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Abstract 

This article focuses on the influence of the shape factor of entropy generation on the 

MHD flow of an Eyring–Powell hybrid nanofluid past a permeable over a curved stretched 

sheet with Cattaneo–Christov heat flux. Using the Homotopy Perturbation Method (HPM) 

and the shooting method, the governing nonlinear coupled PDEs are converted into ODEs 

with similarity variables and solved (R-K 4th order). Magnetic field, mixed convection, 

Eyring-Powell fluid, thermal relaxation, curvature, and thermal radiation are studied and 

represented in terms of velocity, temperature, entropy production, Bejan number, heat 

transfer, and coefficients of skin friction. To compare outcomes, we employ the Homotopy 

Perturbation Method. The Homotopy Perturbation Method produces more precise and 

reliable results than the numerical method. When a magnetic field affected the hybrid 

nanofluid as it increased over a curved stretching sheet, the velocity profile decreased. In 

actuality, the Lorentz force increases as the magnetic field result increases. In the presence of 

a curved stretching sheet, the velocity profile also decreases as a result of increased magnetic 

parameters. In the three shapes, the temperature profile rises with increasing thermal radiation 

values. This model is utilized in biological applications such as MRI, RFA, and cancer 

therapy. 

 

KEYWORDS MHD; Eyring-Powell fluid; Cattaneo-Christov heat flux; non-linear thermal 

radiation;  Entropy generation. 

1. Introduction 

            The use of nanoparticles (metallic, oxide, non-metallic, and ceramic) has garnered 

much attention in modern times due to its great applicability in various fields, material 

science, the food industry, and agriculture. Choi [1] produced nanofluids by adding 1-100 

nm-sized particles to regular fluids ( blood, ethylene glycol, mineral oil, Biofluids, etc.). It 
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was first proposed. Many researchers have discussed applications of nanofluids in many 

areas, including engineering, medical apparatus, paper production, mechanical, architecture, 

drug delivery, scientific processes biomedical, etc. Additionally, a brand-new kind of 

nanofluids called mixed nanofluids transmit heat more effectively than conventional heat 

transfer fluid and nanofluid with a single nanoparticle. When more nanoparticles are mixed in 

with a base fluid, this makes a hybrid nanofluid. Hybrid nanofluids receive significant 

attention given their extensive applications in electronic cooling, machining, electronic 

cooling, lubrication, solar heating, warming procedures in buildings, nuclear cooling systems, 

generator cooling, welding, biomedicine, and targeted drug delivery [2,3]. The silver carriers 

are then modified in two steps to achieve dual functionalities. Silver nanoparticles are 

crosslinked with iron oxide nanoparticles (Fe3O4) to form Ag-Fe3O4 nanocomposites (Fe-Ag). 

Overall, the superparamagnetic component of Fe3O4 nanoparticles will allow the 

nanocomposites to be magnetized in a magnetic field, providing a preferred magnetic 

moment that can be carefully controlled against circulation shearing for Drug delivery, 

medical business as anti-microbial and anti-cancer agents, photothermal theory, pictures, and 

catalysis. Sperling et al. [4] explained the uses of Gold nanoparticles in biology and heating. 

Lacerda et al. [5] examined the interaction of gold nanoparticles with common human blood 

proteins. Numerical research was done on heat transfer analysis using nanofluid flow in a 

porous medium by Reddy et al. [6]. Abbas et al. [7] conducted a study to examine the MHD, 

thermal radiation, heat generation, and hybrid(Ag-Cu/pure water) nanofluid flow past a 

porous media curved sheet with a nonlinear stretching sheet. Babu et al. [8] studied the 

squeezed flow of polyethylene glycol and water-based hybrid nanofluids over a magnetized 

sensor surface. The EMHD flow of a nanofluid with a hyperbolic tangent across a stretched 

sheet was investigated by Asogwa et al. [9]. Sajjan et al. [10] studied the influence of linear, 

nonlinear, and quadratic Rosseland approximations on the 3D flow behaviour of ternary 

hybrid nanoparticles of different shapes. 

