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Abstract 

In this research paper, a new chaotic jerk system is proposed, which is constructed using 

cubic and hyperbolic sine nonlinearities. A detailed dynamical analysis of the chaotic jerk 

system is presented with the bifurcation diagrams and Lyapunov exponent spectrums. The 

novelties of the proposed system are that it can exhibit bistability, amplitude control, and 

offset boosting control. A random number generator (RNG) is designed using the proposed 

chaotic jerk system. The study was developed in the Python-based Google Colaboratory 

environment. The obtained random numbers have successfully passed the NIST 800-22, 

FIPS140-1, and ENT statistical tests, and it has been shown that they can be used 

successfully in encryption areas. Biomedical image encryption application was carried out 

using the generated random numbers. Finally, the reliability of the encryption process has 

been proven by performing histogram, correlation, NPCR-UACI, entropy analyses, key space 

analysis, key sensıtıvıty analysis, and robustness analyses. 

 

Keywords: Chaotic systems, Jerk systems, Image Encryption, Random Number Generator, 

Security Analysis 

 

1. Introduction 

In recent years, many chaotic and jerk systems have been introduced with hidden attractors 

[1], memristor [2], and coexisting attractors [3]. The chaotic jerk systems have many 

engineering applications such as communication systems [4], wireless networks [5], and 

biomedical signals [6]. 

In [7], a jerk system with coexisting attractors was introduced and amplitude control was 

studied. In [8], a chaotic jerk system with multistability properties was described. In [9], the 

time-delay effect of a chaotic jerk system was analyzed. In [10], self-excited and hidden 

chaotic attractors in a jerk system were discussed. In [11], a chaotic jerk system with 

bistability properties was studied. In [12], a generalized Moore - Spiegel system was studied 
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for multistability properties. In [13-16], memristor neural systems were analyzed for 

coexisting attractors. 

Kengne et al. [17] proposed a chaotic jerk system with the dynamics 

sinh( ) 0x x x x x                                                     (1) 

with the parameter values 9.3, 2   . 

Joshi and Ranjan [18] introduced a chaotic jerk system with the dynamics 

( 1) sinh( ) 0x x x x                                                   (2) 

with the parameter 0.52, 110, 300     . 

Volos et al. [19] proposed a chaotic jerk system with the dynamics 

sinh( ) 0x x bx a x                                                                      (3) 

With the parameter, 43.846 10 , 0.7a b   . 

Hu et al. [20] presented a new chaotic jerk system with the dynamics 

2 sinh( )x ax b x cx d x                                                          (4) 

Liu et al. [21] described a chaotic system as given in Equation (5). 

60.75 1.2 10 sinh( ) 0
0.026

x
x x x                                                  (5) 

Sundarapandian et al. [22] proposed a chaotic jerk system as represented in Equation (6).  

 0.4 sinh( ) sinh( ) 0.8x x x x x                                                 (6)    

The proposed chaotic jerk system has one cubic nonlinear term, and one hyperbolic sine term 

and exhibits coexisting attractors when initial conditions are changed. The proposed system 

has a high positive Lyapunov exponent and exhibits highly complex dynamics compared to 

existing systems which have hyperbolic sine nonlinearity. The amplitude control and offset 

boosting control are also observed in the new system. The amplitude control of the proposed 

system can be achieved by multiplying the control parameter with any one of its signals. In 

offset boosting control, the location of the attractor can be varied by varying the booster 

parameter that is added to the particular signal. The comparison of the proposed system with 

the existing systems is given in Table 1. 
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Sun et al. [23] designed a random number generator by creating a new chaotic system named 

SSCS based on CML (Cellular Neural Network) and a logistic map. They performed the 

safety and speed analyses of the designed generator. Gong et al. [24] proposed a new 4D 

chaotic system. Based on the proposed chaotic system, a random number generator and 

image encryption application were performed. Proving the randomness of the generator with 

the NIST test, they encrypted the gray images. Adhikari and Karforma [25] proposed a 

chaotic-based image encryption algorithm. The images were encrypted by using the random 

number sequence as the secret key and XORing the image pixels. Handwritten signature 

images have been successfully encrypted.  Mondal et al. [26] and their chaotic skew tent map 

and cellular automata-based image encryption application have been implemented. The 

implemented encryption method is resistant to various known attacks. Cavusoglu et al. 

designed a PRNG using a new chaotic system. The generated random numbers have 

successfully passed the NIST tests. In the study, chaos-based image encryption and 

decryption applications were performed using simple scrambling and XOR operations [27]. 

Ismail et al. performed a biomedical image encryption application based on double humped 

logistic map and fractional order logistic map. The system has been tested on medical images 

such as MRI and lung X-ray [28]. 

2. New Chaotic Jerk System 

In this section, a new chaotic jerk system is introduced and analyzed their dynamical 

behaviors. The new chaotic jerk system is in the form of Equation (7). 

