ℎ) = −𝜒𝜒1 �1 +
1
𝑁𝑁𝑝𝑝
��

𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

�, 

𝑢𝑢𝑓𝑓𝑝𝑝(𝜂𝜂2 = −ℎ) = 𝜒𝜒1 �1 +
1
𝑁𝑁𝑝𝑝
��

𝜕𝜕𝑢𝑢𝑓𝑓𝑝𝑝
𝜕𝜕𝜂𝜂2

� ,                           (25) 

𝑇𝑇𝑓𝑓,𝑝𝑝(𝜂𝜂2 = −ℎ) = 𝜒𝜒2 �
𝜕𝜕𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜂𝜂2
�, 

𝑇𝑇𝑓𝑓,𝑝𝑝(𝜂𝜂2 = ℎ) = 1 − 𝜒𝜒2 �
𝜕𝜕𝑇𝑇𝑓𝑓,𝑝𝑝

𝜕𝜕𝜂𝜂2
� ,                                        (26) 

where  

ℎ(𝜂𝜂1) = �1 − 𝛤𝛤 sin2(𝜋𝜋𝜂𝜂1) , when  0.5 < 𝜂𝜂1 < 1.5
0.5, otherwise

   (27) 

Solving the above equations, we get the closed-form solution 
as: 

𝑢𝑢𝑓𝑓𝑝𝑝 = −𝑐𝑐𝑐𝑐𝑐𝑐ℎ�𝜂𝜂2�𝐴𝐴1� 

�
� 𝜕𝜕𝛻𝛻𝜕𝜕𝜂𝜂1

�𝑁𝑁𝑝𝑝𝐴𝐴4 + �𝑁𝑁𝑝𝑝 cosh[ℎ𝛬𝛬] + 𝛬𝛬�1 + 𝑁𝑁𝑝𝑝�𝜒𝜒1 sinh[ℎ𝛬𝛬]�𝐴𝐴5

𝑁𝑁𝑝𝑝 cosh�ℎ�𝐴𝐴1� + �1 + 𝑁𝑁𝑝𝑝�𝜒𝜒1 sinh�ℎ�𝐴𝐴1��𝐴𝐴1
� 

+ �
𝜕𝜕𝛻𝛻
𝜕𝜕𝜂𝜂1

� 𝐴𝐴4 + 𝐴𝐴5 𝑐𝑐𝑐𝑐𝑐𝑐ℎ[𝛬𝛬𝜂𝜂2] ,                                             (28) 

𝑢𝑢𝑝𝑝𝑝𝑝 =

⎝

⎜
⎛− cosh�𝜂𝜂2�𝐴𝐴1��

� 𝜕𝜕𝑝𝑝𝜕𝜕𝜂𝜂1
�𝑁𝑁𝑝𝑝𝐴𝐴4+�

𝑁𝑁𝑝𝑝 cosh[ℎ𝛬𝛬]
+𝛬𝛬�1+𝑁𝑁𝑝𝑝�𝜒𝜒1 sinh[ℎ𝛬𝛬]

�𝐴𝐴5

𝑁𝑁𝑝𝑝 cosh�ℎ�𝐴𝐴1�+�1+𝑁𝑁𝑝𝑝�𝜒𝜒1 sinh�ℎ�𝐴𝐴1��𝐴𝐴1
�

+ � 𝜕𝜕𝑝𝑝
𝜕𝜕𝜂𝜂1

�𝐴𝐴4 + 𝐴𝐴5 cosh[𝛬𝛬𝜂𝜂2] ⎠

⎟
⎞

  

−
𝜇𝜇𝑠𝑠

𝑎𝑎𝛿𝛿𝜉𝜉𝐷𝐷𝑓𝑓
�
𝜕𝜕𝛻𝛻
𝜕𝜕𝜂𝜂1

� .                                                                        (29) 

The total volumetric flow rate is defined by:  

𝑄𝑄 = � 𝑢𝑢𝑓𝑓𝑝𝑝𝑑𝑑𝜂𝜂2
ℎ

−ℎ
+ � 𝑢𝑢𝑝𝑝𝑝𝑝𝑑𝑑𝜂𝜂2

ℎ

−ℎ
,                                            (30) 