           The importance of analyzing magnetohydrodynamics (MHD) flow phenomena and 

their applications in industries, geology, including geology, attractive medication focuses, 

astrophysics, geophysics, the drug industry, engineering, magnetic drug targeting, 

pharmaceuticals, and mechanical engineering—moreover, biomedical, magnetic endoscopy, 

and cancer tumour treatment. The influence of thermal radiation and heat transfer on CNTs 

on MHD flow is currently being examined by Mahabaleshwar et al. [11]. Islam et al. [12] 
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discussed optimizing entropy in MHD nanofluid flow over a curved stretching surface. The 

entropy generation of MHD and radiation, hybrid (CuO-MgO/water (50%) + EG (50%) 

nanofluid flow over a curved stretched sheet was studied by Sakkaravarthi and Reddy [13]. 

Jalili et al. [14] investigated the effect of magnetic and boundary parameters on the flow 

characteristics analysis of a shrinking sheet of micropolar ferrofluid. The MHD flow of 

second-grade nano liquid across a convectively heated curved stretched surface was 

investigated by Reddy et al. [15]. Rauf et al. [16] investigated the effects of nonlinear surface 

extending on heat transfer and MHD micropolar ferrofluid flow. The magnetohydrodynamic 

convective streams of tangent hyperbolic nanofluid crossing an elastic texture that is 

nonlinearly elongating were studied by Sakthi et al. [17].  

        The process of heat transmission, also known as thermal radiation, involves the transfer 

of heat energy between two surfaces. In modern-day cycles, MHD production plays an 

integral part in manufacturing electronic chips and paper plates. The effect of heat radiation 

in magnetohydrodynamic flow is enormous and becoming more relevant. Research on 

viscous flow with thermal radiation has a lot of uses in human activities, especially when it 

comes to heating and cooling, as well as biomedical and clinical therapy. It is also essential in 

the context of space technology and high-temperature operations. The effects of 

ferromagnetic fluid flow across a porous stretched sheet were investigated by Jakeer and 

Reddy [18]. The impact of the chemical reaction and nonlinear thermal radiation hybrid 

nanofluids on a curved expanding surface has been studied by Ahmed et al. [19]. 

Sakkaravarthi and Reddy[20]  investigated the MHD flow behavior of two- a dimensional 

Casson hybrid nanofluid over a porous curved stretching sheet. Jalili et al. [21] investigated 

thermal analysis and pressure drop in non-continuous helical baffles with different helix 

angles and hybrid nanoparticles. 

          Many scientists, engineers, and research scholars have worked on the entropy of 

thermodynamic systems in recent years. Entropy generation, also known as irreversibility, is 

a critical measure to calculate the effectiveness of an energy system. The analysis of these 

irreversible effects (heat transfer and flow) uses the standard measurement of entropy 

creation and depreciation. Entropy generation occurs through transferring heat, thermal 

radiation, Joule heating, porosity, and viscous dissipation. Utilizes legal entropy minimization 

and creation measurement methods. In 1979, Bejan [22] investigated the concepts of entropy 
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generation in convective heat transfer and fluid friction issues. He validated that reducing 

entropy generation may strengthen a thermal system's mechanical design. Due to its wide 

variety of heat transfer applications, including maximum heat pump system efficiency, 

thermal exchangers, maximum heat transfer rate, geothermal applications, biological sectors, 

and filter design, entropy generation is essential. The irreversibility of the Darcy-Forchheimer 

presence of CNTs by Joule heating effects was investigated using a curved stretching sheet 

by Hayat et al. [23]. 

          The main intention of this study is no one has been done on the effect of the entropy 

generation on MHD Eyring-Powell hybrid nanofluid over a porous curved stretching surface 

in the presence of the non-linear radiation, heat generation, different shape factors, and 

Cattaneo-Christov heat flux model. So that’s why all effects are considered in this model. In 

this study, blood was used as the base fluid, and Ag and Fe3O4 were the nanoparticles. Non-

linear PDEs are self-similarly transformed into ODEs by using a set of transformations. To 

solve the homotopy perturbation method is applied. This model has an extensive variety of 

biomedical applications, including hyperthermia therapeutics and cancer treatment 

therapeutics. They are advantageous for incorporating magnetic resonance imaging (MRI), 

especially radiofrequency ablation (RFA). A magnetic force field is used to diagnose or treat 

diseases. 

