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Abstract 

    In this article, we studied the peristaltic motion of Jeffrey fluid with the porous 

medium through an asymmetric channel under the influence of velocity slip parameters. 

Governing equations for non-Newtonian fluid flow models, such as continuity, momentum, 

energy and mass transfer, are formulated. An externally applied inclined magnetic field is also 

considered in the flow pattern. The lengthy governing equation of fluid motion is reduced by 

considering the approximation of longer wavelengths and smaller Reynolds numbers.

).0(Re
 The resulting governing equations are solved exactly. The graph shows the results 

of the impact of various related fluid parameters such as Hartmann number, Darcy number, 

Jeffrey fluid parameter, amplitude ratio, chemical reactions of fluid velocity, temperature, 

concentration, pressure rise, pressure gradient, streamlines etc. Finally, the various waveforms 

of the trapping phenomenon are presented. 
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Nomenclature

Symbols 

21,hh


   Upper and lower walls ][L  

)','( VUu


  Velocity vector on )','( YX


 

             Direction 

I   Identity tensor 

0B   Magnetic field vector 

T   Temperature of fluid 

S  Cauchy stress tensor 

21,dd   Channel wall's constant height ][L  

11,ba   Wave  amplitudes ][L  

c   Wave speed ]/[ TL  

't


         Time ][T  

P          Pressure ]/[ 2TML  

pc   Specific heat ]/[ 22 KTML  

1k   Permeability parameter 

10 ,TT     Temperature at lower and upper         

              wall ][K  

Re   Reynolds number  

Da  Darcy number 

Fr   Frude number 

Pr   Prandtl number  

M  Hartmann number  

E  Eckert number 

Br  Brinkmann number 

F   Flow rate ]/[ 3 TL  

Greek symbols  

21,  Constants of Jeffrey fluid 

 ,    Shear stress 

  Wavelength ][L  

          Density ]/[ 3LM  

  Dynamic viscosity 

   Electrical conductivity 

   Wave number 

  Stream function 

t   Thermal conductivity ]/[ 3KTML  

   Inclination angle 

21,   First, second order slip     

             parameters 

*       Thermal slip parameter 

1         Chemical reaction Parameter

 

1. Introduction  

 The peristaltic movement of non-Newtonian and Newtonian fluids has received 

particular attention for its wide applications in physiology, engineering and modern industry. 

In physiological terms, urine transport to the bladder through the kidney, in the ingestion of 

food via the esophagus, capillaries and arterioles, vasomotion of venues, in the unsanitary 

transport of fluids, in the movement of worms, transport of toxic fluids in the nuclear industry, 

roller, finger pumps. Latham made the initial attempt at peristaltic transport [1]. Brown and 
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Hung [2] investigated non-linear two-dimensional peristaltic transportation using 

experimental and computational methods. The peristaltic movement through an inclined tube 

of Herschel-Bulkley fluid has been described by Vajravelu et al. [3]. Wang et al. [4] discussed 

the Johnson Segalman fluid through peristalsis in the deformable tube. A few studies on the 

peristaltic mechanism of different fluid patterns are presented [5-8]. 

 The study of the peristaltic transport of MHD (magnetohydrodynamic) has special 

attention due to its numerous applications in electricity production, bio-engineering and 

medicine. In particular, blood pumps, generator sets, MHD compressor operation, flow 

meters, radar systems, heat exchanger construction, etc. MHD dust fluid through Peristaltic 

transport was described by Muthuraj et al. [9]. They employed an analytic solution to solve 

the equations of solids and liquids and reported that the appearance of magnetic parameters on 

the transverse side that creates the drag force and affects the movement of the liquid in the 

opposite direction, causing the velocity to decrease. A few studies of peristaltic motion with 

MHD in different fluids under different boundary conditions are presented [10-14]. 

  Porous materials provide significant advantages in comparison with conventional 

construction. The non-uniform flow of fluids ensures that fluids are uniformly blended and 

also supports them in maintaining the temperature distribution. Mathematically, the flow rate 

in the porous medium is defined by Darcy's law [15]. He indicated that the flow rate is 

straightly proportional to pressure gradient and the flow cross-section. Some studies based on 

the presence of porous media across different fluid flow patterns in different flow geometries 

can be found in [16-25]. Nadeem et al. [26] Discussed the peristaltic movement of Jeffrey 

nanofluid in rectangular ducts. Blood clots are a major cause of various illnesses around the 

world, like heart attacks; stroke is the main element behind death, is addressed by Bhatti et al. 

