Entropy generation analysis of hybrid-nanofluid during natural convection through two coaxial cylinders partially filled with porous medium under magnetic field

Y. Foukhar i1,*, M. Sammoud a1, M. Driouich 1
1 Research laboratory in physics and sciences for engineering, LRPSI
Sultan Moulay Slimane university, Polydisciplinary faculty, Beni Mellal, 23000, Morocco
* Corresponding author: Youness.foukharifpb@usms.ma

January 18, 2024

Abstract

The aim of this research is to analyze the magnetohydrodynamic heat transmission in an annular space partially porous between two concentric cylinders with a permeable interface saturated by a hybrid nanofluid (water-Cu/Al2O3) and study the entropy generation to better understand the heat transfer processes. The inner and outer cylinders are kept at a constant hot and cold temperature. The base walls are designed to be impermeable and insulated. A finite difference-based vorticity-stream function is used to solve the nonlinear coupled conservation equations using Successive Over Relaxation approach. The obtained numerical outcomes in terms of streamlines, isotherms, Nusselt and Bejan numbers, and entropy generation are presented to demonstrate the effect of various control parameters. The findings of this numerical simulation show that the enhance in the Ra number improves thermal energy transmission across the active wall. Further, a rise in nanoparticle concentration causes a rise in thermal conductivity, which contributes to enhancing the heat transfer rate. In addition, the mean entropy generation elements rise with increasing Rayleigh number, Darcy number, and nanoparticle concentration; however, with the exception of magnetic irreversibility, the reverse development is detected. Furthermore, the Bejan number is reduced in order to increase the Rayleigh and Darcy numbers.

Keywords: Natural convection, Entropy generation, Hybrid nanofluid, Magnetic field, Porous medium.

1 Introduction

Over the last few years, magnetohydrodynamic (MHD) heat transmission has remained an exciting issue for researchers because of its numerous applications in diverse areas such as geothermal energy, electronics, and many others. However, the researchers discovered a limitation in ordinary liquids, for example, oil, water, and ethylene glycol; which have a reputation for having poor heat conductivity. To develop thermal conductivity, they invented an innovative type of thermal transfer liquid called nanofluids by mixing nanoparticles in various base fluids. Choi [1] was the one who originally used the term "nanofluids" for this novel category of fluids with excellent thermal properties. Eastman et al. [2] investigated the thermal conductivity improvement of (Cu-ethylene glycol) nanofluid. They noted that the addition of copper nanoparticles enhanced the thermal
The movement of nanofluid through a lid-driven rectangle enclosure is supplied by Tiwari and Das [3] who investigated the manners of nanofluids by taking the nanoparticle concentration into account. Vajravelu et al. [4] demonstrated convective heat transfer in nanofluids of Cu-water and Ag-water, which the boundary layer thickness drops faster for Ag-water. Foukharri et al. [5] explored natural convection in an annular space between two coixial cylinders partially filled with a porous medium and submerged in a nanofluid Cu-water. Another investigation looks at the different ways in which the shape of the nanoparticles influences heat transfer [6,7]. Furthermore, a great deal of research has been undertaken on nanofluids, although hybrid nanofluids have not been addressed. It should be emphasized that their applications have attracted the interest of researchers in going beyond the limits of nanofluids. Numerous studies, both numerical and experimental, have looked at the use of a hybrid nanofluid in various situations for convective heat transfer [8–10]. Sheikhholeslami et al. [11,12] proved that electrical output increases with loading MWCNT particles and also analyzed the possibility of utilizing a permeable zone for the discharging expedition.

Another potentially efficient method for reducing and managing the rate of heat transfer was represented by convective heat transfer related to magnetic force, which attracted the attention

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Subscript</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Aspect ratio</td>
<td>φ</td>
</tr>
<tr>
<td>R_i</td>
<td>Inner radius</td>
<td>φ1</td>
</tr>
<tr>
<td>R_e</td>
<td>Outer radius</td>
<td>φ2</td>
</tr>
<tr>
<td>H</td>
<td>Cavity height</td>
<td>Ω, ψ</td>
</tr>
<tr>
<td>Cp</td>
<td>specific capacity</td>
<td>Ω̅, ̇ψ̅</td>
</tr>
<tr>
<td>r,z</td>
<td>Dimensional coordinates</td>
<td>Σ, Λ</td>
</tr>
<tr>
<td>r̅, ζ</td>
<td>Dimensionless coordinates</td>
<td>ΔΓ</td>
</tr>
<tr>
<td>X_p</td>
<td>Porous layer thickness</td>
<td>T, T̅</td>
</tr>
<tr>
<td>Be</td>
<td>Bejan number</td>
<td>g</td>
</tr>
<tr>
<td>λ</td>
<td>Thermal conductivity</td>
<td>Γ</td>
</tr>
<tr>
<td>σ</td>
<td>Electrical conductivity</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
<td>hnf</td>
</tr>
<tr>
<td>ξ_1</td>
<td>The irreversibility Coefficient</td>
<td>nf</td>
</tr>
<tr>
<td>U,W</td>
<td>Dimensional velocity component</td>
<td>np1</td>
</tr>
<tr>
<td>U̅, W̅</td>
<td>Dimensionless velocity component</td>
<td>np2</td>
</tr>
<tr>
<td>Ha</td>
<td>Hartmann number</td>
<td>eff</td>
</tr>
<tr>
<td>k</td>
<td>Porous medium permeability</td>
<td>Loc</td>
</tr>
<tr>
<td>Da</td>
<td>Darcy number</td>
<td>Avg</td>
</tr>
<tr>
<td>B_0</td>
<td>Magnetic field</td>
<td>c</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
<td>h</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
<td>p</td>
</tr>
<tr>
<td>S_gen</td>
<td>Entropy generation</td>
<td>bf</td>
</tr>
<tr>
<td>Ra</td>
<td>Rayleigh number</td>
<td>ε</td>
</tr>
<tr>
<td>α</td>
<td>Thermal diffusivity</td>
<td>Th</td>
</tr>
<tr>
<td>β</td>
<td>Thermal expansion coefficient</td>
<td>ff</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
<td>Mag</td>
</tr>
</tbody>
</table>

