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Abstract 

The objective of this study is to investigate the effects of heat transfer analysis on Casson fluid 

flow with the suspension of solid particles through divergent channels under the influence of 

magnetic force and slip boundary conditions. The governing equations of non-Newtonian fluid 

(i.e. Casson fluid) are solved and presented as the closed-form solution of the problem. The 

graphical behavior is constructed in MATHEMATICA software and discusses the effects of 

emerging parameters of the current study on fluid and particle velocities distribution, stream 

function, temperature profile, and heat transfer rate. The temperature distribution increases 

against the thermal slip parameter and decreases via the velocity slip parameter. The heat transfer 

rate is a decreasing function of the non-Newtonian parameter, velocity slip parameter, Hartman 

number, and coefficient of particle fraction while this behavior no longer exists against the 

thermal slip parameter, Brinkman number, the Helmholtz–Smoluchowski velocity, and 

electroosmotic parameter. The results of our study can be reduced to the Newtonian fluid by 

taking 𝑁𝑝 → ∞. The current fluid-particle suspension Casson model helps understand the 

thermal properties of such a model under the action of the electric and magnetic field with slip 

boundary conditions. Further, the suspension of dense particles can be useful in solar power 

plants to restore more energy.  

Keywords: Hydromagnetic flow; fluid-particle phases; slip boundary conditions; Heat transfer 

analysis; closed-form solution.  

1. Introduction   

The theory of multiphase flow is extremely accommodated to understanding the physical 

phenomena of engineering environments namely, the production of cement, treatment of 

wastewater, manufacturing of the steel industry, lunar ash flow, gas purification, purification of 

crude oil production, paint spraying, transport process, dust collection, and environmental 

pollution motion [1-2], etc. The first work on the suspension of solid particles in viscous fluid 

was done by Saffman [3]. He reported the stability analysis of laminar dusty gas in his published 

book. After his study, various authors highlighted the importance of fluid and particle phases in 

diverse shapes of geometries. For this, Bhatti et al. [4] presented the clot blood model of fluid 

and particle phase suspension to report the heat transfer analysis in variable annulus under the 

effects of slip boundary conditions. The fluid and particle suspension through the ciliated walls 

of the porous channel under the action of magnetic force was investigated by Bhatti et al. [5]. 
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Their outcomes revealed that the velocity distribution diminished via the magnetic force 

parameter. In another study, Bhatti et al. [6] used the Darcy-Brinkman-Forchheimer model to 

report the porous medium effects in bi-phase liquid by taking the Sisko non-Newtonian fluid. 

Nazeer et al. [7-9] discussed the suspension of solid particles in Jeffrey fluid, Couple Stress fluid, 

and third-grade fluid and presented some important results on multiphase fluids in different 

geometries. Kumar et al. [10] discussed the suspension of fluid and particles past a stretching 

surface with thermal radiation effects.  

The flow of electrically conducting fluid under the suspension of solid particles has great 

applications in manufacturing industries such as polymer technology, the petroleum industry, 

cooling systems, MHD generators, centrifugal separation of matter from fluid and accelerators, 

etc. Many researchers and scholars have studied the suspension of solid particles in liquid under 

the effects of magnetohydrodynamics in different regions like flow through parallel plates, flow 

in wavy channels and stretching surfaces, etc., and with different boundary conditions. Pavithra 

and Gireesha [11] discussed the heat transfer analysis in fluid-particle suspension over a 

stretching sheet by using the numerical technique. Hatami et al. [12] selected the two moving 

parallel plates to discuss the fluid and particle suspension in a Newtonian fluid under the action 

of the magnetic field. Jha and Apere [13] presented the closed-form solution of the time-

dependent fluid and particle phase model between two infinite plates. The Laplace 

transformation method is used to solve the governed problem and discusses the graphical 

behavior of both phase velocities. In another study, Jha and Malgwi [14] studied the hydro-

magnetic unsteady flow of fluid through the moving wall of the porous channel. Al-Zubaidi et al. 