  

3 sinh

x y

y z

z ax x b y cz

 





   

        (7) 

where ( , , ) (0.3,0.1,2.3)a b c  are the bifurcation parameters.  

2.1. Dissipative Nature 

The divergence of the system (7) can be calculated using Equation (8). 

  
yx z

ff f
f c

x y z

 
     

  
       (8) 

Where , ,x y zf f fx y z   . Since the divergence of the system (7) is negative for all 

positive values of c, the proposed system has dissipative nature. 

2.2. Equilibrium Points  

The equilibrium points of the system (7) can be calculated by letting 0, 0x y  and 0z   in 

Equation (7) as given in Equation (9). 
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3

0

0

sinh 0

y

z

ax x b y cz

 





   

       (9) 

The solution of Equation (9) can be obtained such that x a  and thus the equilibrium 

points of the system (7) are, 1 [0,0,0]E  , 2,3 [ ,0,0]E a  .The Jacobian matrix of the 

system (7) can be written as in Equation (10). 

  
2

0 1 0

0 0 1

3 cosh

J

a x b y c

 
 


 
    

     (10) 

The Jacobian Matrix at equilibrium point 1E  can be written as in Equation (11). 

  1

0 1 0

( ) 0 0 1J E

a b c

 
 


 
   

      (11) 

The polynomial characteristic equation of Equation (10) is given in Equation (12). 
3 2 0c b a            (12) 

Jacobian matrix at equilibrium points 2,3E can be written as given in Equation (13). 

  2,3

0 1 0

( ) 0 0 1

2

J E

a b c

 
 


 
    

      (13) 

 

The polynomial characteristic equation of Equation (13) is given in Equation (14). 
3 2 2 0c b a            (14)                         

According to Routh-Hurwitz criterion, the Equation (12) and Equation (14) has a positive real 

root and a negative real root. This indicates that the equilibrium points 
2,3E  are saddle and 

unstable.  

Table 2 summarizes the equilibrium points (E) and eigen values of the new system (7). It can 

be concluded from Table 2 is that the equilibrium points of the system (7) are unstable. 

 

3. Lyapunov Exponents and Lyapunov Dimension  

The Lyapunov exponents for the new system (7) are calculated using Wolf algorithm with 

simulation time 15000 sec and step size 0.01 as follows: 

1 2 30.21613, 0, 2.517LE LE LE     

Since 1LE has the positive value, 2LE is zero and 3LE has the negative value, the proposed 

system (7) has chaotic nature itself.  
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The Lyapunov Dimension ( LD ) can be obtained as follows: 

   1 2

3

2 2.086
| |

L

LE LE
D

LE


        (15) 

Equation (15) indicates the fractional dimension of the proposed system (7). The chaotic 

attractors of the new system (7) are given in Figure 1. 

 

3. Dynamic Analysis  

In this section, the dynamical analysis of the new system (7) is conducted using bifurcation 

plot and Lyaponent spectra. The bifurcation plot is obtained by increasing and decreasing the 

parameter value using forward continuation (Blue) and backward continuation (Red) method 

as given in Figure 2(a). It is noted from Figure 2a, the system (7) holds different behaviours 

such as periodic, n-period, chaotic, etc., particularly ranges from 5a  to 10a  , coexistence 

of attractors observed.   

The Lyapunov spectrum of the system (7) for the range of 10 10a   is presented in Figure 

2b which shows there are some ranges with one positive Lyapunov exponents, which 

confirms the existence of chaotic oscillations of the system (7). For better understanding we 

plotted the maximum Lyapunov exponent spectrum separately as given in Figure 2c. In order 

to clarify the bistability phenomena range, we plotted the forward continuation and backward 

continuation of Maximum Lyapunov exponents in Figure 2d. It is very clear that from 

6.8a  to 7.5a  during forward continuation positive Lyapunov exponents and during 

backward continuation there are no positive Lyapunov exponents for the same range. This 

confirms the existence of bistable behaviour in the system. We highlighted the bistable region 

with a window in red color. The coexisting periodic and chaotic attractors of the system (7) 

are given in Figure 3 where blue indicates the initial condition 0 ( 1,0,1)X   and red indicates 

the initial condition 0 (1,0, 1)Y   .  

The bifurcation plot and Lyapunov exponent spectrum of the system (7) for the variation of 

parameter b are given in Figure 4. Figure 4a shows that the system (7) holds the chaotic state 

in the region [0,0.03]b , [0.035,0.085]b  and [0.95,0.145]b . The Lyapunov exponent 

spectrum for the range of [0,0.315]b  is given in Figure 4b. Figure 4b shows that the 

system (7) has at least one positive Lyapunov exponent in the region [0,0.03]b , 

[0.035,0.085]b , and [0.95,0.145]b which indicates the existence of chaotic nature in the 

system (7). To realize the bistability phenomena, the bifurcation diagram under the parameter 

b is plotted with 0X (Blue) and 0Y (Red). It is also noted from Figure 4a that there is no 

overlapping in the region [0.14,0.315]b which affirms the presence of the coexisting 

attractors and bistability in the system (7). Figure 5 represents the chaotic and periodic 

coexisting attractors under the variation of parameter b.  