Nanoparticle concentration
Aluminium concentration
Copper concentration
Vorticity, Stream function
Dimensionless vorticity, stream function
Dimensionless constant
Temperature difference
Temperature, Dimensionless temperature
Gravity acceleration
Effective viscosity
Hybrid nanofluid
Nano liquid
Aluminium nanoparticle
Copper nanoparticle
Effective
Local
Average
Cold
Hot
Porous medium
Base fluid
Porous medium
Thermal
Fluid friction
Magnetic
of researchers. The magnetic force combines with the buoyancy flux of an electrically conductive fluid to produce the Lorentz force, which influences heat transmission processes. Roy [13] investigated free convection flow and heat transfer in a rectangular container saturated by a hybrid nanofluid under numerous heating sources in the presence of a magnetic force. Mebarek-Oudinaa et al. [14,15] conducted a numerical study of magnetohydrodynamic natural convection in a vertical porous cylindrical cavity full of magnetic nanofluid. They arrived at the conclusion that increased magnetic force reduces heat transfer. Parvin et al. [16] discovered many forms of parameter effects in secondary flow, such as the Grashof number and the Prandtl number, when considering nanoparticles passing through the annulus. Furthermore, Selimefendigil et al. [17,18] examined the effects of combining the use of a magnetic field with rotating cylinders on the thermal processes and phase transitions in a T-shaped branching channel. In addition, several studies have evaluated how heat transfer in an magnetohydrodynamics (MHD) flow is affected by the suspension of nanoparticles and the impact of internal heat generation [19–22]. El Glili and Driouich [23] examined the effect of variable viscosity on the flow of electromagnetohydrodynamic Casson nanofluid, taking into account Brownian motion and the thermophoresis effect. Sheremet et al. [24] examined other numerical studies of free convection in an undulating porous region in the presence of a steady magnetic field.

Furthermore, a different strategy was discovered by combining various mediums, which were separated based on the application, either vertically or horizontally, which has attracted the interest of researchers and investigated the influences of interface conditions, stress jump, and stress continuity at the interface [25–29]. On the other hand, many studies are using the Darcy-Birnkman model to analyze the effect of porous media [30,31]. Foukhari et al. [32] attempted to comprehend the behavior of the nanofluid in a particular geometry by investigating the MHD natural convection between two vertical concentric cylinders. Chamkha et al. [33] expanded the problem by taking into account fully developed micropolar natural convection fluid flow in a vertical channel. In the biomedical application, Vijatha and Reddy [34] illustrated the construction of entropy generation, heat transport, and flow characteristics of blood flow in a Darcy-Forchheimer stretched cylinder. Karimi et al. [35] conducted an analytical investigation of forced convection in a space that was subjected to a uniform heat flux and partially submerged by a porous material. Mahmoudi et al. [36,37] evaluated the thermal behavior of a channel featuring a centrally located porous zone. Chamkha [38] investigated analytically the transient and hydromagnetic fluid flow processes for heat transfer properties in circular pipes and channels adopting a two-phase continuum approach. Other studies on non-Darcian fully developed flow and with variable porosity are improving our understanding of the impact of intricate flow phenomena on a wide range of porous media applications [39–41].

Entropy generation analysis, which acts as a criteria for assessing irreversibilities because of various sources and effects in a fluid domain, is another important topic for researchers. As a result, optimizing thermal engineering systems necessitates not only optimizing heat transfer performance but also optimizing entropy generation. Bejan [42] has worked hard to bridge the gap between thermodynamics, heat transfer, and fluid mechanics. He used the second law of thermodynamics to calculate the entropy creation caused by heat and flow transport in a cavity. Akhter et al. [43] embarked on an investigation of the entropy production of a magnetoconvective flow within a porous cavity filled with a hybrid nanofluid in the presence of an external magnetic field. Additional studies examine how the dynamic interaction of entropy generation and magnetohydrodynamics
affects the thermal behavior and sense of evolution of systems in a variety of situations [44–51]. In a computational investigation, Ramasekhar and Reddy [52] examined the importance of electromagnetohydrodynamic Darcy-Forchheimer hybrid nanofluid flow across a permeable rotating disk with radiation and heat generation.