𝑄𝑄 = 

⎝

⎜⎜
⎛−

4sinh�ℎ�𝐴𝐴1���
𝜕𝜕𝑝𝑝
𝜕𝜕𝜂𝜂1

�𝑁𝑁𝑝𝑝𝐴𝐴4+�
𝑁𝑁𝑝𝑝 cosh[ℎ𝛬𝛬]
+𝛬𝛬�1+𝑁𝑁𝑝𝑝�𝜒𝜒1 sinh[ℎ𝛬𝛬]

�𝐴𝐴5�

𝑁𝑁𝑝𝑝 cosh�ℎ�𝐴𝐴1��𝐴𝐴1+�1+𝑁𝑁𝑝𝑝�𝜒𝜒1 sinh�ℎ�𝐴𝐴1�𝐴𝐴1

−
2ℎ� 𝜕𝜕𝑝𝑝𝜕𝜕𝜂𝜂1

�𝜇𝜇𝑠𝑠

𝑎𝑎𝐷𝐷𝑓𝑓𝛿𝛿𝜉𝜉
+ 4ℎ � 𝜕𝜕𝑝𝑝

𝜕𝜕𝜂𝜂1
�𝐴𝐴4 + 4 sinh[ℎ𝛬𝛬]𝐴𝐴5

𝛬𝛬 ⎠

⎟⎟
⎞

 (31) 

Solving the above equation for  𝜕𝜕𝑝𝑝
𝜕𝜕𝜂𝜂1

  is obtain as:  

1

p
η

∂ =∂  

[ ] [ ] ( ) [ ]( )
( )

( )

1 1 55

1 1 1 1 1

1 4
4

1 1 1 1 1

4 cosh 1 sinh sinh4sinh
cosh 1 sinh

.
4 sinh 24

cosh 1 sinh

p p

p p

p s

fp p

N h N h h A Ah A
Q

N h A A N h A A

N h A A hhA
aDN h A A N h A A

χ

χ

µ
δξχ

 Λ + Λ + ΛΛ  − + −
Λ    + +   

 
 − + +

   + +   

     

                                           (32) 

The stream function is calculated form 𝑢𝑢𝑓𝑓𝑝𝑝 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂2

 and expressed 

by: 

𝜓𝜓 = � 𝜕𝜕𝛻𝛻
𝜕𝜕𝜂𝜂1

� 𝜂𝜂2𝐴𝐴4 +
sinh [𝛬𝛬𝜂𝜂2]𝐴𝐴5

𝛬𝛬
 

−
sinh�𝜂𝜂2�𝐴𝐴1�

�� 𝜕𝜕𝑝𝑝
𝜕𝜕𝜂𝜂1

�𝑁𝑁𝑝𝑝𝐴𝐴4+�
𝑁𝑁𝑝𝑝 cosh[ℎ𝛬𝛬]
+𝛬𝛬�1+𝑁𝑁𝑝𝑝�𝜒𝜒1 sinh[ℎ𝛬𝛬]

�𝐴𝐴5�

𝑁𝑁𝑝𝑝 cosh�ℎ�𝐴𝐴1��𝐴𝐴1+
�1+𝑁𝑁𝑝𝑝�𝜒𝜒1 sinh�ℎ�𝐴𝐴1�𝐴𝐴1

.   (33) 

The closed-form solution of heat equations is defined by: 

[ ]

[ ]

[ ]

, 7 2 8 2 1

9 2 2 1

10 2 2 1

cosh 2 cosh 2

          cosh cosh

          sinh sinh

f pT A A A

A A

A A

η η

η η

η η

 = Λ +  
 + Λ  
 + Λ  

 

          2
11 2 12 2 13.A A Aη η+ + +                                                (34) 

The heat transfer rate is obtained and presented in the following 
analytical form: 

[ ] 7 1 1 82 sinh 2 2sinh 2tr h A hH A A A 
 = Λ Λ +  

[ ] ( )1 1 9 10        cosh sinhh h A A A A + Λ + Λ   

[ ]( )1 9 1 10cosh sinhh A h A A A + Λ Λ +   

11 12      2hA A+ + .                                                           (35) 