2. Mathematical Formulation 

Consider the steady, incompressible, two-dimensional, MHD flow of Eyring-Powell 

hybrid nanofluid with blood as the base fluid Ag and Fe3O4 are nanoparticles over a porous 

flow on a curved stretched sheet. We have computed the boundary layer of a hybrid nanofluid 

traveling over a curved extended surface with a radius R. Putting two equal and opposing 

pressures in the s direction while maintaining the origin and the velocity the ( 0)wu as a  , 

where a represents the stretch constantly. A magnetic field of strength (
0B ) is applied in the 

perpendicular direction to the flow. As seen in Figure 1, the radius of curvature 

normalizes the surface's shape. The influences of MHD, nonlinear thermal radiation, and 

porous media, Joule heating, are all being investigated. Furthermore, the Cattaneo–Christov 

theory, which is based on thermal relaxation, is also explored for heat transfer. The following 

are the governing equations: Hayat et al. [24]       
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Thermophysical models follow as ref.[25] 
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The following similarity transmutations are taken into consideration: 
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Equations (2) - (5) are simplified using Equation (7) as follows: 
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Here Radiative heat flux is
rq . The Taylor series linear function 4T  continues to be a 

temperature. Higher orders are not considered T . 4 3 44 3T T T T   .  If  0S   is the suction 

and 0S  is the injection,  M  is the Magnetic field parameter,  λ is  the mixed convection 

parameter, K is the curvature parameter, Pr is the Prandtl number,
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generation/absorption parameter, Ec is the Eckert number, Rd is the thermal  Radiation 

parameter, kS is the  porosity parameter,  is the Thermal relaxation parameter and 1 , 2
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Equations (8) and (9) can be resolved without taking the pressure into account 
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3. Development of Entropy Generation 

The second law of thermodynamics defines entropy formation as the irreversible process 

of hybrid nanofluid flow over the curved stretching sheet. Many organizations, including 

viscous forces, thermal radiation, porosity, and low-driven force, create normal entropy 

generation. The creation of entropy may be used to calculate the amount of energy wasted 

during a task. There are several liquid models. Entropy-reducing systems. The model 

optimizes entropy in the current flow issue:  

  

3.1. Entropy generation 

The entropy development in a dimensional form is 

2 23
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(14) 

  

Dimensionless form is
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 3.2. Bejan number 

The Bejan number, which also has to be written as 
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(16)

  
Designates the Brinkman number   
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4. Physical Quantities 

4.1. A measure of skin friction coefficient 

One of the physical factors of importance is the skin friction coefficient along the s-directions

2( )
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fs

w

C
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 . As follows is a representation of shear stress:

   

 

   

3 23 2

3 23

0

1 1 3 3

6
rs

r

u u u u u u u u

c r r R c r r r R rr R r R
 

 


              
                                    

          

(17) 

then we have 
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4.2. Nusselt number 
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The physical quantities of interest are a rate of heat transfer along the s-directions, which are 

given as 
 

w
s

f w

sq
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k T T




                                                                                                (19) 

Where wq is the heat flux at the surface in the s-direction, which is given by 
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then we have  

    
31 2Re 1 1 0 '(0)

hnf

s s w

f

k
Nu Rd

k
  

 
      

 
                                                           (20) 

Where 1 2Res

f

a
s


  the local Reynolds number. 

5. Methodology  

This section will present the Homotopy approach before going through the suggested 

issue. This approach was first out by Mr. He [26] in 1998, and it has been utilized to solve 

nonlinear ODEs. The technique of generic boundary element was created in 2004 when he 

combined this approach with the boundary element method. The process is as follows: A 

series of guesses may be obtained via Homotopy Perturbation, and a further series of replies 

can be obtained that are incrementally closer and closer to the correct answer. This approach 

takes advantage of, among other things, traits like action flexibility when choosing the linear 

operator and initial function. A big nonlinear issue may be solved and split into smaller, 

simpler linear problems with the same level of action and beginning option flexibility. The 

controllability of the convergence region is another advantage of this methodology, making it 

stand out from other approaches addressed by Shqair [27]. 

 

5.1. HPM approach 

Consider the following non-linear ODEs of the system to determine the HPM concept: 

    0,z z    
                                                                                                          

(21) 
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boundary conditions are 

, 0, z
n


  

 
  

 
                                                                                                                 

(22) 

The formation of the HPM is given as follows: 

            0, 1 0H p p L L p T z                                                         

(23)                               

Were, 

    1, : 0,1z p R  
                                                                                                              

(24) 

At which  0,1p is a parameter for fixed and in this function ( 0 ), the boundary conditions 

are recorded, it is now Eq. (21) most important. 