This study investigates the impact of an externally oriented magnetic force on entropy generation and heat transmission. The primary goals are to express hybrid nanofluid flow by studying the annular space between two coaxial cylinders, predict entropy formation pace, and implement innovative uses of nanoparticles and controlled range to regulate fluid flow, heat transfer, and entropy generation. The aim is to meet the growing need for thermal effectiveness in the 4th industrial movement.

2 Mathematical approach

2.1 Mathematic formulation and boundary condition

Figure 1 represents a vertical coaxial cylinders with height H, with a saturated Newtonian hybrid nanofluid (water-Cu/Al$_2$O$_3$) partially filled with a porous layer with thickness X_p. The outside cylinder is kept at a constant cold temperature, while the inner cylinder is maintained at a uniform hot temperature. Furthermore, the solid and nanofluid are assumed to be in thermal equilibrium ($T_p = T_{hnf}$) [32]. The flow is intended to be a laminar, homogeneous, incompressible, and isotropic porous medium with uniform physical properties, except for density estimated using the Boussinesq approximation. The ion slip effect and Hall current are neglected. [53–55].

The current study’s dimensional mathematical formulation is in vector form.

For the porous layer:

$$\nabla \cdot \vec{V} = 0,$$

$$\frac{1}{e^2} \vec{V} \cdot \nabla \vec{V} = -\frac{1}{\rho_{hnf}} \nabla p - \frac{\mu_{hnf}}{\rho_{hnf} \cdot K} \vec{V} + \frac{\mu_{hnf}}{\rho_{hnf} \cdot \epsilon} \nabla \cdot \left(\nabla \vec{V} \right) - \beta_{Th} (T - T_c) \vec{g} - \frac{\sigma_{hnf}}{\rho_{hnf}} B_0^2 \vec{V},$$

$$\vec{V} \cdot \nabla T = \alpha_{eff} \nabla \cdot \left(\nabla T \right).$$

For the nanofluid layer:

$$\nabla \cdot \vec{V} = 0,$$

$$\vec{V} \cdot \nabla \vec{V} = -\frac{1}{\rho_{hnf}} \nabla p + \frac{\mu_{hnf}}{\rho_{hnf}} \nabla \cdot \left(\nabla \vec{V} \right) - \beta_{Th} (T - T_c) \vec{g} - \frac{\sigma_{hnf}}{\rho_{hnf}} B_0^2 \vec{V},$$

$$\vec{V} \cdot \nabla T = \alpha_{hnf} \nabla \cdot \left(\nabla T \right).$$

By using the rotational operator $\vec{\Omega} = \vec{rot} \vec{V}$, the controlling equations in scalar form are derived from the expressions of the stream function and vorticity [56]. To normalize them, the following non-dimensional parameters are provided [57]. With m refers to hnf or eff.

$$(r; z) = \left(\frac{r}{R_e}; \frac{z}{R_e} \right); \ (\vec{U}; \vec{W}) = \left(\frac{UR_e}{\alpha_m}; \frac{WR_e}{\alpha_m} \right); \ \vec{\Omega} = \frac{\Omega R_e^2}{\alpha_m}; \ \vec{\Psi} = \frac{\Psi}{\alpha_m R_e}; \ \vec{S} = \frac{T_h R_e^2}{\lambda_{bf} \Delta T^2}$$

$$T = \frac{(T - T_f)}{\Delta T} = \frac{(T_c - T_f)}{\Delta T}$$

For the porous layer:

$$\frac{1}{r} \frac{\partial (r \vec{U})}{\partial r} + \frac{\partial \vec{W}}{\partial z} = 0,$$
\[\frac{1}{\varepsilon^2} \left(\frac{\partial (U\Omega)}{\partial \tau} + \frac{\partial (W\Omega)}{\partial \xi} \right) = -\lambda^2 Ra Pr \frac{\partial T}{\partial \tau} + \left(-\lambda \Sigma Pr \frac{\partial T}{\partial \tau} + \left(-\lambda \Sigma \frac{Pr}{Da} - \lambda \Sigma \frac{Pr}{\tau^2} \right) \right) \Omega \]

\[+ \lambda \Sigma \frac{Pr}{Da} \left(\frac{\partial^2 \Omega}{\partial \tau^2} + \frac{1}{\tau} \frac{\partial \Omega}{\partial \tau} + \frac{\partial^2 \Omega}{\partial \xi^2} \right) \]

\[- \lambda \Sigma \frac{Pr}{Da} Ha^2 Pr \left(\frac{\partial U}{\partial \tau} \right)^2 \frac{\partial^2 \Omega}{\partial \tau^2} \Omega \]

\[\frac{\partial (UT)}{\partial \tau} + \frac{\partial (WT)}{\partial \xi} + \frac{UT}{\tau} = \frac{\partial^2 T}{\partial \tau^2} + \frac{1}{\tau} \frac{\partial T}{\partial \tau} + \frac{\partial^2 T}{\partial \xi^2}. \]

