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Abstract: Chatter is a type of self-induced vibration that reflects fluctuations in both 

frequency and energy dispersion during the milling process, inevitably resulting in 

substandard part quality and diminished material removal rates. It is essential to employ a 

robust chatter detection method to anticipate its emergence in the early stages. This study 

introduces an efficient Product Function (PF) based multi-mode signal processing technique, 

specifically the spline-based local mean decomposition (SBLMD). This method is applied to 

decompose sound signals acquired through experimentation into a series of effective PF’s. 

Subsequently, selected PFs are employed to reconstruct a new chatter signal that is 

information-rich. Additionally, prediction models based on Artificial Neural Networks 

(ANN) are established to predict Chatter Indicator (CI) and Material Removal Rate (MRR) 

using three different activation algorithms: Tan Sigmoid (TANSIG), Log Sigmoid 

(LOGSIG), and Purely Linear (PURELIN). Statistical comparisons have been conducted in 

order to obtain the optimal activation algorithm and found out that data set trained with 

LOGSIG gives minimal error.  Moreover, an optimal range of input parameters has been 

selected pertaining to minimum chatter and maximum MRR. Confirmation tests on the 

obtained set of parameters have been carried out in order to analyse and authenticate the 

proposed technique. 
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1. Introduction 

Chatter has always been a serious obstacle to manufacturing industries. Chatter may lead to 

many detrimental consequences such as; poor surface finish, less tolerance, tool wear and 

breakage, material wastage and many more. From the aforementioned negative consequences 

of chatter, it can be inferred that the chatter directly affects stability and productivity of the 

machining system [1]. The identification and mitigation of chatter represent ongoing 

priorities for machinists. Effectively managing chatter at its incipient stage is crucial to 

preventing damage to both part quality and Material Removal Rate (MRR). In recent years, 
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researchers have introduced numerous process-based approaches aimed at early detection and 

recognition of chatter. These approaches not only enhance machining efficiency but also 

contribute to advancements in manufacturing precision and productivity. Ongoing research in 

this area is essential for the continual improvement of machining technology in alignment 

with evolving industry standards. 

A schematic of the online chatter detection process based on sensors is depicted in Figure 1. 

In the initial phase, raw signals are gathered utilizing a signal acquisition system. Following 

this, the second phase involves three operations: signal processing, signal transformation, and 

feature extraction. The concluding step employs a soft computing method to create a 

classifier for the prediction of chatter. 

In sensor based online chatter detection methods, data acquisition (which represents the 

dynamics of the cutting system) is the first stage. In order to acquire the data from the cutting 

system, sensors which are primarily used are accelerometers (acceleration signal) [2], 

dynamometers (force signal) [3] and microphones (sound signal) [4,5]. Cuka et al. [4] utilized 

a multi-sensor approach to construct a tool condition monitoring system, incorporating a 

dynamometer, an accelerometer, a microphone, and a current sensor. Their investigation 

revealed challenges in filtering the accelerometer signal, leading to potential errors. The study 

also concluded that sound signals obtained through a microphone produced superior and 

more reliable results, attributed to their low error ratio, minimal overlapping effects, and 

higher sampling rates. 

The second step i.e., signal processing, involves the manipulation and analysis of signals 

generated during milling processes to detect and address unstable vibrations. Signal 

processing techniques, such as filtering, transformation, and feature extraction, play a crucial 

role in identifying and isolating chatter signals from the overall machining noise. By 

implementing advanced signal processing methods, such as Short-Time Fourier Transform 

(STFT) [6], Continuous Wavelet Transform (CWT) [7,8], Synchronous Compression 

Wavelet (SCWT) [9], Wigner-Ville Distribution (WVD) [10], Empirical Mode 

Decomposition (EMD) [11], Empirical Wavelet Transform (EWT) [12], Variational Mode 

Decomposition (VMD) [13,14], and many others, machinists can gain insights into the 

incipient stages of chatter, allowing for timely intervention and mitigation strategies to ensure 

smoother and more precise machining operations [15].  
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However, all the above stated signal processing methods have its own set of drawbacks, such 

as the end effect, mode aliasing, noise sensitivity, and sampling issues with EMD [16]. Mode 

numbers must be specified in advance for the VMD approach. Because establishing the mode 

numbers needs the operator's experience and expertise, VMD's adaptability is severely 

constrained [17]. EWT has their own limitation such as leading to an improper segmentation 

in the frequency domain, which is reported by researchers in their work [17]. Smith [18] 

suggested a novel self-adaptive signal processing technology called LMD to meet the 

challenge of EMD. In order to obtain the local envelope estimate and local mean functions, 

Moving average method has been invoked in LMD. Recently, Mishra et al. used the local 

mean decomposition based on cubic spline function technique to detect tool chatter in the 

milling process using statistical indicators [19]. By using SBLMD, any non-linear and non-

stationary signal (chatter signal) can be decomposed in the Product Functions (PF’s). PF’s are 

the set of functions of any chatter signal, which are obtained by the product of amplitude 

modulated (AM) signal and a frequency modulated (FM) signal. 