[15], Ge-JiLe et al. [16], Zeeshan et al. [17], Ellahi et al. [18], Bibi et al. [19], and Gad [20], etc. 

also presented the application of fluid and particle phase model under the effects of the magnetic 

field in the diverse shape of geometries.  

The study of heat transfer in the suspension of solid particles has been attracted by scholars and 

researchers due to its wider applications in polymer processing technology, solar power plants, 

engine oil flow, and many others in well-known literature. Particularly, the applications of the 

MHD flow and heat transfer analysis of electrically conducting fluids with possible suspension 

of solid particles through channels and pipes occur in MHD generators and pumps, nuclear 

reactors, filtration, geothermal systems, etc. In the literature, Chamkha [21] formulated the 

continuum model of fluid and particle phases to analyze the heat transfer analysis in two 

different types of geometries (channels and pipes) under the effects of the magnetic field. The 

Fourier cosine and Bessel functions are used by him to obtain the closed-form solution of fluid 

and particle phases while the energy equation is solved through numerical methods. His results 

revealed that the flow and heat transfer is superior in the case of channels as compared to pipes. 

Ansart et al. [22] presented the applications of heat transfer analysis through gas-particle 

suspension in solar receivers by using the three-dimensional numerical technique. The 

application of dense particle suspension in thermal power plants was highlighted by Spelling et 

al. [23]. The applications of heat transfer rate along with slip boundary conditions, Darcy–

Brinkman–Forchheimer porous medium, and magnetic field in fluid and particle phase models 

through the wavy channel were reported by Imran et al. [24]. Bhatti and Zeeshan [25] also 

reported the applications of heat transfer analysis in particle suspension by using the slip 

boundary conditions in peristaltic waves by considering the Casson fluid. Some authors have 

also presented remarkable studies of heat transfer analysis in the suspension of solid particles in 

different environments [26-30]. 
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In view of the above-cited analyses, the objective of this study is to investigate the effects of heat 

transfer analysis on Casson fluid flow with the suspension of solid particles through the 

divergent channels under the influence of magnetic force and slip boundary conditions. To the 

best of our knowledge, no such study has been done before. Such type of flow problems are 

important in the human body where the heat transfer process is very important to maintain the 

feasible condition of tissues and circulation of the blood through arteries. Furthermore, these 

types of problems are also very useful and interesting in thermal technology where the dense 

suspension of the particle provides direct thermal storage due to the maximum heat capacity and 

greater temperature of particle suspension. Moreover, the regular heat transfer fluids used in 

thermal power plants have many serious drawbacks (i.e. working in a limited temperature 

domain), and solid suspension of particles overcomes these drawbacks as heat transfer fluids. 

The solid particles can also be used as an energy storage medium. The governed system 

equations are formulated by using the Poisson equation, continuity equation, momentum 

equation, and heat equations and offered the closed solution through MATHEMATICA 

software. The physical outcomes are interpreted through graphs and tables and presented as the 

important results.  

2. Mathematical analysis 

Let us consider the steady flow of Casson fluid suspended by 40 % Hafnium solid spherical 

particles in the divergent channel as shown in Figure 1.    1 2 1 2, , , ,0fv fv fvu v     V =  and 

   1 2 1 2, , , ,0pv pv pvu v     V =  are the velocity vectors of fluid and particulate. 

Geometry:                                   

2 1
1

1

11 33
sin            When  

( ) 7 7

0.5 ; Othwewise.

a b
h

a




 

  
    

   



.         (1) 

2.1 The physical model of the fluid phase 

The continuity and momentum equation for the fluid phase in vector form is defined [31-34] as 

 . 0,
f

f fv
t





 


V                                            (2) 

      21 1 .
p

fv

f m m ij f m pv fv f

d
c c p D c E g

dt
             

V
T V V J B .  (3) 

The extra stress tensor "Τ𝑖𝑗” for the Casson fluid can also be expressed [35-36] as:  

2

2

2 ,
2

2 ,
2

b ij c

ij

b ij c

p
e

p
e





  


  


  
   

  
 

 
  

 

T .                                                                (4) 
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In the above mathematical expression ijT  is known as the   ,
th

i j components of the stress 

tensor, the plastic dynamic viscosity of a non-Newtonian fluid are denoted by b , the yield stress 

of the fluid is 
2

p , ije is the  ,
th

i j  components of deformation rate,   is expressed as 

 ij ije e   that is the product of components of deformation rate with itself, and c  is called the 

deformation rate of non-Newtonian fluid.  