To express the previous solution, in the power series in p: 

2 3

0 1 2 3 ...p p p        
                                                                                                              

(25)                                                                                      
 

As an exact approximation, the solution is 1p  . 

0 1 2 3 ...                                                                                                                     

(26) 

5.2. HPM is implemented in this method: 

Equations (11) and (12) of the (HPM) model can be expressed as follows using the 

equations above 
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( )f   and     are considered in the standard power series,  
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Equations (30) and (31) should be replaced with Equations (27)-(29), and the linear equation 

solution is obtained by comparing the coefficients of similar p-term powers, with the 

following effect: 
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Boundary conditions are 
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1 1 1(0) (1 (0)), (1) 0Bi                                                                                                (35) 

Second-order  
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Boundary conditions are 

2
2 2 2 2 2

'(0)
(0) , '(0) 1 ''(0) , ''(1) 0, '(1) 0.s

f
f S f L f f f

K

 
      

 
 

2 2 2(0) (1 (0)), (1) 0Bi     
                                                      

                                    (38) 

 HPM solutions take ( )f  and     into account predetermined dimensionless parameter 

values in  1 0.02,  2 0.02,   Rd = 0.1, Ls = 0.5, 0.02,  M = 1.0, 0.1,  Bi = 0.3, Pr 

= 21, K = 0.5, 1 0.1,  Sk = 0.2, 1 10.2, 0.2,   1 0.1,    S = 0.5, 1.5w  . The 

following outcomes are achieved by determining a succession of functions. 
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3

( ) 0.9075255449 0.3772321588 0.09968590234 0.276492273643ln(2 1) 0.1511897789ln(2 1)
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(40) 

5.3. Numerical Procedure 

Numerical methods are used to solve non-dimensional ODE equations as flows: 
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boundary conditions are 

  

' '(0)
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s
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(43)   

In these above Eq. (41) - (42) uses the MAPLE software and R-K
4th

 order with the shooting 

method. As a result, the leading equations are solved in equations Eq. (43), along with their 

boundary conditions. Limiting asymptotic conditions in Eq. (43)  was revived by an 

imperfect set of efforts  , say   a state in which there is no discernible variation in 

temperature, velocity, Bejan number, entropy production, or any other characteristic. In 

boundary layer studies, this is standard. Completed the problem-solving procedure, step 

scope with 0.01   It's better to be realistic about the inward converging condition 610  

under all circumstances. 

6. Result and Discussion 



Present address: 

K. Sakkaravarthi, Department of Mathematics, St. Peter's Engineering College, Medchal, 

Dhulapally Hyderabad - 500100, Telangana, India. 
 
 

 This section is to study how different parameters affect velocity, temperature, entropy 

generation, and Bejan number profiles for the blood as the base fluid mixture with silver (Ag) 

and Ferrosoferric Oxide (Fe3O4) as the nanoparticles over a curved stretching sheet. It looks 

at how different parameters affect the velocity profile through a curved stretched sheet. The 

Temperature, Entropy generation and Bejan number of a hybrid nanofluid over a curved 

stretched sheet have been studied by comparing shapes (spheres, platelets, and blades). 

Additionally, investigated and shown in graphs are the skin friction and heat transfer 

coefficients. To compare results, we use the HPM. The Homotopy perturbation technique 

yields more accurate and consistent results than the numerical method. The results are most 

likely influenced by many parameters such as the curvature parameter (K), magnetic field 

parameter (M), porosity parameter (Sk), mixed convection parameter (λ),  thermal radiation 

parameter (Rd), Brinkman number (Br), Thermal relaxation parameter(  ), Eyring-Powell 

parameters 1 , 2 , heat generation parameter (λ1), dimensionless Biot number(Bi), silver (Ag)  

nanoparticle are volume fraction ( 1 ), Ferrosoferric Oxide (Fe3O4) nanoparticles are volume 

fraction ( 2 ), dimensionless slip parameter (Ls), the temperature ratio parameter (α1), velocity 

profile  'f  , temperature profile ( )  , entropy generation (SG) and Bejan number (Be) is 

the shown in Figures 2-20. The HPM and NM are compared for temperature and velocity in 

Figures 2–3. The conclusions are based on previous results to validate the results obtained. 