Following the extraction of chatter features, diverse models for predicting chatter was 

developed using various techniques, including Artificial Neural Networks (ANN)[20,21], 

fuzzy logic [22], Support Vector Machines (SVM) [23], Self-Organising Maps (SOM) [24], 

Response Surface Methodology (RSM) [25] and other classification models [26]. It's 

noteworthy, however, that there is a gap in the existing literature concerning the 

consideration of chatter in conjunction with Material Removal Rate (MRR). Both MRR and 

chatter are intertwined with machining process variables, yet previous studies have often 

overlooked the impact of the table feed rate on MRR during chatter investigations. In the 

contemporary manufacturing landscape, industries are actively exploring methods to enhance 

productivity while ensuring superior surface quality in machined products. Since productivity 

correlates with MRR and chatter intensity adversely affects surface finish, these two aspects 

cannot be disregarded. This gap in understanding prompted the current research. Recently, 

the neural network approach has gained traction in various engineering fields [27–29]. 

However, there remains a challenge in selecting the appropriate activation algorithm for 

ANN modelling to avoid over- and underfitting, emphasizing the need for a robust strategy in 

this regard. 

2. Chatter signal simulation model 

The simulation of a real-time operational chatter signal has been accomplished by employing 

a spring-mass model [30] for the milling mechanism, illustrated in Figure 2. This model takes 
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into account the intricacies of milling cutters, each equipped with multiple teeth that engage 

intermittently with the workpiece. It is assumed in this model that the milling cutter has a 

specific number of teeth and a zero-helix angle. As the machining process unfolds, cutting 

forces act upon the milling cutter, causing dynamic displacements along both the feed (X) 

and normal (Y) directions. These cutting-induced forces play a crucial role in exciting the 

structure, leading to vibrations represented as x and y in their respective directions. 

Before delving into the force components, it is crucial to express the general equation of 

motion governing the system in both the feed (X) and normal (Y) directions, encapsulated in 

Equation 1. This equation forms the basis for understanding the dynamic behavior of the 

milling mechanism and provides a foundation for further analysis and exploration of how the 

system responds to cutting forces. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x x x

y y y y

m x t b x t k x t F t

m y t b y t k y t F t

  

  
        …….. (1) 

The assessment was carried out with a randomly assigned rotating tooth number, denoted as 

"k". The spindle rotates at an angular speed (Ω) in radians per second. When the arbitrary 

tooth "k" is positioned at the angular immersion (θk(t) = Ωt) measured clockwise from the 

y-axis, the dynamic chip thickness in the radial direction is shaped by vibrations occurring 

during both the current and preceding tooth periods is given by Equation 2; 
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     ,0 sink kt kk ks v uf v     

     

 …….. (2) 

Where, ‘ft sin θk’ is the static part of the resulting chip thickness and (𝑣𝑘,0, 𝑣𝑘) are the 

dynamic displacements of the cutter at the previous and present tooth periods, respectively. 

𝑢(𝜃𝑘) is a unit step function that determines whether the tooth is in or out of cut, is given by 

Equation 3 

( ) 1 ,
,

( ) 1   

k st k ex

k k st k ex

u

u or

   

    

    


    
       …….. (3) 

Where, st and ex are the entry and exit immersion angles of the cutter to and from the cut, 

respectively. Since, Static chip thickness i.e., ‘ft sin θk’ does not contribute in the regeneration 
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mechanism and so it has been removed from the dynamic chip thickness equation. Therefore, 

modified dynamic chip thickness equation can be represented as Equation 4; 

   ,0k k kks v v u            …….... (4) 

Now, after resolving the displacement of the cutter in x and y direction at given angle θk 

, ′𝑣𝑘,0′ can be written as sin ( ) cos ( )t T k t T kx t y t    and ′𝑣𝑘′ can be written as 

sin ( ) cos ( )t k t kx t y t  . 

Where, ‘t’ is the time and ‘T’ is the time period of the cutter revolution. 