2.2 The physical model of the particle phase 

The continuity and momentum equation for the particle phase in vector form is defined as  

 . 0,
p

p pv
t





 


V                                            (5) 

 pv

f m m f m pv fv

d
c c p D c

dt
     

V
V V .                                 (6) 

To discuss the thermal transport analysis, the heat equation is expressed [37-38] as 

  , 2

,

f p

f p f p sf

dT
c K T

dt
     .                                               (7) 

The above equations are expressed in component form as 

1 2

0,
fv fvu v

 

 
 

 
                                                                 (8) 

 
1

2 2

2 2

1 2 1 1 2

2 2
2

0 2 2

1 2

1
1

,

+

fv fv fv fv fv

f m fv fv m s m

p

f m pv fv fv

u u u u up
c u v c c

t N

D c u u u E

    

 

         
                             


     

        

(9) 

 
2

2 2

2 2

1 2 2 1 2

2 2
2

0 2 2

1 2

1
1

,

+

fv fv fv fv fv

f m fv fv m s m

p

f m pv fv fv

v v v v vp
c u v c c

t N

D c v v v E

    

 

         
                             


     

        

(10) 
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2
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2
1
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2
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f p f p

f p f

f p p
fv fv fv
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uT T
u

t T T
c

T N v u v
v




 

   

    
                                                        

 (11) 
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1 2

0,
pv pvu v

 

 
 

 
                                                (12)     

 
1 2 1

+ ,
pv pv pv

f m pv pv m f m fv pv

u u u p
c u v c D c u u

t   

    
      

    
      (13) 

 
1 2 2

+ ,
pv pv pv

f m pv pv m f m fv pv

v v v p
c u v c D c v v

t   

    
      

    
      (14) 

The boundary conditions are 

   2 2

2 1 2 1

1 1
1 , 1

fv fv fv fv

fv fv

p p

u v u v
u h l u h l

N N
 

   

         
                           

,        (15)     

   , ,

, 2 0 1 , 2 1 1

2 2

,
f p f p

f p f p

T T
T h T k T h T k 

 

    
         

    
.                   (16)  

The dimensionless quantities are     

 
1

1 2 1
1 2 1

0 0 0 0

0
2

0 1 0 0

, 0

,

1

u u
,    = ,    u = ,    u = ,    = ,    = ,  = , = ,

= ,    = ,    = , = ,     = ,   U = ,

2
= ,    = ,

fv pv fv pv

fv pv fv pv

s
hs

s s

f po
o f p

b m s

v v k h
v v h

a u u u u a a

ua p b l a
p Br

u a a K T T u

T Tn
aez Ha aB T

h T T T



 
  

 



  

 
  

   


 

   0












.      (17) 

After removing the bars, the dimensionless form of the given problem is given by  

1 2

0,
fv fvu v

 

 
 

 
                                                  (18) 

 
 

2 22
2

2

2 1

cosh1 1
1 0

cosh

fv hs
fv

p m m m

u uΗα p
u

N c c h c



 

    
                

,       (19) 

2

0
p







,                                                           (20)  

22

,

2

2 2

1
1 0

f p fv

p

T u
Br

N 

   
        

,                                  (21) 

1 2

0,
pv pvu v

 

 
 

 
                                                   (22)    
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 
1

s
f fv pv

p
D u u

a



 


 


.                                            (23) 

2

0
p







,                                                           (24)  

The boundary conditions are 

   2 1 2 1

2 2

1 1
1 , 1

fv fv

fv fv

p p

u u
u h u h

N N
   

 

       
                       

,        (25)     

   , ,

, 2 2 , 2 2

2 2

, 1
f p f p

f p f p

T T
T h T h   

 