For the nanofluid layer:

\[\frac{1}{\tau} \frac{\partial (rU)}{\partial \tau} + \frac{\partial W}{\partial \xi} = 0, \]

\[\frac{\partial (U\Omega)}{\partial \tau} + \frac{\partial (W\Omega)}{\partial \xi} = \Sigma Pr \left(\frac{\partial^2 \Omega}{\partial \tau^2} + \frac{1}{\tau} \frac{\partial \Omega}{\partial \tau} - \frac{\Omega}{\tau^2} \right) - \Lambda Ra Pr \frac{\partial T}{\partial \tau} \]

\[- \frac{\partial hnf}{\sigma bf} Ha^2 Pr \left(\frac{\partial U}{\partial \tau} \right)^2 \frac{\partial^2 \Omega}{\partial \tau^2} \Omega \]

\[\frac{\partial (UT)}{\partial \tau} + \frac{\partial (WT)}{\partial \xi} + \frac{UT}{\tau} = \frac{\partial^2 T}{\partial \tau^2} + \frac{1}{\tau} \frac{\partial T}{\partial \tau} + \frac{\partial^2 T}{\partial \xi^2}. \]

Where,

\[\Gamma = \frac{\mu_{eff}}{\rho_{hnf}}, \quad \alpha_{hnf} = \frac{\lambda_{hnf}}{(\rho C)_{hnf}}, \quad \alpha_{eff} = \frac{\lambda_{eff}}{(\rho C)_{eff}}, \quad \lambda = \frac{\lambda_{hnf}}{\lambda_{eff}}, \quad \lambda_{eff} = (1 - \varepsilon) \lambda_p + \varepsilon \lambda_{hnf}. \]

\[\Sigma = \frac{(1 - \phi)^{-2.5}(1 - \phi)^{-2.5} \left(\frac{(\rho C)_{hnf}}{(\rho C)_{nf}} \right)}{\lambda_{hnf}} \left(\frac{\Sigma_{hnf}}{\rho_{hnf}} \right), \quad \Lambda = \frac{\rho_{hnf}}{\rho_{bf}} \left(\frac{\lambda_{hnf}}{\rho_{hnf}} \right) \left(\frac{(\rho C)_{hnf}}{(\rho C)_{nf}} \right)^2. \]

The dimensionless parameters in the preceding Equations 9 and 12 can be written as:

\[Ra = \frac{\rho_{bf} g \beta T h \Delta T R_e^3}{\mu_{bf} \alpha_{bf}}, \quad Ha = R_e B_0 \sqrt{\frac{\sigma_{bf}}{\mu_{bf}}}, \quad Pr = \frac{\mu_{bf}}{\rho_{bf} c_{nf}}, \quad Da = \frac{k}{R_e^2}. \]

The boundary condition:

\[T = 1, \quad \bar{\psi} = \bar{\theta} = \bar{\phi} = 0, \quad \bar{\Omega} = \frac{2}{\Delta \tau^2} \bar{\psi} |_{\Delta \tau}. \]

\[T = 0, \quad \bar{\psi} = \bar{\theta} = \bar{\phi} = 0, \quad \bar{\Omega} = \frac{2}{\Delta \tau^2} \bar{\psi} |_{0.5 \Delta \tau}. \]

\[\frac{\partial T}{\partial \xi} = 0, \quad \bar{\psi} = \bar{\theta} = \bar{\phi} = 0, \quad \bar{\Omega} = \frac{2}{\Delta \tau^2} \bar{\psi} |_{\Delta \tau}. \]

\[\frac{\partial T}{\partial \xi} = 0, \quad \bar{\psi} = \bar{\theta} = \bar{\phi} = 0, \quad \bar{\Omega} = \frac{2}{\Delta \tau^2} \bar{\psi} |_{0.5 \Delta \tau}. \]

\[\bar{T}_{hnf} = \bar{T}_p, \quad \frac{\partial \bar{T}_{hnf}}{\partial \tau} = \frac{\lambda_{eff}}{\lambda_{hnf}} \frac{\partial \bar{T}_p}{\partial \tau}, \quad \bar{\psi}_{nf} = \bar{\psi}_p, \quad \frac{\partial \bar{\psi}_{nf}}{\partial \tau} = \frac{\mu_{eff}}{\mu_{hnf}} \frac{\partial \bar{\psi}_p}{\partial \tau}, \quad \bar{\Omega}_{hnf} = \bar{\Omega}_p, \quad \frac{\partial \bar{\Omega}_{hnf}}{\partial \tau} = \frac{\mu_{eff}}{\mu_{hnf}} \frac{\partial \bar{\Omega}_p}{\partial \tau}. \]

\[\bar{T} = R_i + X_p, \quad 0 \leq \bar{\tau} \leq H. \]
The active wall’s rate of heat transfer coefficient is expressed using the average Nusselt number \[58\], as provided by:

\[
Nu_{Avg} = \frac{1}{AL} \frac{\lambda_{eff}}{\lambda_{bf}} \int_0^{AL} \frac{\partial T_{hnf}}{\partial r} \, dz.
\]

(19)

2.2 Thermophysical properties

The study proposes a hybrid nanofluid model by mixing copper nanoparticles with alumina in water as a base fluid. Alumina nanoparticles are added to the core solution at a fixed concentration \(\phi_1 = 0.01\). Table 1 shows the current and proposed valid thermophysical characteristics of the nanofluid and hybrid nanofluid \[59\].