Now, placing these values in Equation 4, we get 

     ( sin ( ) cos ( )) sin ( ) cos ( )( )k t T k t T k t k t k ks x t y t x t ut y          …….... (5) 

After rearranging the displacement of cutter in x and y direction, Equation 5 can be presented 

as Equation 6; 

     ( )sin ( ) ( )cos ( )k t T t k t T t k ks x x t y y t u           …….... (6) 

Where, ( )t T tx x x    and ( )t T ty y y    are the current displacement of the cutter in x 

and y direction with respect to the previous cutter position. Therefore, modified dynamic chip 

thickness equation can be presented as Equation 7; 

( ) [ sin cos ] ( )k k k ks x y u            ……..  (7) 

The cutting forces that happen tangentially and radially on tooth "k" increase in line with the 

axial depth of cut (b) and the chip thickness (s). It can be expressed as Equation 8: 

( ),            ,            tk k k rk r tkF K bs F K F       ……..  (8) 

By rearranging the radial and tangential forces in the x and y directions and taking the Fourier 

transform, it can be expressed as Equation 9;      

 

 
1

( )  [ ( )]* [{ ( )}]
2

1
{ ( )} {[ ( )]*{ ( )}}.                                                 

2

t

t

F t bK D t t

F bK D  

 

 

             …….. (9) 

By taking the Dirac delta function and Fourier transformation, directional coefficient matrix 

can be written as value of harmonic is changing from 0, 1r    as Equation 10; 
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Authors construct a simulated signal by adding white Gaussian noise to an original frequency 

set of 41, 80, 106, 141, and 350 Hz, aiming to mimic a real chatter signal. Developed 

simulated signal is presented in Figure 3(a). A real-time simulated signal was then created 

with N (number of teeth) set at 4, and cutting coefficients Kt and Kr are 796 N/mm
2 

and 

0.212, respectively. To identify the frequency peaks of the simulated signal, Fast Fourier 

Transform (FFT) was applied, and the results are shown in Figure 3(b). Notably, direct FFT 

on the simulated signal with white Gaussian noise is discouraged for effectively visualizing 

its frequency peaks, as evident from Figure 3(b).  

3. Proposed signal processing techniques 

3.1. Spline Based Local Mean Decomposition (SBLMD) 

The data points, 0 0 1 1( , ),( , )........( , )n nx y x y x y
 
has been selected for understanding the cubic 

spline based fitting. 

In order to have cubic spline based fitting function f(x) should follow listed conditions: 

i. Outside the (x0, xn) band f(x) must be a polynomial of degree one, 

ii. f(x) must be a polynomial of three degree in the subintervals, 

iii. Differential and double differential of f(x) must be continuous.  

Since in each of the subintervals, f(x) is a cubic function then obviously f” (x) is going to be 

linear. 

Taking equally-spaced values of x so that xi+1 – xi = h, it can be written as Equation 11 

'' " "

1 1

1
( ) [ ( ) ( ) ( ) ( )]i i i if x f x x x f x x x

h
           ……. (11) 

Integrating twice, we have f(x) presented as Equation 12; 

2
" "1 1

1

( )( ) ( )
( ) ( ) ( ) ( )

3! 3!

i i i i i
i i i i

x x x x a x x a
f x f x f x b x x

h h

 


  
   

 
  ……. (12) 

The constants of integration ai, bi are determined by substituting the values of y = f(x) at xi 

and xi+1. Thus, 

" "1
1( ), ( )

3! 3!

i i
i i i i

y yh h
a f x b f x

h h


         

Substituting the values of ai, bi and writing
"( )i if x M , Equation 12 takes the form Equation 

13 
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To impose the condition of continuity of f
’
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To get the remaining terms, the first derivative values has been used which are known 

constants. Cubic spline will be obtained after putting the value of Mi in Equation 13.  

To get around the limitations of the conventional LMD (C-LMD) method, the 

aforementioned mathematical details underlying the spline-based interpolation have been 

used. To obtain the product functions in this method, cubic spline interpolation substitutes the 

moving average in the traditional LMD with the subsequent steps. 

1. Find the signal's local extremes first. Next, link one cubic spline line to all local 

maxima and another cubic spline line to all local minima. As a result, a top layer 

Ptl(t) and a bottom layer Pbl(t) will form. 

2. The terms presented in Equation 14 are used to evaluate the local mean function 

m11(t) and the local envelope estimate function a11(t);  

11

( ) ( )
( )

2

tl blP t P t
m t


 11

| ( ) |
( )

2

( )tl blP P t
a t

t 
               .……. (14) 

3. Now, remaining step will be same as in the conventional LMD algorithm as shown in 

Figure 4. 

3.2.  Conventional-LMD Processing and Results 

In this section, the conventional Local Mean Decomposition (LMD) technique was employed 

to analyse the simulated chatter signal developed in Section 2. After decomposition, the 

resulting Product Functions (PFs) are showcased in Figure 5(a). To pinpoint the frequency 

peaks of the simulated chatter signal, Fast Fourier Transform (FFT) was employed. 

Specifically, FFT was employed on the first three PFs, revealing the frequency peaks 
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illustrated in Figure 5(b). It's worth noting that the spectrums of the first PFs lack clarity and 

do not align with the original frequency peaks. This suggests that conventional LMD may not 

effectively extract the original frequency peaks. 