The bifurcation diagram and Lyapunov spectrum of the system (7) for the variation of 

parameter [1.6,3]c is presented in Figure 6. Figure 6a indicates that the system (7) has 

chaotic states in the region [1.6,2]c and [2.25,2.6]c . It also indicates that the system (7) 

holds period - 4, period - 2 and limit cycle oscillations beyond 2.6c . The bistability and 

coexisting attractors are observed in the regions [1.6,1.7]c and [2.5,3]c . Figure 6b shows 

the Lyapunov spectrum of the system (7) for the variation of c. Figure 6b also confirms the 
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existence of the chaotic dynamics in the region [1.6,2]c . Figure 7 represents coexisting 

attractors under the various values of the parameter c. 

4. Amplitude Control 

 

The chaotic system with amplitude control [29] has many engineering applications where the 

desired amplitude level is required. Equation (16) represents the amplitude-controllable 

system along the y dimension while the amplitude of other variables is unchanged. If we take 

, ,x x y y z z   then the system (16) becomes similar to the system (7). It means that 

the introduction of control parameter   in the system (7) does not modify its chaotic 

dynamics. 

 
1

3 sinh( )

x y

y z

z ax x b y cz















   

       (16) 

The equilibrium points of the system (16) are same as that of the system (7). The Jacobian 

matrix of the system (16) is given as follows: 

1

2

0 0

0 0

3 cosh( )

J

a x b y c





 



 
 


 
    

       (17) 

The characteristic polynomial equation of Equation (17) at 1E  and 2,3E are similar to that of 

the system (7). It indicates that the control parameter  does not modify the stability of the 

system (7). 

Figures 8 (a-b) and Figure (c-d) show the amplitude-controlled attractor along y dimension 

when 0.001  and 1000   respectively. Comparing Figure 8 with Figure 1, it can be 

understood that the amplitude of the state signal y is increased to 10
3
 times its original value 

when 0.001  and decreased to 10
3
 times its original value when 1000  . Figure 9 

confirms that the chaotic nature of the system (7) is not modified by the control parameter  .    

 

5. Offset Boosting Control  

The offset boosting control [30, 31] in the system (7) is achieved by adding a constant   

with the signal z as given in Equation (18). The offset boosting control is achieved in the 

system (7) without affecting its stability, dissipativity and Lyapunov exponent values. 

  

3 sinh ( )

x y

y z

z ax x b y c z





 


 


    

     (18) 
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The equilibrium points of the system (18) can be calculated as, 1 [0,0, ]E   , 

2,3 [ ,0, ]E     . The Jacobian matrix of the system (18) is similar to Equation (10) which 

is independent of the z variable. Thus, the introduction of offset booster   with the z variable 

does not affect the stability of the system (7).  

Figure 10 shows the offset boosted attractors of the system (18) along the z direction with 

1  (blue), 20  (red) and 20   (green). Figure 11 confirms that the Lyapunov exponent 

values of the system (7) are not modified by the parameter  . 

 

6.Random Number Generator and Statistical Tests 

6.1. Random Number Generator Design 

In this section, Random Number Generator (RNG) design is examined. The pseudocode of 

the RNG is given in Algorithm 1. After the initial conditions and system parameters of the 

chaotic system are determined, the equation phase to be used for RNG is selected. To make 

the system discrete-time, the RungaKutta-4 solution method is used by selecting the 

appropriate step interval. Thus, raw values are obtained. Raw values are converted to 32-bit 

binary form using the IEEE-754 standard. 

When the 32-bit numbers with 15 different values in Figure 12 are examined, it can be 

observed that the values start to become the same as they approach the 0-bit. Toward the end, 

independent values are obtained. The least significant bit, s = 16 (LSB), was chosen. To 

increase the randomness in the RNG design, the 16-32 bit sequence was selected. The 16-bit 

values obtained from the x phases are subjected to an XOR operation as 

[ ] [ 8](0 8)x n x n n    . After this process, 8-bit sequences are obtained. The resulting bit 

sequences are then combined to obtain a total of 10 different bit sequences, each consisting of 

1,000,000 bits. Finally, the obtained random bit sequences are subjected to NIST 800-22, 

FIPS 140-1, and ENT tests. 
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6.2. RNG Statistical Tests 

6.2.1. NIST 800-22 Test Suit 

The NIST 800-22 test package is an internationally recognized statistical test. The test 

package is described in detail in the article given in Reference [32]. The test package is used 

to evaluate that random number generators do not have randomness properties statistically. 