The constants 𝐴𝐴1,𝐴𝐴2, . . . ,𝐴𝐴13 are defined as:  
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( )

2

1 ,
11 1m

p

a

N

HA
c

=
 

− +  
 

 

( )2
11 ,

1 11

m f

m f

p

ac D
A

c D
N

δξ

 
= +  −    +  

 

 

( ) [ ]

2

3
11 1 coshm

p

hsA
h

N

u

c

Λ
=
 
+ − Λ  

 

 

32
4 5 2

1 1

- ,          ,
-

AAA A
A A

= =
Λ

 

[ ] ( ) [ ]( )
( )

4 1 5
1

6
1 1 1 1

cosh 1 sinh
,

cosh 1 sinh

p p p

p p

p N A N h N h A
A

N h A N h A A

χη

χ

 ∂  + Λ + Λ + Λ  ∂ =  
   + +     

 

 

 

𝐴𝐴7 = −
𝐵𝐵𝐵𝐵�1 + 𝑁𝑁𝑝𝑝�𝐴𝐴52

8𝑁𝑁𝑝𝑝
,𝐴𝐴8 = −

𝐵𝐵𝐵𝐵�1 + 𝑁𝑁𝑝𝑝�𝐴𝐴62

8𝑁𝑁𝑝𝑝
, 

( )
( )

2
1 5 6

9 22
1

4 1
,p

p

Br N A A A
A

N A

Λ +
= −

Λ −
 

𝐴𝐴10 =
2𝐵𝐵𝐵𝐵𝛬𝛬�1 + 𝑁𝑁𝑝𝑝��𝐴𝐴1(𝛬𝛬2 + 𝐴𝐴1)𝐴𝐴5𝐴𝐴6

𝑁𝑁𝑝𝑝(𝛬𝛬2 − 𝐴𝐴1)2
, 

𝐴𝐴11 =
𝐵𝐵𝐵𝐵�1 + 𝑁𝑁𝑝𝑝�(𝛬𝛬2𝐴𝐴52 + 𝐴𝐴1𝐴𝐴62)

4𝑁𝑁𝑝𝑝
, 

12
1 2

1
2

A
h χ χ

=
+ +

 

( )

[ ] [ ]
( )
[ ]( )

( )

7

1 1 9 10

1 2
1 9 1 10

1 1 8 11

-2 sinh 2 - cosh

        sinh
1 - ,

-cosh sinh

       - 2 sinh 2

h A h

h A A A A

h A h A A A

h A A A hA

χ χ

  Λ Λ Λ
  
   + Λ   +    Λ Λ +   
    +     

 

𝐴𝐴13 =
1

2ℎ + 𝜒𝜒1 + 𝜒𝜒2
 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ℎ + 𝜒𝜒2 + �

−(2ℎ + 𝜒𝜒1 + 𝜒𝜒2) 𝑐𝑐𝑐𝑐𝑐𝑐ℎ[2ℎ𝛬𝛬]

−2𝛬𝛬 � 2𝜒𝜒1𝜒𝜒2
+ℎ(𝜒𝜒1 + 𝜒𝜒2)

� 𝑐𝑐𝑠𝑠𝑠𝑠ℎ[2ℎ𝛬𝛬]
�𝐴𝐴7

+� −(2ℎ + 𝜒𝜒1 + 𝜒𝜒2) 𝑐𝑐𝑐𝑐𝑐𝑐ℎ�2ℎ�𝐴𝐴1�
−2�2𝜒𝜒1𝜒𝜒2 + ℎ(𝜒𝜒1 + 𝜒𝜒2)� 𝑐𝑐𝑠𝑠𝑠𝑠ℎ�2ℎ�𝐴𝐴1��𝐴𝐴1