2.3 Entropy generation

The irreversible nature of heat transport and viscosity factors cause the fluid to generate entropy continuously. The development of entropy is therefore due to the non-equilibrium flow forced by the cavity’s boundary conditions. With the inclusion of an additional outside force (the magnetic force), the rate of entropy creation (which comes from energy and entropy balances) for a bidimensional flow is given in its general form as follows:

\[
S_{gen} = \frac{k_{hnf}}{T_0} \left[\left(\frac{\partial T}{\partial r} \right)^2 + \left(\frac{\partial T}{\partial z} \right)^2 \right] + \frac{\mu_{hnf}}{T_0} \left[2 \left(\frac{\partial U}{\partial r} \right)^2 + \left(\frac{\partial W}{\partial z} \right)^2 \right] + \frac{\sigma_{hnf} B_0^2 U^2}{T_0}.
\]

(20)

According to this process, and to be able to derive a dimensionless modeling of local entropy generation in free convection in the presence of a magnetic force, which will contain three components:

\[
\overline{S}_{Loc} = \overline{S}_{gen-th} + \overline{S}_{gen-ff} + \overline{S}_{gen-Mag}.
\]

(21)

\[
\overline{S}_{Loc} = \frac{k_{hnf}}{k_{bf}} \left[\left(\frac{\partial T}{\partial r} \right)^2 + \left(\frac{\partial T}{\partial z} \right)^2 + \delta \xi_1 \left[2 \left(\frac{\partial U}{\partial r} \right)^2 + \left(\frac{\partial W}{\partial z} \right)^2 \right] + \frac{\delta \xi_2}{\sigma_{bf}} \left(\frac{\alpha_{hnf}}{\alpha_{bf}} \right)^2 U^2 \right]
\]

(22)

where,

\[
\delta = \frac{\mu_{hnf}}{\mu_{bf}} \left(\frac{\alpha_{hnf}}{\alpha_{bf}} \right)^2, \quad \xi_1 = \frac{\mu_{bf} T_0}{k_{bf}} \left(\frac{\alpha_{bf}}{R_e \Delta T} \right)^2, \quad \xi_2 = \xi_1 H a^2.
\]

(23)

\[
\overline{S}_{gen} = \int \int \overline{S}_{Loc} \, dr \, dz.
\]

(24)

The following expression is the definition of the local and global Bejan number, which are defined by:

\[
Be_{Loc} = \frac{\overline{S}_{g-th}}{\overline{S}_{Loc}}, \quad Be_{Avg} = \int \int Be_{Loc} \, dr \, dz.
\]

(25)

3 Numerical approach

3.1 Numerical procedure

The sets of dimensionless governing equations related to the border conditions are complex and nonlinear; therefore, in order to obtain the streamlines and temperature distribution, they must be
numerically solved. The energy and vorticity equations are resolved using the central differences approach. Following the discretization procedure, the controlling algebraic formulas are resolved using the Alternation Direction Implicit (ADI) approach. The equation for the stream function has been solved using the Successive Over Relaxation (SOR) method \[60\]. The iteration process was carried out repeatedly until the condition was met for the best average change across all dependent variables. The numerical simulation’s flow chart is shown in Figure 2.

\[
\frac{\sum_i \sum_j |f_{i,j}^{n+1} - f_{i,j}^n|}{\sum_i \sum_j |f_{i,j}^n|} \leq 10^{-5}.
\]

(26)

Where \(f \) refers to temperature (\(T \)) and vorticity (\(\Omega \)).

3.2 The Grid sensitivity test and code validation

The study conducts a grid sensitivity analysis to find a grid-independent solution. The average Nusselt number is determined for various mesh systems in Table 2, showing that a mesh size of \((71 \times 141)\) is suitable for grid independence. The numerical program is validated by comparing results with previous studies by Krane and Jessee \[61\], Abu Nada et al. \[62\] Figure 3, and Sankar et al. \[63\] Figure 4.

4 Results and discussion

In this research, we investigated the entropy generation in a hybrid nanofluid between two coaxial cylinders for an aspect ratio of \((AL = H/Re = 2)\), which was studied under an external magnetic force. It is saturated by a porous medium, whose porosity is adjusted to \(\epsilon = 0.7 \), which correlates to glass \(\lambda_p = 0.845 W/m.K \). The hybrid nanofluid is constructed from combining of \(Cu \) and \(Al_2O_3 \) nanoparticles in base fluid, as illustrated by their characteristics in Table 3. The simulation is performed for the physical parameters listed as Darcy number, Hartmann number, Rayleigh number, and nanoparticle concentration with ranges of \(10^{-5} \leq Da \leq 10^{-1} \), \(0 \leq Ha \leq 150 \), \(10^3 \leq Ra \leq 10^6 \), and \(0.01 \leq \phi \leq 0.05 \) successively.