3.3. SBLMD Processing and Results 

The preceding analysis underscores the inadequacy of the conventional LMD method in 

effectively examining signals that exhibit variations in both time and frequency. In response 

to this limitation, SBLMD approach is invoked in this section. The decomposed Product 

Functions (PFs) resulting from SBLMD applied to the simulated chatter signal are visually 

presented in Figure 6(a). Further insight into the frequency domain of the first three PFs is 

provided in Figure 6(b). Notably, Figure 6(b) vividly demonstrates that SBLMD adeptly 

captures the original frequencies inherent in the simulated signals. Consequently, it is 

unequivocal that the SBLMD approach is highly recommended for the nuanced analysis of 

signals characterized by concurrent variations in both time and frequency. 

4. Acquisition of real milling signal using microphone 

Conclusive experiments have been executed on a milling machine with the objective of real-

time identification and extraction of tool chatter features. These milling trials, specifically 

designed for slotted configurations, have been conducted under 27 cutting conditions, 

outlined comprehensively in Table 1. Notably, in these slotted experiments, the radial depth 

of cut consistently remained fixed, equivalent to the diameter of the milling cutter (10 mm). 

The experimentation featured the utilization of a four-tooth High-Speed Steel (HSS) milling 

cutter. The chosen workpiece material for these trials have been on Aluminium alloy (Al 

6061-T6 series), a material widely employed in aviation industries. To provide a visual 

context, Figure 7 showcases a photograph detailing the experimental setup, offering a 

glimpse into the practical aspects of the conducted milling experiments. Moreover, One of 

the acquired milling signal using microphone during experimentation has been shown in 

Figure 8. Presented real time machining signal is of Experiment No. 4.  

Evaluation of responses 

This study focuses on the Material Removal Rate (MRR) as its key response variable. MRR 

is quantified through the application of the relationship outlined in Equation 15, and a visual 

representation of the MRR results can be found in Figure 9: 
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4.1. SBLMD in real milling signals 

After validating the effectiveness of SBLMD for simulated signal, now, it has been utlized 

for processing the real milling signal. Extracted PF’s using SBLMD are presnted in Figure 

10. Thereafter, in order to sieve out the noisy data from the orginal signal, two important 

indicators, pearson correlation coefficient (CC) and energy ratio (NER) are adopted and their 

outcomes for each PF’s has been presented in Figure 11. Correlation coefficient is generally 

adopted to find the interdependency of the retrieved PF’s with respect to their original signal 

using following Equation 16:      

1

1
( , )

1

X
k pf k os

k pf os

pf os
pf os

X

 

 

   
        

     

 …….. (16) 

Where, X = signal data, μpf and μos are the mean of individual PF and acquired machining 

signal, respectively and σpf and σos are the standard deviation of individual PF and acquired 

machining signal, respectively. Whereas, Energy ratio are adopted to calculate the energy 

content of the individual PF’s with respect to the acquired machining signal.  

The determination of CC and NER values is conducted under normalized conditions. 

Analysis of Figure 11 distinctly reveals that the first three PFs carry more significant chatter 

information. Consequently, to visually enrich the signal with meaningful chatter details, these 

initial three critical PFs are amalgamated and synthesized. 

In order to visualize the frequency peaks of the newly reconstructed chatter rich milling 

signal, FFT has been utilized and the spectral domain of the signal is presented in Figure 12. 

By observing the Figure 12, three distinct frequencies can be easily recognized viz. cutter 

frequency (ω), the multiple of cutter frequency (2ω, 3ω …) along with chatter frequency (ωc). 

Hence, it can be concluded that SBLMD is quite able to extract the chatter features from non-

linear and non-stationary signals. 

4.2. Determining the Response for the Prediction Model 

In this study, two responses, i.e., CI and MRR have been utilized to developed prediction 

model. Their values and ascertaining methods have been illustrated in the subsequent 

subsections.  
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4.2.1. Chatter Indicator 

To study the impact of milling parameters on chatter, a novel statistical parameter—

specifically, the coefficient of variance—has been introduced as a Chatter Indicator (CI) as 

expressed in Equation 17; 

Standard deviation ( )
CI  =     

Mean ( )x


      ……. (17) 

The CI value correlates directly with the presence of chatter components in the signal. The 

Chatter Indicator has been computed for each of the 27 experimental runs, and the results are 

visually presented in Figure 13. Establishing upper and lower thresholds, denoted by red and 

green lines, respectively, using the 3σ criterion, enables the classification of three domains 

representing chatter intensity, as depicted in Figure 13. Instances where CI values fall below 

the green line are considered satisfactory, while those surpassing it are deemed otherwise. 

This visual representation offers a clear and intuitive understanding of the chatter intensity 

across different experimental conditions. 

4.2.2. MRR 

MRR can be emerged as an alternative strategy for refining the prediction model. To enhance 

the clarity of our findings, MRR have been computed for each of the 27 experimental runs by 

applying Equation 15. The graphical representation of these calculations is vividly presented 

in Figure 9, providing a visual insight into the impact of MRR on our predictive model 

5. Artificial Neural Network’s Structure 

In this study, the three layers based ANN model are used as presented in Figure 14. In the 

developed model, three input milling parameters (CS, TF and ADC) has been used as an 

input. In hidden layer, 10 neurons have been considered. In output layer, two responses 

(MRR and CI) have been considered. In this study, model has been trained with LM based 

training algorithm.  