The NIST 800-22 test includes 15 different statistical test sets and must pass all tests 

successfully for the number to be considered random.  

The random numbers used in the test were obtained from the x phase of the system. A total of 

10 million bit sequences were obtained by using 10 sequences of 1,000,000 bits. In addition, 

the encrypted image was converted into a binary sequence and subjected to the NIST 800-22 

test. The significance level α was set to 0.01 so that the result of each test could be considered 

random at 99% confidence level. 

Table 3 presents the NIST 800-22 test results for each of the obtained sequences and all of the 

P-values exceed the threshold value of the randomness statistical test. This means that the 

proposed image encryption algorithm shows strong resistance to statistical attacks. 

 

6.2.2. FIPS 140-1 Test 

As part of the Federal Information Processing Standards (FIPS), published by the National 

Institute of Standards and Technology (NIST), FIPS 140-1 covers the security requirements 
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of cryptographic modules and recommends statistical tests for random number generators. 

The FIPS 140-1 test consists of four different tests: monobit, poker, run and long-term test. 

The bit string of 20 Kbits in the binary number system is subjected to these four different 

tests. For the bit sequence obtained from the RNG output to be counted randomly, it must 

pass four defined tests [33]. In Table 4, the success criteria of each test and the test results of 

the number sequences obtained from the x phase are given. When the results are examined, it 

is seen that the bit strings have passed all tests successfully. 

 

6.2.3 ENT Test 

The ENT test applies statistical analyses to evaluate the randomness properties of bit 

sequences. This test, developed by John Walker, plays an important role in the field of 

computer science and cryptology [34]. The ENT test includes 5 different tests, namely 

Arithmetic Mean, Entropy, Correlation, Chi-Square and Monte Carlo values, to define the 

randomness of bit sequences. The ENT test results of the generated bit array are given in 

Table 5, and the bit array has successfully passed all tests. 

 

7. Image Encryption and Security Analysis 

In this section, a biomedical image encryption application is detailed using the generated bit 

sequences with proven randomness. The biomedical image encryption application was 

designed in the Google Colaboratory environment. Google Colaboratory is a cloud-based 

Jupyter Notebook environment using the Python programming language [35]. The security 

analysis of the encrypted image is performed on the same platform, and the efficiency of the 

encryption algorithm and the security of the encrypted image are evaluated. 

7.1. Encryption and Decryption  

This section implemented an image encryption application using the randomly generated bit 

sequence obtained from the x phase. The application performs encryption and decryption on a 

512x512x1 biomedical image. The pseudo-codes for the steps followed during encryption 

and decryption are provided in Algorithm 2 and Algorithm 3, respectively. 
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In Algorithm 2, 'randombits' represents the random bits generated, w and h represent the 

length and width of the image, respectively, in Step 5 the resizing of the image, in Step 6 
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'decimalrandomseq' represents the bits converted to integers, in Step 7 'idxdecrandomseq' 

represents the index sequence obtained as a result of sorting, 'confusionimg' in step 8 

represents the image pixels obtained as a result of mixing with the indices, and 

'encryptedimage' in step 10 represents the encrypted image. The algorithm steps are given 

below. 

Step 1: The image to be encrypted and the tested random bit sequence are taken into the 

system.  

Step 2: The image is converted to grayscale. 

Step 3: The size of the image to be encrypted is transformed into a one-dimensional form.  

Step 4: The received random bit sequence is converted into 8-bit random integers.  

Step 5: In Algorithm 2, as in step 7, the obtained integers are sorted in ascending order to 

obtain index numbers. 

Step 6: The image is shuffled using the index numbers to create a one-dimensional 

rearranged image. 

Given the original pixel list [p0, p1, p2, ..., pn−1] and the index list to be used for confusing 

these pixels [i0, i1, i2, ..., in−1], we can follow these steps to obtain the confused pixel list:  

For each index, select the pixel 𝑝𝑖𝑘from the original pixel list. Create a new list containing 

these selected pixels. This list represents the confused pixel list.  

Using these steps, we can perform the shuffle process for a given n, changing the original 

position of each pixel.  

For example, with pixels = [123, 132, 112, 80] and indices = [3, 1, 2, 0]:  

i0 = 3, so the first element for the confused list will be p3= 80.  

i1 = 1, so the second element for the confused list will be p1 = 132.  

i2 = 2, so the third element for the confused list will be p2 = 112.  

i3 = 0, so the fourth element for the confused list will be p0 = 123.  

When applying these steps, the confused pixel list will be [80, 132, 112, 123].  

Step 7: The obtained integers are subjected to an XOR operation with the confused image 

pixels.  

Step 8: The encrypted image is obtained. 