Figure 5 illustrates the effect of Rayleigh number \(Ra \) on the temperature and streamline contours under an external uniform magnetic force (\(Ha = 50 \)). It is shown in Figure 5 at \(Ra = 10^4 \), that the entire enclosure is filled with one clockwise circular cell with a low maximum intensity flow. Furthermore, a lower \(Ra \) number causes a reduced buoyancy impact, and thus the conduction mode has grown to be important in heat transport. Then, at \(Ra = 10^5 \) and \(10^6 \), the streamline cycles are amplified and stretched with optimum strength, causing the nanofluid to go away from the warm side toward the cold side. For the temperature distribution via isotherm contours, as the space study was heated from the inner cylinder, a high temperature zone formed there, and the temperature distribution moved vertically into the outside, which demonstrated the dominance of the conduction mode. Further, an augment in Rayleigh number to \(10^6 \) leads the pattern of the isotherms to be restructured and become more curved, which means that the convection mode becomes dominant. The most notable discovery is that the highest number of compact isotherms measures the high temperature zone adjacent to the hot wall, indicating higher heat transmission from the source.
Figure 6 illustrates how the magnetic force affected the heat transfer rate for $Ra = 10^5$. As seen in Figure 6, at $Ha = 0$, there is no magnetic field, which means there is no effect on heat transfer rate, and the intensity’s flow in this case is $|\psi| = 5.56$. At $Ha = 150$, the stremlines were more affected than in the previous situations, and the flow circulation strength was reduced to $|\psi| = 2.35$. Lorentz’s force, which is formed as a consequence of the reaction of magnetic force and hybrid nanofluid buoyancy flow, has the ability to slow the flow velocity within the hybrid nanofluid zone. Further, it implies that Lorentz’s force has no significant effect on the isotherms, whereas Ha ranges from 0 to 50, while it shows an important shift when a magnetic force’s strength rises to $Ha = 150$, which causes the isotherms to change shape from horizontal to almost vertical.

Figure 7 depicts the streamlines and isotherms for different Darcy values at constant magnetic field strength $Ha = 50$. The Darcy number provides a substantial effect on velocity and rate of heat transfer through the hybrid nanofluid region, taking into account that it is linked directly to the permeability of porous media. As shown in Figure 7, at $Da = 10^{-5}$, smaller Da values indicated less porosity of the annular, which leads to a rise in the velocity in the free region. This is because decreasing porosity causes most of the fluid to escape to the free zone, while the remaining fluid in the porous region is impeded and mixed owing to the hydraulic resistance of impediments in the porous region. With an increase to $Da = 10^{-3}$ and 10^{-1}, the medium becomes more permeable, allowing more nanofluid to pass through the porous layer [32], which leads to an increase in the cell’s strength and enhancement in heat transfer, as seen in Figure 7.

4.1 Effect some control parameters on average Nusselt number

Figure 8 depicts the heat transfer rate using the Nu_{Avg} curves in the fluid flow region as physical factors vary. Figure 8(a-c) shows that Nu_{avg} rises as the Rayleigh number grows. The rate of heat transmission is observed to be slow increasing at $Ra = 10^3$ to 10^4 and then quick growing at $Ra \geq 10^4$. To better comprehend the increasing of Nu_{Avg}, it was calculated using the data presented in Figure 8b for $Ha = 30$ and discovered that the average Nusselt number boosts by 8.30% when Ra shifts from 10^3 to 10^4, 96.52% from 10^4 to 10^5, and 285.53% from 10^5 to 10^6. This is because a higher Rayleigh number causes a strong buoyancy effect, resulting in an increase in the velocity through the cavity and thus leading to the transport of more heat energy via the hybrid nanofluid region. The interaction of magnetic force and buoyancy flow decreases flow velocity and generates more heat inside the fluid region, which declines as magnetic field strength increases, as shown in Figure 8b, which we found a full agreement with the research of Akhter et al. [43]. In addition, an improving trend can be seen in Figure 8a for increasing Darcy number, which results in an increase in permeability and flow velocity.

In Figure 8c, the improvement in nanoparticle concentration increases the thermal conductivity of the hybrid nanofluid and, therefore, the potential for energy transport. According to the numerical outcomes of Figure 8(a-c), the rate of Nu_{Avg} at $Ra = 10^6$ declines by 15.1% for the magnetic parameter shifts from $Ha = 0$ to 100, and accelerates by 100% and 9.72% respectively for the enhancement of Darcy number from $Da = 10^{-5}$ to 10^{-2} and the augmentation of hybrid nanoparticle concentration from $\phi = 1\%$ to 5%. Consequently, the growth of the Nu_{Avg} caused by Ra number is slowed by boosting the Hartmann number but accelerated by boosting Darcy number and nanoparticles concentration.
4.2 Effect of some control parameters on different component of entropy.