Moreover, in order to assess the effect of activation algorithm on the model, three different 

activation algorithms has also been considered and is as follows:  

1. Tangent sigmoid (TANSIG) =  
2

2
1

1 ze



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2. Log sigmoid (LOGSIG) =  
1

1 ze
  

3. Linear (PURELIN) = z 

6. Result and discussion 

6.1. Comparison between Activation function 

Absolute percentage deviation has been calculated in order to assess the algorithms' 

propensity for prediction, and it is shown in Table 2. For each algorithm, the final average 

absolute percentage deviation (AAPD) has been determined. 

The average absolute percentage deviation (AAAPD) for MRR and CI are 7.615 % and 4.310 

%, respectively, when TANSIG is employed as a training function. MRR and CI for LOGSIG 

as a training function are 4.250 % and 3.745 %, respectively. AAPD for MRR and CI are 

5.938 % and 11.551 %, respectively, when PURELIN is used as a training function. Figures 

15 and 16 demonstrate the percentage error for MRR and CI using the TANSIG, LOGSIG, 

and PURELIN training functions. After analysing all of the potential combinations of the 

chosen training functions, it can be concluded that LM with LOGSIG is the best combination 

for predicting the output.  

6.2. Effect of milling inputs on responses 

A mathematical model was formulated to delve into the intricate influence of specific 

parameters on two crucial aspects of milling operations: Material Removal Rate (MRR) and 

Chatter Indicator (CI). The key players shaping the monotonic function of MRR are the table 

feed rate, axial depth of cut, and radial depth of cut. When these parameters are introduced, 

MRR exhibits a clear and linear ascent. 

Chatter, a disruptive phenomenon during milling, exacts a toll on both surface finish and tool 

longevity. To optimize the milling process for enhanced MRR, superior surface precision, 

and prolonged tool life, it becomes imperative to mitigate the impact of Chatter Indicator 

(CI). This indicator is intricately tied to the interplay of input milling parameters. Visualizing 

this interaction, the section employs illustrative contour plots, exemplified in Figure 17, to 

vividly portray the effects of these interplaying factors on both MRR and CI. 

In Figures 17 (a) and (d), the charts depict the variations in Material Removal Rate (MRR) 

and Chatter Indicator (CI) concerning the axial depth of the cutter (ADC) and cutter speed 

(CS) while maintaining a consistent table feed rate (TF) of 75 mm/min. Transitioning to 
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Figures 17 (b) and (e), the graphs showcase the deviations in MRR and CI based on the axial 

depth of the cutter (ADC) and table feed rate (TF), with a steady cutter speed (CS) set at 2000 

rpm. Finally, Figures 17 (c) and (f) exhibit the changes in MRR and CI in relation to the table 

feed rate (TF) and cutter speed (CS), while holding the axial depth of the cutter (ADC) 

constant at 1.5 mm. 

These visual representations employ a distinct colour scheme (red, tangerine, yellow, blue, 

dark green, and green) to highlight the fluctuations in MRR and CI. The colour spectrum 

indicates the extent of these variations, with red and green denoting the minimum and 

maximum values of MRR and CI within the considered range of parameters. This graphical 

approach provides a clear visual representation of the observed trends without replicating 

existing content. 

The suitable range of MRR (green colour) and CI (green colour) has been estimated after 

taking into account all six of these figures, as shown in Table 3. 

After getting the value of Metal removal rate (MRR) and Chatter Indicator (CI) for three 

cases (Satisfactory, Medium and Unsatisfactory), a range of milling parameters has been 

extracting from the Figure 17, has been presented in Table 4. This range of milling 

parameters indicated the safe zone where, Chatter in minimal having higher MRR.   

6.3. Confirmation Test 

The main aim of this work is to obtain optimal parameters which will give minimal chatter at 

optimal MRR. It is well known facts that whenever chatter minimizes, MRR also diminishes. 

In experimental section, CI and MRR has been calculated for the 27 experiments and it has 

been found that for experimental number 27, the value of CI and MRR are 3.158 and 3.69, 

respectively. These values are highest values among all the 27 experimental runs.  

However, in order to aforementioned objective, optimal milling parameters have been 

ascertained using ANN based prediction models. Based on ascertained optimal milling 

parameters, a range has been selected and validation experiment has been conducted, as 

presented in Table 5. After performing the validation experiment, CI and MRR have been 

calculated. It has been found out that the value of CI and MRR are 1.46 and 3.11, 

respectively.  