    
        

    
.                   (26)  

 

where                           
 2

1 1

1

1 sin            When  0.5
( )

0.5 Othwewise.
h

 


   
 


.                 (27) 

Solving the above equations, we get the closed-form solution as  

      

 

 

4 1 5

2 1

1 1 1 1

4 5

1

1

2

cosh 1 sinh

cosh
cosh 1 sinh

cosh ,

p p p

fv

p p

p
N A N h N h A

u A
N h A N h A A

p
A A










  
      

    
       

     
 

 
   

 

,             (28) 

 

   

 

 

4 5

1

2 1

1 1 1 1

4 5 2

1

1

1

cosh

1 sinh
cosh

cosh 1 sinh
,

cosh

p

p

p

p p

f

s
pv

N hp
N A A

N h
A

N h A N h A p
u

D

p
A A

a

A



 









        
           

                   
     

 
  

    
  







      (29)     

The total volumetric flow rate is defined by  

2 2 ,
h h

fv pv
h h

Q u d u d 
 

                                            (30) 



7 
 

 

   

 

 

1 4 5

1

1 1 1 1 1

5

1

4

1

1

cosh
4sinh

1 sinh

cosh 1 sinh

2
4sinh

4

p

p

p

p p

s

f

N hp
h A N A A

N h

N h A A N h A A
Q

p
h

h Ap
h A

aD

 






 

                      
     

     
  
  

           

.                    (31) 

Solving the above equation for 
1

p





  is obtain as  

        
 

 

1 1 55

1 1 1

1

1 1

1 4

4

1 1 1 1 1

4 cosh 1 sinh sinh4sinh

cosh 1 sinh
.

4 sinh 2
4

cosh 1 sinh

p p

p p

p
s

fp p

N h N h h A Ah A
Q

N h A A N h A A
p

N h A A h
hA

aDN h A A N h A A










        
     

    
  

   
    
   

    (32)    

The stream function is calculated form 
2

fvu 





 and expressed by 

 

 

   

 

2 1 4 5

1
2 5

2 4

1 1 1 1

1

11

cosh
sinh

1 sinhsinh

cosh 1 sinh

p

p

p

p p

N hp
A N A A

N hAp
A

N h A A N h A A


 

 
 

   
                   

           

 (33)   

The closed-form solution of heat equations is defined by  

   

 

, 7 2 8 2 1 9 2 2 1

2

10 2 2 1 11 2 12 2 13

cosh 2 cosh 2 cosh cosh

sinh sinh

f pT A A A A A

A A A A A

   

   

       
   

     
 

              (34) 

The heat transfer rate is obtained and presented in the following analytical form 

     

  

7 1 1 8 1 1 9 10

1 9 1 10 11 12

2 sinh 2 2sinh 2 cosh sinh

cosh sinh 2

tr h A h A A A h h A A A A

h A h A A A hA A

H         
   

      
 


.  (35) 

The constants 1 2 13, ,...,A A A are defined as.    

 
 

2

1 2

1
, 1 ,

11 1
1 1 1

m f

m f

m

p p

ac D
A A

c D
c

N N

Ha



 
                

   
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   

2

32
3 4 5 2

1 1

, , ,
1

1 1 coshm

p
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A A A

A A
c h

u
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
   

  
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
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         

 
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 

   
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   

   

 

 
     

    
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12 1 2

1 2
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1

1 ,
2 cosh sinh 2 sinh 2

h A h h A A A A

A
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 
 

        
   

                     
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   

           
  

      
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2
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  
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 
 
 
 
 
 
 
     
 
     
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5. Results and Discussion  

The hydromagnetic fluid and particle suspension model is developed in this theoretical study and 

discusses heat transfer analysis through the energy equation. The governing equations of non-

Newtonian fluid (i.e. Casson fluid) are solved and presented as the closed-form solution of the 

problem in section two and MATHEMATICA code is developed to construct the graphs. This 

section is included here to observe the physical interpretation of emerging parameters namely, 

the non-Newtonian parameter  pN , the velocity slip parameter  1 , the electro-osmotic 

parameter   , the coefficient of particle fraction  mc , the Helmholtz–Smoluchowski velocity 

 hsu , the Hartman number  Ha , the thermal slip parameter  2 , and Brinkman number   Br  

on the fluid and particle velocities profiles, the temperature distribution, the stream function, and 

the heat transfer rate for the suitable range. To observe these physical interpretations, the authors 

construct Figures 2 to 14 and one table.  