[27]. Tripathi et al. [28] focused on the peristaltic movement of the micropolar liquid in an 

asymmetrical channel with electroosmosis. They used a numerical solution to obtain the 

solution. Magesh and Kothandapani [29] examined the power and mass transfer analysis of 

the Johnson Segalmann fluid in an asymmetric channel. 

  All studies above, but few in the available literature, on the impact of velocity 

second slip conditions on the peristaltic movement in a channel/tube. Granting to the available 

literature, no effort has been gained to influence of velocity second slip conditions through the 

peristaltic mechanism of Jeffrey fluid in an inclined asymmetric channel. Thus, the present 

study proposes to construct the work on the impact of velocity second slip parameters of the 

peristaltic movement of Jeffrey fluid. The flow is considered with porous medium, electrically 

conductive inclined magnetic field and chemical reaction. Mass and energy transfer of the 

fluid was also studied. The exact solutions are derived from the simplified governing 
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equations. The influence of various fluid parameters of the flow characteristics are analyzed 

by means of graphic illustrations. 

 

2.  Formulation of the present problem 

      We consider viscous, incompressible, unsteady two-dimensional  Jeffrey fluid 

induced by a peristaltic system through an asymmetrical channel enclosed by  t,Xh 


1

 

and 

 t,Xh 


2 . The fluid is considered to drive electrically in the appearance of an inclined 

magnetic field and porous medium. The flow generates sinusoidal waves propagating at a 

non-varying speed c through the channel walls. Asymmetry of the channel due to phase 

difference (see Fig.[1]) is represented by [30,31] 

                          
 












 

λ

tcX2π
cosbdh 12



1
 ,   

                           
 








 


λ

tcX2π
cosadh 11



2
 ,                                                                   (1) 

Where ,21 dd  ,
11,ba are the channel width, phase difference and amplitudes of the waves. 

 changes in the range ,0   the channel is symmetric at 0 (waves out of phase) and the 

waves are in phase at   ,  is wave length and further 1211 ,,, ddab and   satisfies as the 

following relation is  

                                   
2

1211

2

1

2

1 )(cos2 ddabab                                                          (2)        

The extra stress tensor S  and stress tensor 


of Jeffrey model is [25] 

                                             SpI 


                                                                          (3) 

                                               





2

11



S                

Where  ,,, 21  and are the constants of Jeffrey fluid, coefficient of fluid viscosity and 

shear stress and dots over the quantities denotes the derivative with respect to time t. p is the 

pressure, I is the identity tensor.  

2.1. Assumptions 

Reynolds number: The gastrointestinal or reproductive tracts essentially have a 

creeping flow of fluid. The Reynolds number is therefore extremely low (1 for ureter, 10 for 

gastrointestinal tract). Comparing the momentum equation to the linear viscous forces, the 

inertia term, which is proportional to the square of velocity, can be neglected. 
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Wavelength: It should be noticed that the vas deferens radius is extremely small in 

comparison to the Wavelength. Because the wave number is typically low, this situation can 

benefit from the long wave length approximation theory [8].           

2.2. Governing Equations 

The governing equations of non-Newtonian fluid such as continuity, momentum, 

energy and concentration equations are as follows [10,30] 
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                                                                                                                   (4)       
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 Where UV 


, are the velocity on the directions of transverse and axial side,

tijp Skctp  ,,,,,,,,, 10 


 ,
 0k  represents the pressure, time, density, viscosity, electrical 

conductivity, specific heat at constant pressure, permeability parameter, extra stress tensor, 

inclination angle, thermal conductivity, chemical reaction parameter and 0B is  the applied 

magnetic field. 