In order to validate the optimal parameters, these values are compared with highest value of 

CI and MRR viz. 3.158 and 3.69, respectively. After comparing it has been found out that, 
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the values of CI and MRR for the validation experiment, has been decreased by 116.30 % and 

18.6 %, respectively. Additionally, the CI value for the validation test fell below the stability 

threshold, as illustrated in Figure 13. Examining the surface texture confirmed the accuracy 

of the developed parameter range. Consequently, the proposed method proves effective in 

determining stable milling parameters that lead to higher MRR and improved surface finish. 

In summary, the derived milling parameters position themselves within a stable machining 

zone, resulting in enhanced MRR. 

7. Conclusion 

The two major goals of this study are to diagnose chatter beginning at the early stages and to 

determine the setting a realistic of control factors to use during milling operations in order to 

achieve a high-quality surface and greater MRR. A novel LMD method based on cubic spline 

interpolation has been employed to accomplish the first goal. Later, ANN models for the 

responses viz. CI and MRR were designed to accomplish the goal. Results from the 

verification test indicate that, the ascertained range of milling parameters is able to generate a 

best surface finish and a better MRR. 

References 

1.  Muhammad, R., Ahmed, N., Maqsood, S. et al., “Influence of tool material on forces, 

temperature, and surface quality of Ti-15333 alloy in CT and UAT”, Sci. Iran., 26(5), 

pp. 2805–2816 (2019). 

2.  Tao, J., Qin, C., Xiao, D. et al., “Timely chatter identification for robotic drilling using 

a local maximum synchrosqueezing-based method”, J. Intell. Manuf., 31(5), pp. 1243–

1255 (2020). 

3.  Tran, M. Q., Liu, M. K., and Elsisi, M., “Effective multi-sensor data fusion for chatter 

detection in milling process”, ISA Trans., 125, pp. 514–527 (2022). 

4.  Cuka, B. and Kim, D. W., “Fuzzy logic based tool condition monitoring for end-

milling”, Robot. Comput. Integr. Manuf., 47(December), pp. 22–36 (2017). 

5.  Mishra, R. and Singh, B., “SBLMD–ANN–MOPSO-based hybrid approach for 

determining optimum parameter in CNC milling”, Soft Comput., 27(11), pp. 7299–

7320 (2023). 

6.  Daldal, N., Cömert, Z., and Polat, K., “Automatic determination of digital modulation 



14 
 

types with different noises using Convolutional Neural Network based on time–

frequency information”, Appl. Soft Comput. J., 86, p. 105834 (2020). 

7.  Tran, M. Q., Liu, M. K., and Tran, Q. V., “Milling chatter detection using scalogram 

and deep convolutional neural network”, Int. J. Adv. Manuf. Technol., 107(3–4), pp. 

1505–1516 (2020). 

8.  Noori, M., Wang, H., Altabey, W. A. et al., “A modified wavelet energy rate-based 

damage identification method for steel bridges”, Sci. Iran., 25(6B), pp. 3210–3230 

(2018). 

9.  Yoon, M. C. and Chin, D. H., “Cutting force monitoring in the endmilling operation 

for chatter detection”, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 219(6), pp. 455–

465 (2005). 

10.  Cai, K., Cao, W., Aarniovuori, L. et al., “Classification of Power Quality Disturbances 

Using Wigner-Ville Distribution and Deep Convolutional Neural Networks”, IEEE 

Access, 7, pp. 119099–119109 (2019). 

11.  Shrivastava, Y. and Singh, B., “Estimation of stable cutting zone in turning based on 

empirical mode decomposition and statistical approach”, J. Brazilian Soc. Mech. Sci. 

Eng., 40(2) (2018). 

12.  Zhang, Q., Tu, X., Li, F. et al., “An effective chatter detection method in milling 

process using morphological empirical wavelet transform”, IEEE Trans. Instrum. 

Meas., 69(8), pp. 5546–5555 (2020). 

13.  Zhang, Z., Li, H., Meng, G. et al., “Chatter detection in milling process based on the 

energy entropy of VMD and WPD”, Int. J. Mach. Tools Manuf., 108, pp. 106–112 

(2016). 

14.  Liu, J., Wu, B., Wang, Y. et al., “An integrated condition-monitoring method for a 

milling process using reduced decomposition features”, Meas. Sci. Technol., 28(8), p. 

085101 (2017). 

15.  Liu, Y., Wang, X., Lin, J. et al., “Correlation analysis of motor current and chatter 

vibration in grinding using complex continuous wavelet coherence”, Meas. Sci. 

Technol., 27(11), p. 115106 (2016). 

16.  Ji, Y., Wang, X., Liu, Z. et al., “Early milling chatter identification by improved 

empirical mode decomposition and multi-indicator synthetic evaluation”, J. Sound 



15 
 

Vib., 433, pp. 138–159 (2018). 

17.  Li, Z., Chen, J., Zi, Y. et al., “Independence-oriented VMD to identify fault feature for 

wheel set bearing fault diagnosis of high speed locomotive”, Mech. Syst. Signal 

Process., 85, pp. 512–529 (2017). 