In algorithm 3, a biomedical image is decrypted and a random bit sequence is imported into 

the system, then the conversion process to an integer at the encryption stage and the index 

acquisition process is performed, and then, as the reverse of the order in the encryption 

process, the pixels of the first encrypted image and the integers obtained from the random bit 

sequence are subjected to the XOR process, the resulting image is a mixed image, the 

confusion phase is eliminated using the indexes obtained as a result of sorting in this image 

so that the image is decrypted and the solved image is obtained.  The matrix values of the 

source image before encryption are given in Figure 13 (a), the matrix values after the 
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encryption process (with x phase) are given in Figure13 (b), and the matrix value of the 

decrypted image is given in Figure13 (c). The security analysis of the encryption process will 

be discussed in the next section. 

7.2. Security Analysis 

The reliability of the biomedical image encryption process depends on the performance of the 

encryption algorithm. The image encryption algorithm should be resistant to brute force, side 

channel attacks and cryptanalysis attacks. Statistical tests such as histogram, correlation, 

entropy and differential attack analyses are used in the literature to measure the performance 

of the image encryption process [36-38]. These tests help to determine the security level of 

the encryption algorithm by evaluating the statistical properties of the encrypted image. 

7.2.1. Histogram Analysis 

In this section, histogram analysis of the image encoded with the x phase of the source image 

is performed. While the histogram graph of the source image is irregular, the histogram graph 

of the encrypted image is equal and homogeneous. This shows that the encrypted image is 

resistant to differential attacks [39]. Figure 14 (a) shows the histogram distribution of the 

source image, while Figure 14 (b) shows that the histogram distribution of the encrypted 

image is even and homogeneous. This shows that the encryption process is successful and the 

encrypted image is resistant to differential attacks. 

7.2.2. Correlation Analysis 

In this section, correlation analyses were conducted on the source and encrypted images, and 

within the scope of the analysis, correlation coefficients and correlation maps were examined. 

In a successful encryption process, the correlation between adjacent pixels in the encrypted 

image should be close to zero [40]. This indicates that the pixel values in the encrypted image 

are unrelated and independent from each other. Additionally, as observed in the correlation 

maps in Figure 15, the encrypted images exhibit a homogeneous distribution among adjacent 

pixels (vertical, horizontal, and diagonal) with no apparent correlation. 

In Table 6, the correlation coefficient of the source image is around 1, while the correlation 

value of the x-phase encrypted image is close to 0. Table 6 shows some correlation coefficient 

values that are currently in the literature. It is seen that the results obtained are compatible 

with the studies in the literature. These results show that the encryption process was 

performed successfully. 

7.2.3. NPCR and UACI 

This section examines the NPCR (number of pixel change rates) and Unified Average 

Changing Intensity (UACI) values of the encrypted image. While the NPCR parameter 

expresses the pixel change rate; The UACI parameter shows the average rate of change in 

density. In previous studies, it is known that the accepted NPCR value in a good encryption 

method is greater than 99.6%, and the UACI value is 30% or higher [46]. The NPCR and 

UACI values of some of the studies obtained in the study and found up-to-date in the 

literature are given in Table 7. It has been seen that the results of the analysis are compatible 

with the literature, and it is concluded that the proposed system is also resistant to differential 

attacks. 
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7.2.4. Entropy Analysis 

Entropy analysis is a method used to measure the complexity of encrypted data. As the 

complexity of encrypted data increases, obtaining information about the original data 

becomes more difficult. 8 is accepted as an ideal information entropy value for encryption 

[50]. As the calculated entropy value approaches the integer 8, the encryption quality 

increases. The entropy values of some of the studies obtained in the study and found up-to-

date in the literature are given in Table 8. When Table 8 is examined, the entropy value of the 

encrypted image is very close to 8, showing that successful encryption is provided against 

attacks. The information entropy is calculated as follows: [51]: 

2

12

0

1
( ) log

( )
i

i

k

i

E p s
p s





 
  

 
                                                         (19) 

Here, ( )ip s  represents the probability of is ,  L is the number of bits for is  and is equal to 8. 

7.2.5. Key Space Analysis 

It is important for an image encryption algorithm to have a large enough security key space to 

resist brute force attacks. Key space size refers to the total number of different keys that can 

be used in a cryptosystem. For an ideal encryption algorithm, this number should be greater 

than 2
100

 [53]. According to the IEEE floating point standard [54], the computational 

precision of a 64-bit double precision number is about 10
15

. In our encryption process, the 

key parameters are 0 0 0, , , , ,x y z a b c  ‘dir. Given these, the total number of possible secret keys 

is approx, 

                                           15 6 298 100(10 ) 2 2key                                                        (20)

    

is calculated, indicating that it is resilient to a brute force attack. 