�𝐴𝐴8

+ 𝑐𝑐𝑠𝑠𝑠𝑠ℎ�ℎ�𝐴𝐴1� �
−(2ℎ + 𝜒𝜒1 + 𝜒𝜒2) 𝑐𝑐𝑠𝑠𝑠𝑠ℎ[ℎ𝛬𝛬]𝐴𝐴10

−�2𝜒𝜒1𝜒𝜒2 + ℎ(𝜒𝜒1 + 𝜒𝜒2)�

𝑐𝑐𝑐𝑐𝑐𝑐ℎ[ℎ𝛬𝛬] ��𝐴𝐴1𝐴𝐴9 + 𝛬𝛬𝐴𝐴10�
�

+ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ�ℎ�𝐴𝐴1��
−(2ℎ + 𝜒𝜒1 + 𝜒𝜒2) 𝑐𝑐𝑐𝑐𝑐𝑐ℎ[ℎ𝛬𝛬]𝐴𝐴9
−�2𝜒𝜒1𝜒𝜒2 + ℎ(𝜒𝜒1 + 𝜒𝜒2)�

𝑐𝑐𝑠𝑠𝑠𝑠ℎ[ℎ𝛬𝛬] �𝛬𝛬𝐴𝐴9 + �𝐴𝐴1𝐴𝐴10�
�

−ℎ�2ℎ2 + 4𝜒𝜒1𝜒𝜒2 + 3ℎ(𝜒𝜒1 + 𝜒𝜒2)�𝐴𝐴11 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 
Figure 2. Effects of non-Newtonian parameter on fluid and particle 
phase velocities distribution. 

3. Results and discussion 
The hydromagnetic fluid and particle suspension model is 
developed in this theoretical study and discusses heat 
transfer analysis through the energy equation. The governing 
equations of non-Newtonian fluid (i.e., Casson fluid) are 
solved and presented as the closed-form solution of the 
problem in section two and MATHEMATICA code is 
developed to construct the graphs. This section is included 
here to observe the physical interpretation of emerging 
parameters namely, the non-Newtonian parameter �𝑁𝑁𝑝𝑝�, the 
velocity slip parameter (𝜒𝜒1), the electro-osmotic parameter 
(𝛬𝛬), the coefficient of particle fraction (𝑐𝑐𝑚𝑚), the Helmholtz–
Smoluchowski velocity (𝑢𝑢ℎ𝑠𝑠), the Hartman number (𝐻𝐻𝑎𝑎), 
the thermal slip parameter (𝜒𝜒2), and Brinkman number  (𝐵𝐵𝐵𝐵) 
on the fluid and particle velocities profiles, the temperature 
distribution, the stream function, and the heat transfer rate 
for the suitable range. To observe these physical 
interpretations, the authors construct Figures 2 to 14 and 
Table 1.  

Figure 2 explains the effects of non-Newtonian 
parameter �𝑁𝑁𝑝𝑝� on fluid and particle velocity distribution for 
a suitable range. Figure 2(a) and (b) indicate the fluid and 
particle phase velocities. Here, the increasing behavior of 
both velocities is observed against the non-Newtonian 
parameter. Physically it means that the non-Newtonian 
parameter �𝑁𝑁𝑝𝑝� enhancing the plastic dynamic viscosity of 
fluid that contributes to diminishing the values of yield stress 
as a result, the velocity is reduced against the non-Newtonian 
parameter �𝑁𝑁𝑝𝑝�. The results of these figures also revealed 
that the magnitude of the particulate velocity is higher than  
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Figure 3. Effects of velocity slip parameter on fluid and particle 
phase velocities distribution. 

the velocity of the fluid phase. The effect of the velocity 
parameter 𝜒𝜒1 on fluid and particulate velocity distribution is 
reported in Figure 3. Since it is well known when slip exists 
then their velocity is not zero at the walls of the channel or the 
velocity of fluid is not equal to the velocity of adjacent walls 
of the channel. It can also be explained as the difference 
between fluid velocity and adjusted walls of velocity is not 
zero. This figure reported the decreasing trend in fluid velocity 
against the velocity slip parameter 𝜒𝜒1 in the interval 0.0 ≤
𝜂𝜂1 ≤ 0.8 and 1.2 ≤ 𝜂𝜂1 ≤ 2.0 but a converse relation is 
observed in the interval 0.8 ≤ 𝜂𝜂1 ≤ 1.2. A similar trend is 
observed in particulate velocity. The physical reason for 
decreasing the velocity distribution is that the entire force is 
not transferred through the walls of the channel inside Casson 
fluid. The influence of electro-osmotic parameter 𝛬𝛬 on both 
velocities is illustrated in Figure 4. This parameter is inversely 
proportional to the Daybe length parameter i.e., 𝛬𝛬 =