The values of many dimensionless parameters are fixed in 1 0.02,  2 0.02,   Rd = 0.1, Ls 

= 0.5, 2.5,   0.02,   M = 1.0, 0.1,  Bi = 0.3, Pr = 21, K = 0.5, 1 0.1,  Sk = 0.2, 1 0.1,   

1 10.2, 0.2,    S = 0.5 and 1.5w   are considered . The effects of the shape factors discussed 

for shapes like spheres, platelets, and blades are further represented by m = 3.0, 5.7, and 8.6, 

and hybrid nanoparticles are shown in Table 1. 

6.1 Dimensionless velocity profiles 

 The influences of the M, 2 and Sk on the velocity profile are exposed in Figures 4-6. 

Figure 4 demonstrates that the velocity profile 
'( )f   is a reducing function of the magnetic 

field (M) increases over a curved stretching sheet. Physically, when the magnetic field effect 

is improved, the Lorentz force increases, acting in the backward direction of the liquid flow 

and slowing the arrangement. So, when a curved sheet is stretched, increasing the magnetic 
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parameter slows down the  'f  . Figure 5 demonstrates that the velocity profile 
'( )f   is a 

reducing function of the Eyring-Powell fluid ( 2 ). The velocity profile is decaying gradually 

for higher values 2 . Figure 6 shows the impact of the porosity (Sk) curved stretching sheet 

on the hybrid nanofluid velocity profile has decreased. As the porosity variable (Sk) rises, so 

does the friction force between nanoparticles. Physically, increasing porosity causes the 

medium's pore size to decrease.  

6.2. Dimensionless temperature profiles 

The influences of the thermal radiation (Rd), thermal relaxation (  ), heat generation 

(λ1), Brinkman number (Br), and Biot number (Bi) on the comparing shapes (spheres, 

platelets, and blades) over a curved stretched sheet at the temperature profile ( )   are shown 

in Figures 7–9. The highlights of thermal radiation (Rd) on hybrid nanofluid temperature 

profiles are conveyed in Figure 7. As the thermal radiation increases, the temperature profile 

increases for comparison shapes (spheres, platelets, and blades). When the mean absorption 

coefficient is reduced due to an increase in the thermal radiation parameter Rd, more heat is 

transmitted in the fluid direction as the fluid temperature rises. Figure 8 depicts the thermal 

relaxation parameter (  ) for comparison shapes by increasing the values as the temperature 

profile ( )   decreases. Physically, inclined (  ) material particles need more time to transfer 

heat to their contiguous particles. Also, inclination in (  ) the material has a non-conducting 

effect that leads to the loss of a thermal relaxation parameter. The highlights of the heat 

generation parameter (λ1) on hybrid nanofluid flow temperature profiles ( )   on the shapes 

(spheres, platelets, and blades) are conveyed in Figure 9. Physically, the fluid will get more 

heat from the surface. As a result, raising the heat generation value causes the temperature 

profile ( )  to rise.  

6.3. Entropy generation 

In Figures 10–13, the comparison of shapes (spheres, platelets, and blades) over a 

curved stretched sheet at the entropy generation GS  is shown for several influence parameters 

such as Rd, Bi, and Br.  Figure 10 illustrates the impact of Rd on the entropy generation GS of 

hybrid nanofluid for the curved stretching sheet. When the thermal radiation grows, the three 

shapes increase in entropy generation. physically, Growing the thermal radiation emission 
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increases the disorder in the closed system, causing the radiative constant to rise. As a result, 

the system's entropy rate increases. The effect of the Br on the GS profile is seen in Figure 11. 

Entropy generation rises in three different shapes, As Br rises. A higher Brinkman number 

increases the viscous force, resulting in increased collisions between fluid particles. As a 

result, the entropy rate has increased. Figure 12 shows the effect of the Biot number (Bi) on 

the entropy generation for the curved stretching sheet. The GS grows in three shapes as the 

Biot number increases.  

6.4. Bejan number 

Figures 13 - 15 compare the shapes like spheres, platelets, and blades over a curved 

stretched sheet at the Be for different parameters such as M and Rd. Figure 13 shows the 

influence of the magnetic field parameter on the Bejan number. The Bejan number decreases 

in three shapes as the magnetic field increases. This is because stronger magnetic fields tend 

to have more Lorentz force acting on fluid motion. Bejan number (Be) is reduced versus 

larger values of magnetic field (M). Figure 14 demonstrates the effect of the thermal 

Radiation (Rd) parameter on the Bejan number. As the thermal radiation rises, the Bejan 

number increases in three shapes. Growing the thermal radiation emission increases the 

disorderedness in the closed system, causing the radiative constant to rise. As a result, the 

Bejan number of the system rises. 