Figure 9 depicts the entropy generation caused by heat transmission, fluid friction, and magnetic impact for various Ra numbers under different control parameters. As shown in Figure 9(a-i), the increase in Ra number causes an increase in entropy generation components, whether caused by heat transfer, fluid friction, and magnetic effect. It is vital to notice that the growth of the entropy generation components is minimal for $Ra \leq 10^5$ and maximum for $Ra \geq 10^5$ for the reason that convection impact was found to be weak and powerful for smaller and greater Rayleigh values, respectively. In Figure 9(b,e,h), the irreversibility of entropy creation owing to fluid friction and heat transfer is observed to diminish with enhancing magnetic force strength. The effects of a magnetic field significantly decrease buoyancy impact and, thus, convection heat transfer rate; consequently, fluid friction entropy and heat transfer entropy are reduced. In addition, as the study treated by [43], we were able to show that the average entropy generation components increase with increasing cavity permeability, as seen in Figure 9(a,d,g), which makes our outcomes more convincing. These situations are anticipated with an increasing Darcy number, which means that the hybrid nanofluid will have an easier time moving from the porous region to the hybrid nanofluid region, leading to an acceleration of the flow velocity and heat transfer process. Figure 9(c,f,i) describe the entropy generation components that result from the injection of hybrid nanoparticles into the base fluid. In which the fluid friction entropy and heat transfer entropy improve with an improvement in the hybrid nanoparticle concentration, and that’s related to the viscosity, which corresponds to an increase in flow resistance. Also, the presence of hybrid nanoparticles in a fluid boosts entropy generation relating to the magnetic impact, in which the magnetic characteristics of the nanoparticles may interact with the magnetic field that is applied, causing extra forces that may result in turbulent flow behavior.

4.3 Effect some control parameters on Bejan number

Figure 10 represents the outcomes of the Be number for different Ra numbers at various control parameters. The Bejan number reduces dramatically as the irreversibility components grow with Ra. Furthermore, the greatest values of the Bejan number that are superior to 0.5 are identified at the smallest Ra number, meaning that heat transfer irreversibility takes over entropy generation, while the values of the Bejan number that are inferior to 0.5 are noticed at the highest Ra number, indicating that fluid friction and magnetic irreversibility take over entropy generation. Additionally, there is a direct correlation that combines the Bejan number and the hybrid nanoparticle concentration. It basically comes down to the notion that a higher dynamic viscosity is produced when there are more hybrid nanoparticles dispersed in the base fluid, which enhances energy dissipation in the fluid domain.

5 Conclusion

This study numerically investigates entropy generation by magneoconvection heat transfer in a specific configuration closer to industrial geometries. The study uses a hybrid nanofluid composed of Al_2O_3 and Cu nanoparticles. The finite difference approach is used to model the controlled equations, and the FORTRAN numerical code is used to treat the problem, verifying it with
published numerical and experimental results. The main conclusions drawn from the results are as follows:

* Increasing the Ra number from 10^4 to 10^6 results in an improvement in thermal energy transmission of 285.53 %. In addition, a reduction of 15.1% is observed at $Ra = 10^6$ when the Ha number is increased from 0 to 100 and is accelerated by 100% when the Da number is increased from 10^{-5} to 10^{-2}.

* The flow is considerably influenced by the rise in Rayleigh number. The intensity of the streamlines augments rapidly at high Ra but decreases as the magnetic field strength increases.

* An increase in Darcy number generates a rapid increase in fluid flow circulation, rate of heat transfer, and entropy generation components; however, there is a decrease in Bejan number Be for all Ra number. Furthermore, the streamlines vary progressively as the Darcy number Da grows.

* Heat transmission and entropy generation components improve as Ra rises, but both drop as Hartmann number increases, with the exception of magnetic entropy.

* Entropy generation is predominated by heat transfer irreversibility for the smaller Ra number, whereas fluid friction irreversibility for the upper values of Ra.

Statements and Declarations

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. The authors declare that no funds.

References

Biographies

Foukhari Youness:

is associated with the Laboratory of Research in Physics and Engineering Sciences (LRPES), Polydisciplinary Faculty, Sultan Moulay Slimane University, as a PhD student. His research interests are on heat and mass transfer, computational fluid mechanics, nanofluids, MHD effects, porous medium, and numerical modeling.

Sammouda Mohamed:

is Professor of physics associated with the physics department of the Polydisciplinary Faculty, Sultan Moulay Slimane University. He is a member and founder of Laboratory of Research in Physics and Engineering Sciences (LRPES). He received his PhD from the Faculty of Sciences, Mohammed-V University. His area of research is about heat and mass transfer, computational fluid mechanics, nanofluids, MHD effects, porous medium and numerical modeling.

Driouich Mohamed:

is Professor of physics associated with the physics department of the Polydisciplinary Faculty, Sultan Moulay Slimane University. He is a member and founder of Laboratory of Research in Physics and Engineering Sciences (LRPES). He received his PhD from the Faculty of Sciences, Mohammed-V University. His area of research is about heat and mass transfer, computational fluid mechanics, nanofluids, MHD effects, porous medium and numerical modeling.
List of Tables and Figures.

Table 1: Thermophysical properties for the hybrid nanofluid (Cu + Al$_2$O$_3$/Water).

Table 2: Grid independence test.

Table 3: Thermo-physical properties of water, Cu and Aluminia [64].

Figure 1: Schematic Physical domain.

Figure 2: Flowchart for the algorithm followed.

Figure 3: A comparison of our outcomes to previous research findings on temperature function (a) and velocity function (b) for Al$_2$O$_3$ ($Ra = 10^5$, Pr=0.7).

Figure 4: Streamlines and isotherms for $Ra = 10^4$ (a) Sankar et al. [63] results, (b) our results.

Figure 5: Streamlines and isotherms at $Ha=50$, $Da=0.01$ and $\phi = 4\%$ for different Rayleigh number (a)$Ra = 10^4$, (b)$Ra = 10^5$ and (c) $Ra = 10^6$.