𝑎𝑎𝑒𝑒𝑎𝑎�
2𝑛𝑛0

𝜀𝜀ℎ𝑏𝑏𝑇𝑇𝑚𝑚
= 𝑎𝑎

𝜆𝜆𝐷𝐷
, 𝜆𝜆𝐷𝐷 ∝

1
𝛬𝛬
. The electro-osmotic parameter 

promotes the fluid and particulate velocity distribution 
remarkably. The electro-osmotic body force will vanish when 
𝛬𝛬 → 0. The impact of particle fraction coefficient 𝑐𝑐𝑚𝑚 is 
highlighted in fluid and particulate velocities in Figure 5. It is 
interesting to note that the particle fraction coefficient 𝑐𝑐𝑚𝑚 
boosts the velocities distribution and the problem can be 
achieved in a single for  𝑐𝑐𝑚𝑚 → 0. The physical reason is that 
the drag force between the fluid and particle phase diminishes  

 
Figure 4. Effects of electro-osmotic parameter on fluid and particle 
phase velocities distribution. 
 

 
Figure 5. Effects of the coefficient of particle fraction on fluid and 
particle phase velocities distribution. 
 
by increasing the values of the particle fraction coefficient as 
a result the momentum of the fluid speeds up. Figure 6 
demonstrates the effects of the Helmholtz–Smoluchowski 
velocity on fluid and particulate velocity distribution. Figure 
6(a) indicates the fluid velocity while Figurre 6(b) shows 
the particle velocity. Here, we observed that this parameter  
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Figure 6. Effects of the Helmholtz–Smoluchowski velocity on 
fluid and particle phase velocities distribution. 

 
Figure 7. Effects of the Hartman number on fluid and particle 
phase velocities distribution. 

promotes the fluid and particle phase velocities extensively. 
Another important parameter of this study is the Hartman 
number. It is described from Figure 7, that the decrement in 
velocity distribution is noted for increasing the values of the 

 
Figure 8. The variation of stream function via (a)  𝑐𝑐𝑚𝑚 = 0 and 
(b) 𝑐𝑐𝑚𝑚 = 0.4.  

Hartmann number. From Eq. (17), 𝐻𝐻𝑎𝑎 = 𝑎𝑎𝐵𝐵0�
𝜎𝜎
𝜇𝜇𝑠𝑠

 which 

indicates the relationship between the hydromagnetic force 
and magnetic body force which means that greater Lorentz 
force is produced against the greater transverse magnetic force 
that causes the decreasing behavior in the velocity profile. 
Similar results are observed in particle phase velocity. From 
these figures, we can say that the velocities can be controlled 
by increasing or decreasing the strength of the magnetic field. 
The streamlines are drawn in Figures 8 to 10 against the 
particle fraction coefficient, velocity slip parameter, and non-
Newtonian parameter, respectively. The number of 
streamlines increases due to the contribution of the particle 
fraction coefficient i.e., for non-zero values of  𝑐𝑐𝑚𝑚 the motion 
of   the  fluid particle  increases  and  the  values  of stream 
function vary from 𝜓𝜓 = 44.8 to 𝜓𝜓 = 46.2 for 𝑐𝑐𝑚𝑚 = 0.0 to 
𝑐𝑐𝑚𝑚 = 0.4, which is shown in Figure 8. A similar behavior of 
the stream function is observed against the velocity slip 
parameter and this case the stream function gets the values 
of 𝜓𝜓 = 43.4 to 𝜓𝜓 = 46.2for 𝜒𝜒1 = 0.0 to 𝜒𝜒1 = 0.5 (see 
Figure 9). The strength of the stream function reducing 
against the non-Newtonian parameter i.e., the stream 
function covers a larger area of the channel for the case of 
Newtonian fluid i.e., 𝑁𝑁𝑝𝑝 → ∞ as compared to Casson fluid 
i.e., 𝑁𝑁𝑝𝑝 = 0.1. Moreover, the stream function gets the values 
of 𝜓𝜓 = 46.9 and 𝜓𝜓 = 42.7 for Newtonian and non-
Newtonian fluid, respectively (see Figure 10). 