18.  Smith, J. S., “The local mean decomposition and its application to EEG perception 

data”, J R Soc Interface, 2(5), pp. 443–454 (2005). 

19.  Mishra, R. and Singh, B., “Stability analysis in milling process using spline based local 

mean decomposition (SBLMD) technique and statistical indicators”, Meas. J. Int. 

Meas. Confed., 174, p. 108999 (2021). 

20.  Mishra, R. and Singh, B., “Extenuating Chatter Vibration in Milling Process Using a 

New Ensemble Approach”, J. Vib. Eng. Technol., 10(4), pp. 1235–1252 (2022). 

21.  Vazirizade, S. M., Bakhshi, A., and Bahar, O., “Online nonlinear structural damage 

detection using Hilbert Huang transform and artificial neural networks”, Sci. Iran., 

26(3A), pp. 1266–1279 (2019). 

22.  Devillez, A. and Dudzinski, D., “Tool vibration detection with eddy current sensors in 

machining process and computation of stability lobes using fuzzy classifiers”, Mech. 

Syst. Signal Process., 21(1), pp. 441–456 (2007). 

23.  Chen, G. S. and Zheng, Q. Z., “Online chatter detection of the end milling based on 

wavelet packet transform and support vector machine recursive feature elimination”, 

Int. J. Adv. Manuf. Technol., 95(1–4), pp. 775–784 (2018). 

24.  Mishra, R., Gupta, P., and Singh, B., “An intelligent approach to extract chatter and 

metal removal rate features impromptu from milling sound signal”, Proc. Inst. Mech. 

Eng. Part E J. Process Mech. Eng. (2023). 

25.  Mohanraj, T. and Tamilvanan, A., “Decision support system for tool condition 

monitoring in milling process using artificial neural network”, J. Eng. Res., 10(4), pp. 

142–155 (2022). 

26.  Shaul Hameed, S., Muralidharan, V., and Ane, B. K., “Comparative analysis of fuzzy 

classifier and ANN with histogram features for defect detection and classification in 

planetary gearbox”, Appl. Soft Comput., 106, p. 107306 (2021). 

27.  Yanis, M., Mohruni, A. S., Sharif, S. et al., “Application of RSM and ANN in 



16 
 

Predicting Surface Roughness for Side Milling Process under Environmentally 

Friendly Cutting Fluid”, J. Phys. Conf. Ser., 1198(4), p. 042016 (2019). 

28.  Jena, S. P. and Parhi, D. R., “Fault detection in cracked structures under moving load 

through a recurrent-neural-networks-based approach”, Sci. Iran., 27(4), pp. 1886–1896 

(2020). 

29.  Salimiasl, A., Erdem, A., and Rafighi, M., “Applying a multi-sensor system to predict 

and simulate the tool wear using articial neural networks”, Sci. Iran., 24(6), pp. 2864–

2874 (2017). 

30.  Altintaş, Y. and Budak, E., “Analytical Prediction of Stability Lobes in Milling”, CIRP 

Ann. - Manuf. Technol., 44(1), pp. 357–362 (1995) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

 

 

 

List of Figures 

Figure No. Figure Caption 

Figure 1 Steps in chatter diagnosis 

Figure 2 Spring mass model milling system 

Figure 3 
(a) Simulated signal in time domain, and (b) Simulated signal in frequency 

domain 

Figure 4 Algorithm used in SBLMD 

Figure 5 (a) PF using C-LMD, and (b) first three PF’s FFT 

Figure 6 (a) PF using SBLMD, and (b) first three PF’s FFT 

Figure 7 Set-up of microphone during experimentation 

Figure 8 Acquired milling signal using microphone 

Figure 9 The fluctuation in MRR values for all 27 experimental runs  

Figure 10 PF’s extracted using SBLMD of real milling signal  

Figure 11 (a) CC and (b) NER  

Figure 12 Frequency peaks of the reconstructed milling signal  

Figure 13 The fluctuation in CI values for all 27 experimental runs 

Figure 14 ANN Model 

Figure 15 MRR error in TANSIG, LOGSIG and PURELIN 

Figure 16 CI error in TANSIG, LOGSIG and PURELIN 

Figure 17 Contours plots for MRR and CI 

 

 

 



18 
 

 

 

 

List of Tables 

Table No. Table Caption 

Table 1 Milling parameters with their levels 

Table 2 Absolute percentage deviation for TANSIG, LOGSIG and PURELIN 

Table 3 Suitable ranges for responses 

Table 4 Safe ranges for input milling parameters 

Table 5 Validation test 

 

 

Figure 1 Steps in chatter diagnosis  

Data 

acquisition
Signal 

processing

Signal 

Transformation

Pattern 

recognition

 Acceleration

 Force

 Sound

 Current

……….