7.2.6. Key Sensitıvity Analysis 

Key sensitivity analysis is a type of analysis used to detect a change in the key used in an 

encryption algorithm. The encryption algorithm must be sensitive to the modification of 

secret keys. A small change in the secret key should result in a large change in the output 

result. This analysis involves both the encryption and decryption processes. First, in the 

encryption phase, the image is encrypted using the original key and the encrypted image is 

obtained. Subsequently, the image is encrypted using a key modified from the original key by 

a weak change of 1510t  . In the second stage, during the decryption step, the encrypted 

image is decrypted using the original key to obtain the original image. The decryption key is 

used to decrypt the image encrypted using the modified key. Differences between images are 

compared. Figure 16 and Figure 17 respectively show the results of the key sensitivity test 

performed in the encryption and decryption processes. Based on the differences between 

images, the images corresponding to different keys are significantly different, ensuring the 

success of our key sensitivity test. 
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The developed encryption algorithm uses random numbers generated by a chaos-based RNG, 

it has a very sensitive dependence on the initial conditions and system parameters of the 

chaotic system used as a key. 

7.2.7. Robustness Analysis 

During communication, errors or interruptions can occur at times. In such situations, a 

portion of the encrypted image may be lost during transmission. The robustness of the system 

is determined by whether the information can be accurately recovered. A suitable image 

encryption algorithm should be resistant to noise and data loss, transforming a noisy 

encrypted image into a recognizable clear image.  

Figure 18 shows the results of salt and pepper noise attacks applied to the encrypted image 

and the images decrypted after the attack. The decrypted image remains recognizable and 

understandable even when affected by different levels of noise intensity. 

Figure 19 shows the decrypted results of images with 25% and 50% data loss in different 

regions of the encrypted images. The results show that the original image is accessible from 

the data loss images.  Moreover, the assessment of decrypted images affected by pollution 

and data loss involves the use of PSNR (Peak Signal-to-Noise Ratio). 

 
2

1 1

512 512
10log

1
( , ) ( , )

W H

i j

PSNR

P i j D i j
W H  








                                (21) 

PSNR values for Figure 18 (d-e-f) and Figure 19 (d-e-f) images are shown in Table 9. 

 

 

8. Conclusions  

In this paper, a new 3-dimensional chaotic jerk system with one cubic and hyperbolic sine 

nonlinearities is introduced. The proposed system is compared with the existing systems and 

concluded that the new system has highest positive Lyapunov exponent value. The 

bifurcation diagrams are plotted with two different initial conditions and realized that the new 

system can able to produce coexisting attractors. The Lyapunov exponent spectrum of the 

amplitude controlled and offset boosting-controlled systems indicate that the chaotic nature 

of the new system is not modified by the introduction of control parameters. Future work is 

considered as to employ a memristor as the nonlinearity in the proposed system [55,56]. As 

engineering application, a random number generator is designed using a new chaotic jerk 

system. After confirming that random numbers can be used safely with statistical tests such as 

NIST 800-22, FIPS 140-1 and ENT, these numbers were used for biomedical image 

encryption. To measure the reliability of the encryption process, Histogram, Correlation, 

NPCR-UACI, entropy, key space analysis, key sensıtıvıty analysis and robustness analyzes 

were performed and successful results were obtained from each test. Considering the studies 

in the literature, it can be said that an encryption application using random numbers generated 

based on chaos is sufficiently secure against attack attacks. As a result of all these research 

and analyses, a source of information is presented for studies in areas such as random number 
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generation, analysis of random numbers, biomedical image encryption and security analysis. 

New encryption algorithms for the encryption of video-assisted biomedical data can be 

proposed and the study can be implemented in embedded card platforms.  
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(a)                                                                  (b) 

 
                                   (c)                                                                  (d) 

Figure 1. Attractors of the proposed system (7) with the initial conditions (1,0,-1).                    

(a) xy plane, (b) xz plane, (c) yz plane and (d) xyz plane 
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(a)                                                                         (b) 

 

                                      (c)                                                                   (d) 

Figure 2. (a) Bifurcation diagram with Forward continuation (Blue), backward continuation 

(Red), (b) Lyapunov exponent plot, (c) Maximum Lyapunov exponent Plot, (d) Maximum 

Lyapunov exponent plot with Forward continuation (Blue), backward continuation (Red) for 

Parameter “a” variation 
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(a) a = 5.5                                                          (b)  a = 6.5 

 

Figure 3. (a) Coexisting periodic attractors, (b) Coexisting chaotic attractors for various 

values of the parameter a 

 

 
(a)                                                                       (b) 

Figure 4. (a) Bifurcation diagram with initial condition (-1,0,1) (Blue) and (1,0,-1) (Red) and 

(b) Lyapunov spectrum for the parameter b variation  
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(a) b = 0.13                                                    (b) b = 0.17 

Figure 5 (a) Chaotic coexisting attractor (b) Periodic coexisting attractor for the various 

values of the parameter b. 