The variation of temperature distribution against 
non-Newtonian parameter 𝑁𝑁𝑝𝑝, the coefficient of particle 
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Figure 9. The variation of stream function via (a)  𝜒𝜒1 = 0 and 
(b) 𝜒𝜒1 = 0.5.  
 

 
Figure 10. The variation of stream function via (a) 𝑁𝑁𝑝𝑝 = ∞ and 
(b) 𝑁𝑁𝑝𝑝 = 0.1. 

 
Figure 11. The variation of temperature distribution via (a) non-
Newtonian parameter 𝑁𝑁𝑝𝑝 and (b) the coefficient of particle 
fraction 𝑐𝑐𝑚𝑚. 
 
fraction𝑐𝑐𝑚𝑚, the velocity slip parameter 𝜒𝜒1, the thermal slip 
parameter 𝜒𝜒2, the electro-osmotic parameter 𝛬𝛬, the Helmholtz–
Smoluchowski velocity, Brinkman number 𝐵𝐵𝐵𝐵 and the Hartman 
number are shown in Figures 11-14, respectively. The non-
Newtonian parameter diminishes the temperature  profile  
which  is  illustrated in Figure 11(a) and this reduction in 
temperature appears due to diminishing the values of yield stress 
against enhancing the plastic dynamic viscosity of fluid due to 
the non-Newtonian parameter. The particle fraction coefficient 
𝑐𝑐𝑚𝑚 enhancing the temperature distribution this observation is 
shown in Figure 11(b) and it is happening due to the collision of 
solid particles that are responsible for enhancing the 
temperature distribution. Figure 12 portrays the effects of 
velocity and thermal slip parameters. From these figures, it is 
observed that the velocity slip parameter diminishes the 
temperature profiles (see Figure 12(a)) while the thermal slip 
parameter updates the temperature distribution (see Figure 
12(b)). The variation of temperature distribution via electro-
osmotic parameter and the Helmholtz–Smoluchowski 
velocity are displayed in Figure 13 and both parameters enhance 
the temperature profile. The effects of the Brinkman number 
and Hartman number on the temperature profile are depicted in 
Figure 14. From Figure 14(a) observed that the Brinkman 
number increases the temperature distribution because the 
Brinkman number is coming from viscous dissipation that 
increases the temperature profile. On the other hand, the  
Hartman number reduces the temperature, and it is happening 
due to the reduction of the kinetic energy for increasing the 
Hartman number (see Figure 14 (b)).  
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Figure 12. The variation of temperature distribution via (a)  
velocity slip parameter 𝜒𝜒1 and (b) the thermal slip parameter 𝜒𝜒2. 

 
Figure 13. The variation of temperature distribution via (a) 
electro-osmotic parameter Λ and (b) the Helmholtz–
Smoluchowski velocity 𝑈𝑈ℎ𝑠𝑠. 
 
The most important quantity of this investigation is the heat 
transfer rate (𝐻𝐻𝑡𝑡𝑡𝑡) and variation of heat transfer rate against 
the non-Newtonian parameter �𝑁𝑁𝑝𝑝�, the velocity slip 
parameter   (𝜒𝜒1), the    electro-osmotic  parameter   (𝛬𝛬), the  

 
Figure 14. The variation of temperature distribution via (a) 
Brinkman number 𝐵𝐵𝐵𝐵 and (b) the Hartman number 𝐻𝐻𝑎𝑎. 
 
coefficient of particle fraction (𝑐𝑐𝑚𝑚), the Helmholtz–
Smoluchowski velocity (uℎ𝑠𝑠), the Hartman number (𝐻𝐻𝑎𝑎),  
the thermal slip parameter (𝜒𝜒1), and Brinkman number (𝐵𝐵𝐵𝐵) 
is presented in Table 1. The computational results listed in 
Table 1 revealed that the heat transfer rate is increased 
against the thermal slip parameter (𝜒𝜒2) the electro-osmotic 
parameter (𝛬𝛬), Brinkman number (𝐵𝐵𝐵𝐵) and the Helmholtz–
Smoluchowski velocity (uℎ𝑠𝑠) while its decreasing behavior 
is noted against the non-Newtonian parameter �𝑁𝑁𝑝𝑝�, the 
velocity slip parameter (𝜒𝜒1), the coefficient of particle 
fraction (𝑐𝑐𝑚𝑚), and the Hartman number (𝐻𝐻𝑎𝑎).  
 