Figure 6: Streamlines and isotherms at $Ra = 10^5$, $Da=0.01$ and $\phi = 4\%$ for different Hartmann number (a)$Ha=0$, (b)$Ha=50$ and (c) $Ha=150$.

Figure 7: Streamlines and isotherms at $Ra = 10^5$, $Ha=50$ and $\phi = 4\%$ for different Darcy number (a)$Da = 10^{-5}$, (b)$Da = 10^{-3}$ and (c) $Da = 10^{-1}$.

Figure 8: The variation of Nu_{Avg} according Ra number for different ranges (a) $10^{-5} \leq Da \leq 10^{-2}$, (b) $0 \leq Ha \leq 100$, and (c) $0.01 \leq \phi \leq 0.05$.

Figure 9: The variation of Bejan number according Ra number for different ranges (a) $10^{-5} \leq Da \leq 10^{-2}$, (b) $0 \leq Ha \leq 100$, and (c) $0.01 \leq \phi \leq 0.05$.

Figure 10: The variation of Bejan number according Ra number for different ranges (a) $10^{-5} \leq Da \leq 10^{-2}$, (b) $0 \leq Ha \leq 100$, and (c) $0.01 \leq \phi \leq 0.05$.

Table 1: Thermophysical properties for the hybrid nanofluid (Cu + Al₂O₃/Water).

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Cu</th>
<th>Al₂O₃</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>Kg.m⁻³</td>
<td>8933</td>
<td>3970</td>
<td>997.1</td>
</tr>
<tr>
<td>Heat capacity</td>
<td>J.Kg⁻¹.K⁻¹</td>
<td>385</td>
<td>765</td>
<td>4179</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>W.m⁻¹.K⁻¹</td>
<td>401</td>
<td>40</td>
<td>0.613</td>
</tr>
<tr>
<td>Viscosity</td>
<td>²⁻¹</td>
<td>8933</td>
<td>3970</td>
<td>997.1</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>²⁻¹</td>
<td>1.67*10⁻⁵</td>
<td>0.85*10⁻⁵</td>
<td>2.1*10⁻⁵</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>K⁻¹</td>
<td>1.67*10⁻⁵</td>
<td>0.85*10⁻⁵</td>
<td>2.1*10⁻⁵</td>
</tr>
</tbody>
</table>

Table 2: Grid independence test.

<table>
<thead>
<tr>
<th>Mesh grid</th>
<th>Nu Avg</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 × 41</td>
<td>8.192</td>
<td></td>
</tr>
<tr>
<td>31 × 61</td>
<td>8.213</td>
<td>0.256</td>
</tr>
<tr>
<td>41 × 81</td>
<td>8.218</td>
<td>0.06</td>
</tr>
<tr>
<td>51 × 101</td>
<td>8.220</td>
<td>0.0244</td>
</tr>
<tr>
<td>61 × 121</td>
<td>8.222</td>
<td>0.0243</td>
</tr>
<tr>
<td>71 × 141</td>
<td>8.224</td>
<td>0.0242</td>
</tr>
<tr>
<td>81 × 161</td>
<td>8.224</td>
<td>0.0242</td>
</tr>
</tbody>
</table>

Table 3: Thermo-physical properties of water, Cu and Alumina [64].
Figure 1: Schematic Physical domain.

Figure 2: Flowchart for the algorithm followed.
Figure 3: A comparison of our outcomes to previous research findings on temperature function (a) and velocity function (b) for Al_2O_3 ($Ra = 10^5$, Pr=0.7).

Figure 4: Streamlines and isotherms for $Ra = 10^4$ (a) Sankar et al. [59] results, (b) our results.
Figure 5: Streamlines and isotherms at $Ha=50$, $Da=0.01$ and $\phi = 4\%$ for different Rayleigh number (a) $Ra = 10^4$, (b) $Ra = 10^5$ and (c) $Ra = 10^6$.
Figure 6: Streamlines and isotherms at $Ra = 10^5$, $Da=0.01$ and $\phi = 4\%$ for different Hartmann number (a) $Ha=0$, (b) $Ha=50$ and (c) $Ha=150$.
Figure 7: Streamlines and isotherms at $Ra = 10^5$, $Ha=50$ and $\phi = 4\%$ for different Darcy number (a) $Da = 10^{-5}$, (b) $Da = 10^{-3}$ and (c) $Da = 10^{-1}$.

Figure 8: The variation of Nu_{Avg} according Ra number for different ranges (a) $10^{-5} \leq Da \leq 10^{-2}$, (b) $0 \leq Ha \leq 100$, and (c) $0.01 \leq \phi \leq 0.05$.
Figure 9: The variation of Nu_{Avg} component according Ra number for different ranges (a,d,g) $10^{-5} \leq Da \leq 10^{-2}$, (b,e,h) $0 \leq Ha \leq 100$, and (c,f,i) $0.01 \leq \phi \leq 0.05$.
Figure 10: The variation of Bejan number according Ra number for different ranges (a) $10^{-5} \leq Da \leq 10^{-2}$, (b) $0 \leq Ha \leq 100$, and (c) $0.01 \leq \phi \leq 0.05$.