Figure 15 depicts the impact of the Biot number on the Bejan number, the Be increases in 

three shapes as the Biot number (Bi) increases. It has been shown that the viscous 

consequence has a greater impact on physical strength than thermal irreversibility. 

6.5. Physical quantities 

 In Figures 16 and 17 the effect of 1 , 2   and M on 1 2Refs sC  Eyring-Powell hybrid 

nanofluid is used to investigate the impact of the 1 2Refs sC  different hybrid nanoparticle 

volume fraction values 1 , 2  and M, respectively. It's been seen that the 1 2Refs sC is a 

growing function of 1 , 2 and M. The increase in skin friction is due to the thermal 

conductivity of nanoparticles, which is improved by growth estimates of the nanoparticle 

volume fraction. Figure 18 shows that the effect of 1 and thermal radiation parameter (Rd) on 

1 2Refs sC  Eyring-Powell hybrid nanofluid is used to investigate the impact of the 1 2Refs sC  

different hybrid nanoparticle volume fraction values 1 and thermal radiation parameter (Rd) 
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respectively. It is seen that the  1 2Refs sC
  

is enhancing the performance of 1  and Rd. In 

Figures 19 and 20 the effect of 1 , 2 and thermal radiation parameter (Rd) on 1 2Res sNu   

Eyring-Powell hybrid nanofluid is used to investigate the impact of the 
1

2Res sNu
  different 

hybrid nanoparticle volume fraction values  1 , 2  and thermal radiation parameter (Rd), 

correspondingly. It is shown that the 1 2Res sNu  is an increasing productivity function of 1 ,

2 and Rd. Table 2 demonstrates that the present approach corresponds more closely with 

Okechi et al.[28] and Ahmed et al.[29] solutions based on prior work. Which received a good 

agreement.  This suggests that the HPM simulation used produces reliable findings. 

7. Conclusion 

This article investigates the entropy generation in an MHD Eyring-Powell hybrid 

nanofluid (Ag- Fe3O4/ Blood) over a curved stretched sheet, as well as the effect of shape 

factors (spheres, platelets, and blades). Investigated were the effects of the porous medium, 

heat generation, nonlinear thermal radiation, the Cattaneo-Christov heat flux model, mixed 

convection, and bioconvective boundary conditions. In comparison to the Numerical Method, 

the Homotopy Perturbation Method (HPM) generates more dependable and accurate results, 

which can be represented by graphs and tables. This model is related to radiation therapy and 

is one of the most effective methods for treating cancer or hyperthermia. This technology 

employs silver and a magnetic particle to treat cancer without harming other organs. It is 

reasonable and prudent to draw that conclusion. 

 When a magnetic field influenced the hybrid nanofluid increase over a curved 

stretching sheet, the velocity profile was reduced. In reality, the Lorentz force 

increases as the magnetic field effect is amplified, acting against the flow of 

the liquid to slow the system down. In the presence of a curved stretching 

sheet, the velocity profile also decreases as a result of increased magnetic 

parameters. 

  As Eyring-Powell and porosity are enhanced, the profile of velocity 

decreases. 

 As thermal relaxation increases, the shape of the temperature profile 

diminishes (spheres, platelets, and blades). The hybrid nanofluid particles that 
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are physically inclined require more time to transfer heat to their contiguous 

particles. In addition, the inclination of the material in (  ) results in the loss of 

a thermal relaxation parameter due to a non-conducting effect. 

 As thermal radiation increases, the temperature profile for comparing shapes 

(spheres, platelets, and blades) rises. An increase in the thermal radiation 

parameter Rd reduces the average absorption coefficient. As fluid temperature 

rises, more heat is transferred in the fluid's direction. 

 As the magnetic field parameter increases, three distinct forms of entropy are 

produced. Physically, increasing the magnetic parameter and Lorentz force at 

the same time increases abrasion, thereby increasing entropy production. 

 As the influence of the thermal radiation parameters and Bi increases, the 

Bejan number contour rises. 