4. Validation part 
The results are validated by the study of Hussain et al. [31] 
for limiting cases. In [31], the authors discussed the 
theoretical analysis of electro osmotic flow of multiphase 
flow through convergent, divergent, and nozzle type of 
channels under the act of the constant magnetic force. They 
considered the Newtonian fluid as a base fluid and hafnium 
nanoparticles were suspended in the base fluid and 
performed the momentum analysis. We have validated our 
study with geometry two (divergent channel) of Hussain et 
al. [31] for setting 𝑁𝑁𝑝𝑝 → ∞ and 𝜒𝜒1 → 0. The results of both 
studies are shown in Figure 15 and noted good agreement 
with each other. 

5. Conclusion 
A mathematical study of fluid and particle suspension in 
Casson rheological is reported here to examine the heat 
transfer analysis in divergent channels under the effects 
of electroosmotic and magnetic forces. The velocity and 
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Table 1. The variation of the average Nusselt number against the following parameters. 

𝑵𝑵𝒑𝒑 𝝌𝝌𝟏𝟏 𝝌𝝌𝟐𝟐 𝜦𝜦 𝒄𝒄𝒎𝒎 𝑩𝑩𝑩𝑩 𝒖𝒖𝒉𝒉𝒉𝒉 𝑯𝑯𝑯𝑯 𝑯𝑯𝒕𝒕𝑩𝑩 Behavior 
1.0 0.01 0.01 1.0 0.1 1.0 1.0 2.0 1.3852 

Decreasing 3.0 --- --- --- --- --- --- --- 0.7179 
2.0 0.02 --- --- --- --- --- --- 0.6035 

Decreasing 
--- 0.03 --- --- --- --- --- --- 0.3775 
--- 0.015 0.02 --- --- --- --- --- 0.7656 Increasing 
--- --- 0.03 --- --- --- --- --- 0.7914 
--- --- 0.015 3.0 --- --- --- --- 0.7874 

Increasing --- --- --- 5.0 --- --- --- --- 0.9529 
--- --- --- 1.0 0.2 --- --- --- 0.7512 

Decreasing 
--- --- --- --- 0.3 --- --- --- 0.7492 
--- --- --- --- 0.1 1.5 --- --- 1.6144 Increasing 
--- --- --- --- --- 2.0 --- --- 2.4762 
--- --- --- --- --- 1.0 2.0 --- 0.7529 

Increasing --- --- --- --- --- --- 5.0 --- 0.7536 
--- --- --- --- --- --- 1.0 1.0 0.7669 Decreasing 
--- --- --- --- --- --- --- 3.0 0.7338 

 

 
Figure 15. Solution validation with Hussain et al. [31]. 

 
thermal slip conditions are also considered. The electro-
osmotic phenomena are modeled through the Poisson 
equation and solved this equation by using the Hückel 
linearization method. The current study presented 
innovative, valuable physical data and calculated the 
accurate exact solution. The important results of this 
investigation are. 
 
1. The exact solution of fluid-suspension in Casson 

rheological fluid is obtained with Hafnium particles. 

2. The fluid-particle phase velocities and temperature 
distribution are decreasing against the velocity slip 
parameter and Hartman number. 

3. The thermal slip parameter upgrades the temperature 
distribution. 

4. The non-Newtonian parameter controls the motion of 
fluid and particle phase velocities and temperature 
distribution. 

5. The heat transfer rate is a decreasing function of the non-
Newtonian parameter, velocity slip parameter, Hartman 
number, and coefficient of particle fraction while this 
behavior no longer exists against the thermal slip 

parameter, Brinkman number, the Helmholtz–
Smoluchowski velocity, and electroosmotic parameter.  

6. The current fluid-particle suspension Casson model 
helps understand the thermal properties of such a model 
under the action of the electric and magnetic field with 
slip boundary conditions. 

7. The suspension of dense particles can be useful in solar 
power plants to restore more energy.   
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