The extra stress tensor )( ijS  of Jeffrey fluid model as follows [14,27, 30] 
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The flow of the fluid is unsteady in the wave frame. So it’s convert into steady flow by 

the following transform (wave frame to fixed frame) [7,12] 

Vv 


, cUu 


, Yy 

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

                                                                              (12)                                     

Introducing the dimensionless variables is as follows
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Applying Eqs. (12),(13) into Eqs.(4)-(11),  Eq.(4) is fully satisfied. Under the 

assumptions lubrication theory, Eqs. (5) - (8) becomes                                       
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The stream functions are  
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Eqs. (14) and (16) in terms of stream function   can be rewritten by 
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From Eq.(15),we conclude that pressure is independent on y. Now, eliminating pressure 

gradient in Eq.(19) differentiate partially with respect to y we get 
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The corresponding boundary conditions of  slip conditions  are [30] 
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Where F is the flux,  ,, 21  and   represents first order, second order, thermal, 

concentration slip parameters respectively and dab ,, and    satisfies the condition  

222 )1(cos2 dbaab              

 

3. SOLUTION OF THE PRESENT FLOW PATTERN 

The exact result of Eqs. (20) - (22) with the help of Eqs. (23)  -(25) we get,    
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                        (28)

 

Where ,81, ici are constants which are presented in the appendix. 
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Substitute Eq. (26) into Eq. (19) and get the pressure gradient in the axial direction is

  


sin
Re

1
1

1
412

2

14

3

1

1 Fr
cAcAcA

x

p








,                                                                 (29)       

Pressure rise is calculated numerically per wave length by the following formula  

dx
dx

dp
p 





2

0

                                                                                                                       (30) 

The possible wave shapes namely Sawtooth, Trapezoidal, Triangular and Square wave 

forms are modeled from the Fourier series as follows [8] 

Sawtooth waveform: 

,
)2sin(8

1
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j j

xj
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j j
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Trapezoidal waveform: 
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Triangular waveform: 
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Square waveform:

 
,
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
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4. Result and Discussion 

 The graphical result of velocity, pressure rise, pressure gradient, temperature and 

concentration profiles are plotted by the computational mathematical software Matlab and the 

streamlines are drawn by Mathematica.  

 

4.1. Velocity Profile 

  Figs.2(a-d) presented for variation of the velocity profile )(u  for changing the values 

of M (Hartmann number), Da  (Darcy number), 1  (Jeffrey fluid parameter) and   (phase 

difference). Fig. 2(a) shows that, for larger values of Hartmann number M velocity of the 

fluid diminishes in the core part of the (porous) channel also quit opposite behavior concluded 
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near the boundary of the channel walls. That means larger magnetic field decline the fluid 

velocity in the axial direction as Lorentz force plays retarding force in the fluid movement 

[32, 33].  Fig.2(b). illustrates the impact of Darcy number Da  on the velocity profile.  This 

figure seems, increase Da  means diminish the drag force and that cause enhance the axial 

velocity. Fig.2(c) plotted for impact of Jeffrey fluid parameter 1 . From this figure we 

concluded that the axial velocity diminishes for greater 1 . Also observe that, In the case of 

Newtonian fluid ( 1 =0) the velocity is maximum. The fluid velocity reduces near the left wall 

of the channel when the phase angle   increases is presented in Fig. 2(d).  

 

4.2. Pressure rise and pressure gradient 

The pumping characteristics against the dimensionless flow rate for changing the values of  

Hartmann number M ,Darcy number Da  , Jeffrey fluid parameter 1 and Frude number Fr  are 

presented in Figs.3(a-d). Pressure rise enhances in retrograde region )0,0(  p  and 

decrease in co-pumping region )0,0(  p for increasing of Hartmann number and 1 . 

But in the peristaltic pumping region )0,0(  p  pressure rise increases up to ]1.0,0[  

and diminished for 1.0  but opposite behavior is concluded for large values of Da  (Darcy 

number). Pressure rise decrease throughout the region (Retrograde region, pumping region 

and co-pumping region) for the values of Frude number Fr  enhances. Pressure gradient for 

different values of M , Jeffrey fluid parameter 1 and Frude number Fr  are illustrated through 

the Figs. 4(a-c). Pressure gradient 
dx

dp
raises throughout the channel when large values of M

and Frude number see Figs.4(a,c). Pressure gradient against the Jeffrey fluid parameter 1 is 

presented in Fig.4(b). From this figure we observe that, the pressure rise diminishes when

]8.0,6.0[x  and enhances rest of the region. 