Figure 2 explains the effects of non-Newtonian parameter  pN  on fluid and particle velocity 

distribution for a suitable range. In this figure, the left and right figures indicate the fluid and 

particle phase velocities. Here, the increasing behavior of both velocities is observed against the 
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non-Newtonian parameter. Physically it means that the non-Newtonian parameter  pN  

enhancing the plastic dynamic viscosity of fluid that contributes to diminishing the values of 

yield stress as a result, the velocity is reduced against the non-Newtonian parameter  pN . The 

results of these figures also revealed that the magnitude of the particulate velocity is higher than 

the velocity of the fluid phase. The effect of the velocity parameter 1  on fluid and particulate 

velocity distribution is reported in Figure 3. Since it is well known when slip exists then their 

velocity is not zero at the walls of the channel or the velocity of fluid is not equal to the velocity 

of adjacent walls of the channel. It can also be explained as the difference between fluid velocity 

and adjusted walls of velocity is not zero. This figure reported the decreasing trend in fluid 

velocity against the velocity slip parameter 1  in the interval 10.0 0.8   and 11.2 2.0  but 

a converse relation is observed in the interval 10.8 1.2  . A similar trend is observed in 

particulate velocity. The physical reason for decreasing the velocity distribution is that the entire 

force is not transferred through the walls of the channel inside Casson fluid. The influence of 

electro-osmotic parameter  on both velocities is illustrated in Figure 4. This parameter is 

inversely proportional to the Daybe length parameter i.e. 02 1
, D

b m D

n a
aez

h T


 
   


. The 

electro-osmotic parameter promotes the fluid and particulate velocity distribution remarkably. 

The electro-osmotic body force will vanish when 0 . The impact of particle fraction 

coefficient 𝑐𝑚 is highlighted in fluid and particulate velocities in Figure 5. It is interesting to 

note that the particle fraction coefficient mc  boosts the velocities distribution and the problem 

can be achieved in a single for  0mc  . The physical reason is that the drag force between the 

fluid and particle phase diminishes by increasing the values of the particle fraction coefficient as 

a result the momentum of the fluid speeds up. Figure 6 demonstrates the effects of the 

Helmholtz–Smoluchowski velocity on fluid and particulate velocity distribution. In this figure, 

the left figure indicates the fluid velocity while the right one shows the particle velocity. Here, 

we observed that this parameter promotes the fluid and particle phase velocities extensively. 

Another important parameter of this study is the Hartman number. It is described from Figure 7, 

that the decrement in velocity distribution is noted for increasing the values of the Hartmann 

number. From equation (17), 
0

s

Ha aB



  which indicates the relationship between the 

hydromagnetic force and magnetic body force which means that greater Lorentz force is 

produced against the greater transverse magnetic force that causes the decreasing behavior in the 

velocity profile. Similar results are observed in particle phase velocity. From these figures, we 

can say that the velocities can be controlled by increasing or decreasing the strength of the 

magnetic field. The streamlines are drawn in Figures 8 to 10 against the particle fraction 

coefficient, velocity slip parameter, and non-Newtonian parameter, respectively. The number of 

streamlines increases due to the contribution of the particle fraction coefficient i.e. for non-zero 

values of mc  the motion of the fluid particle increases and the values of stream function vary 

from 44.8   to 46.2  for 0.0mc  to 0.4mc  , which is shown in Figure 8. A similar 

behavior of the stream function is observed against the velocity slip parameter and this case the 

stream function gets the values of 43.4   to 46.2  for 1 0.0   to 1 0.5   (see Figure 9). 
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The strength of the stream function reducing against the non-Newtonian parameter i.e. the stream 

function covers a larger area of the channel for the case of Newtonian fluid i.e. pN   as 

compared to Casson fluid i.e. 0.1pN  . Moreover, the stream function gets the values of 

46.9  and 42.7  for Newtonian and non-Newtonian fluid, respectively (see Figure 10).  