 

(a)                                                                       (b) 

Figure 6 (a) Bifurcation diagram with initial condition (-1,0,1) (Blue) and (1,0,-1) (Red) and 

(b) Lyapunov spectrum for the parameter c variation 
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(a) c = 1.7                                                     (b) c = 2.5 

 
(c) c = 2.7 

Figure 7. (a-b) Chaotic coexisting attractors (c) Periodic coexisting attractors for the 

variation of parameter c 
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(a)                                                             (b) 

 
                                        (c)                                                                   (d)  

 

Figure 8. Partially amplitude-controlled attractors along y direction. (a-b) when 0.001    

and (c-d) when 1000  . 

 
Figure 9. Constant Lyapunov exponent spectrum of the system (16) for the variation of 

control parameter [0,5000] .  
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(a)                                                                  (b) 

Figure 10. Offset boosting-controlled attractors along the z direction with 1    (blue), 

20   (red) and 20    (green) 

 
Figure 11. Constant Lyapunov spectrum of the system (18) for the variation of booster 

parameter [ 40,40]     

 

 

Figure 12 Conversion of float numbers binary number format. 
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(c)                

Figure 13 Matrix values; a) source image b) encrypted image c) decrypted image 
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Figure 14. Histogram analysis: (a) Source image; (b) Encrypted image 
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                                                 (a)                                            (b)  

 

                                                     (c)                                         (d) 

 

 (e)                                              (f) 

Figure 15 Correlation analysis (a) Horizontal correlation of source image;  (b) Horizontal 

correlation of encrypted image; (c) Vertical correlation of source image; (d) Vertical 

correlation of encrypted image; (e) Diagonal correlation of source image; (f) Diagonal 

correlation of encrypted image 
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(Source image) 

(a) 

 
(correct key) 

(b) 

 
(change x0 +t) 

(c) 

Figure 16. Key sensitivity test in the encrypted stage(a) source image (b) image encrypted 

with the correct key (c) image encrypted by modifying x0 + t 

 

 
(encrypted image) 

(a) 

 
(correct key) 
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(change x0 +t) 
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Figure 17. Key sensitivity test in the decrypted stage(a) encrypted image (b) image decrypted 

with the correct key (c) image decrypted by modifying x0+ t 
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(a) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 18. Results of noise interference experiments: (a) with 0.01 Salt & Pepper Noise; (b) 

with 0.05 Salt & Pepper Noise; (c) with 0.1 Salt & Pepper Noise; (d,e,f) are the decrypted 

images of (a,b,c), respectively. 
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(f) 

Figure 19 Results of clipping experiments: (a-b) 25% data loss; (c) 50% data loss; (d,e,f) 

Decrypted images of (a,b,c), respectively 
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Table 1: Comparison of the proposed system with existing systems which have 

hyperbolic sine nonlinearity 

S.No Existing systems LE1 Coexisting 

attractors 

Amplitude 

control 

Offset 

boosting 

1 Kengne et al. [17] - Yes - - 

2 Joshi and Ranjan [18] 0.037 - - - 

3 Volos et al. [19] 0.21244 Yes - - 

4 Hu et al. [20] 0.1071 Yes - - 

5 Liu et al. [21] 0.1652 - - - 

6 Sundarapandian et al. [22] 0.0777 - - - 

 Proposed system 0.21613 Yes Yes Yes 

 

 

Table 2: Equilibrium points and stability of the new system (7) 

Equilibrium points Eigen values Nature of stability 

1 [0,0,0]E   1 2 32.192, 0.428, 0.3198       Unstable node 

2,3 [ ,0,0]E a   1 2,32.365, 0.0325 0.503j      Saddle unstable  

point 

 

Table 3 NIST-800-22 test results of x phase random numbers from 10 sequences 

Statistical 

Tests 

Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8 Seq 9 Seq 10 Encrypted 

Image 

Result 

Frequency 

(Monobit) 

Test 

0.8041 0.1591 0.1275 0.4248 0.9076 0.5961 0.8212 0.7413 0.7383 0.5538 0.0929 Pass 

Block-

Frequency 

Test 

0.1570 0.1286 0.2746 0.8754 0.5854 0.2228 0.3539 0.2573 0.7416 0.8389 0.4374 Pass 

Cumulative

-Sums Test 

0.8894 0.1738 0.2317 0.6825 0.6146 0.5385 0.8916 0.6662 0.6976 0.7016 0.1205 Pass 

Runs Test 0.7308 0.2601 0.8710 0.1607 0.7702 0.1790 0.1942 0.1713 0.2730 0.0763 0.1429 Pass 

Longest-

Run Test 

0.9395 0.6493 0.1063 0.3100 0.7807 0.6888 0.6700 0.2763 0.7739 0.8500 0.1146 Pass 

Binary 

Matrix 

Rank Test 

0.7310 0.1959 0.1274 0.7465 0.4039 0.0842 0.3356 0.1203 0.5736 0.1564 0.7310 Pass 