 

4.3. Heat and Mass transfer 

Variations of temperature distribution for Hartmann number ,M Darcy number ,Da   

Jeffrey fluid parameter ,1  slip parameter   and Brinkmann number Br are illustrated in 

Figs 5(a-e). For greater values of M  (Hartmann number), the temperature of the fluid 

enhances see Fig.5(a). This figure shows that the temperature of the magnetohydrodynamic 

fluid is larger when compare to hydrodynamic fluid. The energy dissipation leads to increase 

the fluid temperature gets compensated by the presence of porous medium is work done with 
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internal resistance. Since the fluid temperature is diminished larger values of Da . 

Temperature of the fluid enhances for 1  and Br increases see Figs.5(c,e). Temperature of the 

fluid decreases when the value of slip parameter   enhances see Fig.2(d). 

Fig.6(a,b) was developed to demonstrate how the amplitude )(a  and parameter of a 

chemical reaction )( 1 affect the concentration profile.  The concentration of the fluid 

decreases when chemical reaction parameter )( 1  and amplitude )(a  are enhanced.  Chemical 

reaction boosts the rate of mass transfer across interfaces, which reduces concentration.  The 

concentration decreases as you increase in Schmidt number )(Sc , as shown in Fig. 6(c). 

Schmidt number is used to characterize fluid flows in which there are simultaneous 

momentum and mass diffusion convection processes. The density of the fluid particles 

reduces as the Schmidt number )(Sc  rises in value. It helps the particles go away more faster, 

thus reduces concentration. For rising values of the Soret number )(Sr , a decrease in 

concentration is seen; see Fig. 6(d). 

 

4.4. Trapping phenomenon  

Trapping is an important mechanism for analyzing the peristaltic fluid flow pattern. 

Streamlines for different values of M and 1 is displayed in Figs. 7 and 8.  Fig.7 depicts that 

the size of trapped bolus diminishes in the lower wall for enhancing the Hartmann number

)(M . In the both walls of the channel trapped bolus size decreases for large values of 1 . 

Finally, the trapped bolus disappears in the both walls for increasing the values of Jeffrey 

fluid parameter 1  see Fig.8. Different wave forms of the streamlines such as sawtooth wave, 

square wave, trapezoidal wave, triangular wave are presented in Fig.9. Present study is 

validated with previous study of Misra and Rao [31] with )0,,0(  DaM . From this 

figure we conclude that, present study is accordance with existing literature see Fig.10. 

 

        5. Conclusion 

      In this study, we investigated the influence of velocity slip conditions on the peristaltic 

motion of the Jeffrey fluid in the asymmetric channel with porous medium, magnetic field and 

chemical reactions. The governing equations are reduced long wavelength and the small 

Reynolds number approximations. The resulting governing equations are solved by the exact 

solution. The key findings are as follows 
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1 The axial velocity decreases for enhancing 1,M and  but the opposite trend 

concluded for increasing Da . 

2 The pressure rise raises in the pumping region for greater values of 1,M and 

decreases for Da .  

3 Pressure rise decreases throughout the region for increasing Fr . 

4 The temperature raises when enhancing 1,M and Br but opposite trend 

concluded for increasing Da and .  

5 The concentration of the fluid diminished for enhancing Sca,,1 and Sr . 

6 The size of the trapped bolus diminishes for larger values of M and 1 . 
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Figure 6. Concentration distribution for ,1.0,1,5.0,4.0)(  ScSraa

1,1.0,5.0,1)( 1  SrScb 1,1.0,5.0,4.0)( 1  Srac
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Figure 7.  Streamlines  for  3)(2)(1)(0)(  MdMcMbMa other values are

3.0,
4

,2.0,9.1,02.0,01.0,1.0,
12

,5.0,4.0,1.1 121  Dalxbad






 

Figure 8.  Streamlines  for  ,0)( 1 a  ,1)( 1 b  2)( 1 c  and 3)( 1 d other values are

2.0,
6

,5.1,9.1,02.0,01.0,1.0,
18

,3.0,4.0,1.1 21  DalMxbad






 

Figure 9.  Streamlines  for  (a) Sawtooth waveform,(b) Square waveform,(c)Triangular 

waveform,(d) Trapezoidal waveform. 

 

Figure 10.  Validation with Misra and Rao [31]. 
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