The variation of temperature distribution against non-Newtonian parameter 𝑁𝑝, the coefficient of 

particle fraction mc , the velocity slip parameter 1 , the thermal slip parameter 2 , the electro-

osmotic parameter  , the Helmholtz–Smoluchowski velocity, Brinkman number 𝐵𝑟 and the 

Hartman number are shown in Figures 11-14, respectively. The non-Newtonian parameter 

diminishes the temperature profile which is illustrated in Figure 11 (left) and this reduction in 

temperature appears due to diminishing the values of yield stress against enhancing the plastic 

dynamic viscosity of fluid due to the non-Newtonian parameter. The particle fraction coefficient 

𝑐𝑚 enhancing the temperature distribution this observation is shown in Figure 11 (right) and it 

is happening due to the collision of solid particles that are responsible for enhancing the 

temperature distribution. Figure 12 portrays the effects of velocity and thermal slip parameters. 

From these figures, it is observed that the velocity slip parameter diminishes the temperature 

profiles (see Figure 12(left)) while the thermal slip parameter updates the temperature 

distribution (see Figure 12(right)). The variation of temperature distribution via electro-osmotic 

parameter and the Helmholtz–Smoluchowski velocity are displayed in Figure 13 and both 

parameters enhance the temperature profile. The effects of the Brinkman number and Hartman 

number on the temperature profile are depicted in Figure 14. From the left figure of 14, it is 

observed that the Brinkman number increases the temperature distribution because the Brinkman 

number is coming from viscous dissipation that increases the temperature profile. On the other 

hand, the Hartman number reduces the temperature, and it is happening due to the reduction of 

the kinetic energy for increasing the Hartman number (see Figure 14 (right)).  

The most important quantity of this investigation is the heat transfer rate  trH  and variation of 

heat transfer rate against the non-Newtonian parameter  pN , the velocity slip parameter  1 , 

the electro-osmotic parameter   , the coefficient of particle fraction  mc , the Helmholtz–

Smoluchowski velocity (uℎ𝑠), the Hartman number  Ha , the thermal slip parameter  1 , and 

Brinkman number  Br  is presented in Table 1. The computational results listed in Table 1 

revealed that the heat transfer rate is increased against the thermal slip parameter  2 the 

electro-osmotic parameter   , Brinkman number  Br  and the Helmholtz–Smoluchowski 

velocity (uℎ𝑠) while its decreasing behavior is noted against the non-Newtonian parameter  pN , 

the velocity slip parameter  1 , the coefficient of particle fraction  mc , and the Hartman 

number  Ha .  

6. Validation part 

The results are validated by the study of Hussain et al. [31] for limiting cases. In [31], the authors 

discussed the theoretical analysis of electro osmotic flow of multiphase flow through convergent, 

divergent, and nozzle type of channels under the act of the constant magnetic force. They 
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considered the Newtonian fluid as a base fluid and hafnium nanoparticles were suspended in the 

base fluid and performed the momentum analysis. We have validated our study with geometry 

two (divergent channel) of Hussain et al. [31] for setting pN   and 1 0  . The results of 

both studies are shown in Figure 15 and noted good agreement with each other.   

7. Conclusion 

A mathematical study of fluid and particle suspension in Casson rheological is reported here to 

examine the heat transfer analysis in divergent channels under the effects of electroosmotic and 

magnetic forces. The velocity and thermal slip conditions are also considered. The electro-

osmotic phenomena are modeled through the Poisson equation and solved this equation by using 

the Hückel linearization method. The current study presented innovative, valuable physical data 

and calculated the accurate exact solution. The important results of this investigation are. 

1. The exact solution of fluid-suspension in Casson rheological fluid is obtained with 

Hafnium particles. 