Discrete 

Fourier 

Transform 

Test 

0.2829 0.6073 0.2829 0.6397 0.5756 0.4684 0.4628 0.1371 0.5882 0.6397 0.1323 Pass 

Non-

Overlappin

g Templates 

Test 

0.9914 0.9944 0.7974 0.7618 0.8648 0.3662 0.6242 0.0781 0.2470 0.2032 0.2578 Pass 

Overlappin

g Templates 

Test 

0.2149 0.5010 0.6205 0.2283 0.2615 0.8065 0.9923 0.2132 0.8860 0.3141 0.2092 Pass 

Maurer’s 

Universal 

Statistical 

Test 

0.7277 0.3075 0.4457 0.9653 0.9956 0.9419 0.8100 0.8893 0.5377 0.0867 0.6756 Pass 

Approximat

e Entropy 

Test 

0.4431 0.3736 0.2020 0.1760 0.8405 0.6821 0.3827 0.0895 0.3959 0.7635 0.0944 Pass 

Random-

Excursions 

Test  

(x = −4) 

0.7056 0.5675 0.9732 0.7875 0.0958 0.9902 0.8065 0.5146 0.2276 0.3991 0.8648 Pass 

Random-

Excursions 

Variant Test 

0.4358 0.6853 0.7962 0.9159 0.3131 0.2603 0.6055 0.8259 0.6389 0.6159 0.2403 Pass 
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(x = −9) 

Serial Test-1 0.9152 0.3745 0.0809 0.0761 0.7408 0.0126 0.9151 0.8542 0.2892 0.4853 0.7652 Pass 

Serial Test-2 0.9111 0.3385 0.5328 0.5469 0.6551 0.0906 0.9892 0.6729 0.1449 0.2555 0.5562 Pass 

Linear-

Complexity 

Test 

0.6135 0.9185 0.8799 0.4900 0.1695 0.6966 0.2892 0.7874 0.2061 0.7432 0.5526 Pass 

 

Table 4 Random numbers FIPS 140-1 success criterions and test results 

FIPS 140-1 Tests Success Criterions Value Result 

Monobit Test Poker 9654 < x < 10346 10036 Pass 

Poker Test 1.03 < x < 57.4 10.0223 Pass 

Run Test (1) 2267 ≤ x ≤ 2733 2432 Pass 

Run Test (2) 1079 ≤ x ≤ 1421 1331 Pass 

Run Test (3) 502 ≤ x ≤ 748 633 Pass 

Run Test (4) 223 ≤ x ≤ 402 289 Pass 

Run Test (5) 90 ≤ x ≤ 223 147 Pass 

Long Run Test 34 > Run 3 Pass 

 

Table 5 ENT test results of random numbers 

Test name Average Ideal Results Result 

Arithmetic Mean 127.4652 127,5 Pass 

Entropy 7.9985 8 Pass 

Correlation -0.0027159 0 Pass 

Chi-Square 256.2657 10% and 90% between Pass 

Monte Carlo 3.1446 (error =0.0009) Pi Number Pass 

 

Table 6 Correlation coefficient of the source image and encrypted images 

Image Horizontal 

Correlation 

Vertical 

Correlation 

Diagonal 

Correlation 

Source Image 0.9792 0.9815 0.9591 

Our Encrypted Image -0.0041 -0.0053 -2.7e-04 

Man et al. [41] −0.0113 0.0056 −0.0004 

Maddodi et al. [42] 0.0058 0.0072 0.0031 

Ogras et al. [43] -0.0468 -0.0026 0.0149 

Njitacke et al. [44] 0.0081 -0.0041 0.0107 

Lai et al. [45] −0.0089 0.0097 0.0060 
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Table 7 Encrypted images NPCR and UACI analysis. 

Image NPCR UACI 

Our Encrypted Image 99.5868 33.5302 

Njitacke et al. [44] 99.73 33.5765 

Lai et al. [45] 99.6081 33.4578 

Velliangiri et al. [47] 99.6184 33.42 

Thomas et al. [48] 99.5571 33.5995 

Elkhalil et al. [49] 99.5666 33.3384 

 

Table 8 Entropy of source image and encrypted images 

Image Entropy 

Source Image 6.6491 

Our Encrypted Image 7.9993 

Man et al. [41] 7.9975 

Njitacke et al. [44] 7.9980 

Lai et al. [45] 7.9992 

Velliangiri et al. [47] 7.9651 

Som et al. [52] 7.9975 

 

Table 9. The PSNR of decrypted image (unit dB) 

Salt & peppers intensity Data loss 

 

0.01 0.05 

 

0.1 

 

%25 

corner 

%25 

middle 

%50 

left 

 

26.9063 

 

19.9883 

 

17.0891 

 

13.0849 13.0909 10.0825 

 