 In conclusion, I offer the following suggestions for the future: Various non-

Newtonian fluids can be considered with a variety of boundary conditions. I 

attempt to solve base fluid and nanofluid ternary-hybrid. 
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Figure 2. Comparisons of the R-K 

method with the HPM for velocity 

profile. 

Figure 3.  Comparisons of the R-K 

method with the HPM for 

Temperature profile. 

 

 

Figure 5. The behaviour of '( )f 

with specific values of 2 . 

 

Figure 4. The behaviour of '( )f 

with different values of M. 

  

Figure 1. Hybrid nanofluid flow is shown on a curved stretching sheet. 
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Figure 7. The behaviour of ( )  with 

specific values of Rd. 

 

Figure 6. The behaviour of '( )f  with 

specific values of SK. 

 

 

 

Figure 9. The behaviour of ( )  with 

specific values of  . 

 

Figure 8. The behaviour of ( )  with 

specific values of  . 

 

  

  

  Figure 11. The behaviour of SG with 

specific values of Br. 

 

  Figure 10. The behaviour of SG with 

specific values of Rd. 
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Figure 13. The behaviour of Be with 

specific values of M. 

Figure 12. The behaviour of SG with 

specific values of Bi. 

 

 
 

Figure 16. The Variant of  1   and M on 1 2Refs sC  

   

 

Figure 17. The Variant of  2   and M 

on 1 2Refs sC  

 

 

  

Figure 14. The behaviour of Be with 

specific values of Rd. 

 

Figure 15. The behaviour of Be with 

specific values of Bi. 
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Table 1. shows the thermo-physical properties of blood as a base fluid and nanoparticles are  

silver (Ag) and Ferrosoferric Oxide (Fe3O4): Divya and Reddy [30]  

Property Blood 

 (bf) 

Silver 

Ag (1s) 

Ferrosoferric Oxide 

Fe3O4 (2s) 

 3/kg m
 

1063 10500 5180 

 /pc J kgK  3594 235 670 

 /k W mk  0.492 429 9.7 

 /s m   0.8 76.30 10  
70.025 10  

 6 110 K    0.18 1.89 1.3 

Pr  - - 

 

  

Figure 19. The Variant of  1   and 

Rd on
1 2Res sNu 

 
 

 

Figure 18. The variant of   1  and Rd on 

1 2Refs sC  

 

 

 

 

 

Figure 20. The Variant of  2   and Rd on 
1 2Res sNu 
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Table 2. Adjustments K to compare the Skin-friction coefficient. 

The radius of curvature 

parameters  

Okechi et al. [28] Ahmed et al. [29] Current result 

5 1.41960 1.41970 1.41970 

10 1.34670 1.34690 1.34680 

20 1.31350 1.31360 1.31350 

30 1.30280 1.30280 1.30280 

40 1.29750 1.29750 1.29720 

50 1.29440 1.29440 1.29460 

100 1.28810 1.28810 1.28890 

 

 

NOMENCLATURE 

A Constant  TW Wall Temperature  

B0 Strengthening magnetic field T∞ Faraway 

Be Bejan number u Component of s-

direction velocity 

Br Brinkman number v Component of r-

direction velocity 
1 2Refs sC  Skin friction coefficient Greek symbols  

cp Specific heat   Fluid density 

Ec Eckert number    Dynamic viscosity 

Sk Porosity parameter 
1  

Temperature ratio 

parameter  

k Thermal conductivity   Kinetic viscosity 

g Gravity   Electrical conductivity  

L Slip length   The dimensionless 

Temperature of a fluid 

Ls Dimensionless slip parameter   Similarity variable 

M Magnetic field parameter    Stefan-Boltzmann 

constant 

p̂  Hybrid nanofluid Pressure   

  

Mixed Convection 

parameter 

P Hybrid nanofluid Dimensionless    

Pressure  
1  

Heat generation 

parameter   

Pr Prandtl number k
* 

Mean absorption 

coefficient 

Q Heat source /sink 
1 2,   Hybrid nanoparticles 
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volume fractions 

qr Heat flux radiative Subscripts  

 R Radius of curvature bf Base fluid  

Rd Thermal radiation parameter  hnf Hybrid nanofluid  

SG Total entropy rate 1s   First particle 

T The temperature at the surface 2s  
Second particle. 

 

 