2. The fluid-particle phase velocities and temperature distribution are decreasing against the 

velocity slip parameter and Hartman number. 

3. The thermal slip parameter upgrades the temperature distribution. 

4. The non-Newtonian parameter controls the motion of fluid and particle phase velocities 

and temperature distribution. 

5. The heat transfer rate is a decreasing function of the non-Newtonian parameter, velocity 

slip parameter, Hartman number, and coefficient of particle fraction while this behavior 

no longer exists against the thermal slip parameter, Brinkman number, the Helmholtz–
Smoluchowski velocity, and electroosmotic parameter.  

6. The current fluid-particle suspension Casson model helps understand the thermal 
properties of such a model under the action of the electric and magnetic field with slip 
boundary conditions. 

7. The suspension of dense particles can be useful in solar power plants to restore more 

energy.   

 

Data Availability Statement 

No Data is associated with the manuscript. 

 

Table 1: The variation of the average Nusselt number against the following parameters. 

pN  
1  2    mc  Br  hsu  Ha  trH  Behavior 

1.0 0.01 0.01 1.0 0.1 1.0 1.0 2.0 1.3852 
Decreasing 

3.0 --- --- --- --- --- --- --- 0.7179 

2.0 0.02 --- --- --- --- --- --- 0.6035 
Decreasing 

--- 0.03 --- --- --- --- --- --- 0.3775 

--- 0.015 0.02 --- --- --- --- --- 0.7656 
Increasing 

--- --- 0.03 --- --- --- --- --- 0.7914 

--- --- 0.015 3.0 --- --- --- --- 0.7874 
Increasing 

--- --- --- 5.0 --- --- --- --- 0.9529 
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--- --- --- 1.0 0.2 --- --- --- 0.7512 
Decreasing 

--- --- --- --- 0.3 --- --- --- 0.7492 

--- --- --- --- 0.1 1.5 --- --- 1.6144 
Increasing 

--- --- --- --- --- 2.0 --- --- 2.4762 

--- --- --- --- --- 1.0 2.0 --- 0.7529 
Increasing 

--- --- --- --- --- --- 5.0 --- 0.7536 

--- --- --- --- --- --- 1.0 1.0 0.7669 
Decreasing 

--- --- --- --- --- --- --- 3.0 0.7338 
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Figure 1: The physical sketch of the problem. 

Figure 2: Effects of non-Newtonian parameter on fluid and particle phase velocities distribution. 

Figure 3: Effects of velocity slip parameter on fluid and particle phase velocities distribution. 

Figure 4: Effects of electro-osmotic parameter on fluid and particle phase velocities distribution. 

Figure 5: Effects of the coefficient of particle fraction on fluid and particle phase velocities 

distribution. 

Figure 6: Effects of the Helmholtz–Smoluchowski velocity on fluid and particle phase velocities 

distribution. 

Figure 7: Effects of the Hartman number on fluid and particle phase velocities distribution. 

Figure 8: The variation of stream function via 𝑐𝑚 = 0 (left) and 𝑐𝑚 = 0.4 (right). 
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Figure 9: The variation of stream function via 𝜒1 = 0 (left) and 𝜒1 = 0.5 (right). 

Figure 10: The variation of stream function via 𝑁𝑝 = ∞ (left) and 𝑁𝑝 = 0.1 (right). 

Figure 11: The variation of temperature distribution via non-Newtonian parameter 𝑁𝑝 (left) and 

the coefficient of particle fraction 𝑐𝑚 (right). 

Figure 12: The variation of temperature distribution via velocity slip parameter 𝜒1 (left) and the 

thermal slip parameter 𝜒2 (right). 

Figure 13: The variation of temperature distribution via electro-osmotic parameter Λ (left) and 

the Helmholtz–Smoluchowski velocity 𝑈ℎ𝑠 (right). 

Figure 14: The variation of temperature distribution via Brinkman number 𝐵𝑟 (left) and the 

Hartman number 𝐻𝑎 (right). 

Figure 15: Solution validation with Hussain et al. [31]. 
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