 Wavelet Decomposition (WD)

 Singular value decomposition (SVD)

 Empirical mode decomposition (EMD)

 Ensemble empirical mode decomposition 

(EEMD)

 Local Mean Decomposition (LMD)

………………

 Time domain feature

 Frequency domain feature

 Time-frequency domain feature

 Statistical feature

………………

 Fourier transform

 Short time fourier transform

 Wigner-Ville distribution

 Hilbert transform

 Wavelet transform

………………

 Response surface methodology

 Artificial neural network

 Fuzzy logic

 Support vector machine

 Self organizing map

 Decision tree

………………

Feature 

Extraction



19 
 

 

Figure 2 Spring mass model milling system 

 

Figure 3 (a) Simulated signal in time domain, and (b) Simulated signal in frequency domain 
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Figure 4 Algorithm used in SBLMD 
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Figure 5 (a) PF using C-LMD, and (b) first three PF’s FFT 
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Figure 6 (a) PF using SBLMD, and (b) first three PF’s FFT 

 

Figure 7 Set-up of microphone during experimentation  

 

Figure 8 Acquired milling signal using microphone 
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Figure 10 PF’s extracted using SBLMD of real milling signal  



24 
 

 

Figure 11 (a) CC and (b) NER  

 

Figure 12 Frequency peaks of the reconstructed milling signal  
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Figure 13 The fluctuation in CI values for all 27 experimental runs 

 

Figure 14 ANN Model 
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Figure 15 MRR errors in TANSIG, LOGSIG and PURELIN 

 

Figure 16 CI errors in TANSIG, LOGSIG and PURELIN 
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Figure 17 Contours plots for MRR and CI 

Table 1 Milling parameters with their levels 

Parameters                      level  1 2 3 

Table feed (TF) 50 mm/min 75 mm/min 100 mm/min 

Cutter speed (CS) 1000 rpm 2000 rpm 3000 rpm 

Axial depth of cutter (ADC) 1 mm 1.5 mm 2 mm 

Table 2 Absolute percentage deviation for TANSIG, LOGSIG and PURELIN 

Exp. 

No. 

TANSIG LOGSIG PURELIN 

MRR CI MRR CI MRR CI 

1 22.005 13.389 35.595 13.326 11.017 2.877 

2 10.592 4.996 18.901 30.577 3.581 21.326 

3 29.440 13.645 0.018 0.012 1.835 31.168 

4 1.943 6.866 1.079 8.470 16.505 5.680 
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5 3.233 1.419 1.196 0.880 1.575 23.488 

6 4.216 3.273 0.147 0.369 4.076 4.151 

7 0.315 1.658 0.863 1.561 2.335 12.134 

8 0.972 3.162 0.756 1.036 2.178 10.054 

9 16.351 4.928 0.091 1.017 7.023 43.777 

10 32.578 29.707 1.141 0.495 19.054 15.363 

11 2.105 0.566 0.439 0.175 3.878 0.596 

12 7.587 2.413 0.347 0.108 0.068 10.754 

13 8.888 1.539 0.139 0.206 8.826 7.079 

14 3.544 1.195 17.645 15.041 10.955 3.268 

15 1.787 2.506 0.264 0.461 4.017 2.410 

16 8.725 2.265 0.348 0.733 3.536 5.269 

17 11.308 3.720 1.476 13.248 2.950 7.094 

18 7.539 2.449 0.240 0.235 4.211 4.524 

19 7.650 4.097 1.127 0.082 17.637 19.002 

20 10.486 3.154 0.121 1.050 6.812 21.645 

21 6.124 0.502 0.238 0.059 0.193 1.501 

22 0.727 1.608 0.010 0.391 8.330 4.905 

23 1.544 1.815 15.131 6.475 7.233 15.477 

24 0.305 2.103 9.740 2.321 0.698 2.766 

25 4.773 1.455 0.100 0.126 1.088 17.171 

26 1.243 1.284 0.188 0.114 0.013 9.702 

27 0.604 0.663 7.422 2.542 10.707 8.687 

AAPD 7.651 4.310 4.250 3.745 5.938 11.551 

Table 3 Suitable ranges for responses 

Group CI MRR 

Satisfactory CI ≥ 2.56 MRR ≤ 1.47 

Medium 2.56 > CI > 1.29 1475 < MRR < 2.97 

Un-Satisfactory CI ≤ 1.29 MRR ≥ 2.97 
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Table 4 Safe ranges for input milling parameters  

 Axial depth of cutter Table feed rate  Cutter Speed 

MRR 1.25 – 2 60 - 100 1000 - 3000 

CI 1 – 1.8 50 - 100 1000 - 2300 

Safe Range 1.25 – 1.8 60 – 100 1000 - 2300 

Table 5 validation test 

Exp. No. ADC CS TF CI MRR Surface view 

1. 1.7 1600 99 1.46 3.11 
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