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Histopathology Imaging (HI) plays a significant role in enhancing the prognosis of Colorectal Cancer 
(CRC), which ranks as the second leading cause of cancer-related deaths globally. Classifying colon 
cancer tissues with HI can be challenging due to differences in morphology, the presence of artifacts 
when recording microscopic images, and the lack of histological expertise. The use of WideResNet 
structure as a novel method for identifying textures in HIs is proposed using deep feature maps extracted 
from direct HIs and correlation matrices inputs. By using HSV (Hue, Saturation and Value) space, the 
first step is to decrease various artifacts during HI recording. After designing the ensemble model, the 
suggested structure has been evaluated and validated using the datasets CRC-5000 and NCT-CRC-HE-
100K. On the CRC data set, the ensemble model had accuracy of 98.71% and 99.13%. Deep ensemble 
learning performed better than current methods in terms of computational and temporal performance, 
according to the results. Our proposed method is generalizable and has been tested on many of unseen 
HIs. Based on their data, pathologists can classify unseen Whole Slide Images (WSIs) images using only 
their lesion classes. The proposed tissue analysis mechanism reliably predicts CRC when pathological 
images are accurate. 

1. Introduction
The third most common cancer type in the world is 
Colorectal Cancer (CRC), which is responsible for about 
10% of cancer-related deaths worldwide [1]. The Centers 
for Disease Control and Prevention (CDC) reported 1.1 
million newly reported cases and 551,000 deaths in 2018 
[2]. The World Health Organization (WHO) predicts that 
75 million cases will develop colon cancer by 2030, 17 
million of whom will die and another 27 million will 
develop the disease. Clinical outcomes, however, can 
differ significantly between patients with resectable 
diseases. Tumor symptoms encompass several factors such 
as type 2 diabetes, nutritional deficiencies, diabetes, obesity, 
and smoking, which have been found to be associated with 
reduced odds of survival [3,4].  CRC typically recurs  in  60  

to 80% of cases and 95% within four years of resection [4,5]. 
Colon malignancies are frequently identified by the 
utilization of needle biopsy or Fine Needle Aspiration (FNA) 
techniques [5,6]. When cells or tissues are mounted on 
Whole Slide Images (WSIs), they can be observed under a 
microscope. Over the years, the Histopathology Imaging 
(HI) approach to the CRC has been well established. HI 
analysis has been shown to be highly effective in CRC 
clinical evaluation [7,8]. In order to confirm CRC research 
and treatment, it is necessary to identify tumor sites, measure 
disease progression, and classify cancer prototypes from 
complete patient slide images [9,10]. Visualizing, staging, 
and grading rectal cancer is possible. 

During lengthy HI analyses, the pathologist's knowledge, 
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skills, and abilities are vital. In addition, unfavorable traits 
including weariness and concentration issues are linked to 
the HI analytical procedure. CRC diagnosis has been 
improved through automated techniques. In order to improve 
the outcomes of their decisions, efforts have been made [10]. 
Computer-Aided Design (CAD) solutions can be developed 
that reduce pathologists' workload by combining image 
processing techniques with machine learning techniques. 
Furthermore, it reduces the time needed to read and evaluate 
health-related data, speeds decision-making. If diagnosed 
early, CRC treatment is more likely succeed. Automated 
detection technologies can make it easier to detect CRC at an 
early stage. The most difficult obstacle to overcome is 
developing techniques for separating HI medicinal 
properties extracted from intestinal tissues. Although 
handcrafted extracted features take longer to define tissue 
status, when combined with other techniques, they are 
unreliable for producing distinctive characteristic vectors for 
classification. 

As well as providing use cases for CAD models, Deep 
Learning (DL) models have also been shown to be effective 
for medical purposes [11,12]. DL networks face various 
challenges such as the need for large amounts of data to 
perform, the high educational costs associated with complex 
information patterns, and the lack of generally accepted 
assumptions to select the proper DL architecture [13,14]. 
Some machine learning technology uses a created pattern to 
solve problems that need automation, and in this way, 
technological knowledge transfer occurs [15,16]. In the 
meantime, DL and in a better sense, Deep Transfer Learning 
(DTL) architecture is aimed at transferring learning in DL 
based systems to another task in classification [17]. 

Previous studies used handcrafted features to compensate 
for low classification rates due to high processing costs and 
low HI quality. In the study [18], the authors demonstrate the 
different characteristics of malignant tumors. Thus, their 
methods incorporate unsupervised feature embedding and 
clustering [19]. Traditionally, CRC tumors are classified by 
liver pathology imaging based on DTL analysis. In CRC 
research, DL techniques based on HI analysis are crucial. 

The primary responsibility of a pathologist is to 
determine the stage of a malignant tumor. Several subtypes 
of cancer can be distinguished from each other. Choosing the 
type of tissue to be treated is the first step in creating a 
treatment strategy. Overfitting is the key concern here, since 
it impacts accuracy and precision. Since the images have a 
high degree of textural similarity, it is imperative to employ 
an automated method to maximize the learning process. It is 
possible reduce absolute errors by utilizing DL techniques. 
In order to provide accurate classification and automate 
CRCs, DL requires many images. As a result of this study, 
the DTL model used to classify CRCs has been improved. To 
reliably classify HI, Residual Networks (ResNet) needs a 
small number of training pictures and a large number of 
colon tissue classifications.  

The complexity of analyzing HIs is exacerbated by the 
absence of annotated HIs and the presence of several color 

spaces. Since histopathology focuses on tissues rather than 
specific structures, capturing HI presents a challenge. Based 
on the WideResNet architecture, ensemble feature 
generation and learning methods are used to develop our 
proposed system, and the results are estimated. The purpose 
of this study was to fill the gaps in previous research, in 
particular low classification accuracy and multi-class 
analysis of HI. This study can contribute to a number of 
areas: 

• Specifically, the ultimate goal of this study is to
develop novel and distinctive DL structures. In
order to improve the classification of features, we
started by adding information about color space,
saturation, and value. Primarily, our objective is to
discover an improved method for classifying
features according to their HSV properties. Using
HSV instead of RGB color space, pictures of
histopathological lesions of color combine with
homogeneous light and reduce the influence of
artificial colors. A second stage utilizes Transfer
Learning (TL) to increase performance by
accessing a variety of feature maps;

• It is our understanding that no DL method has been
proposed to date that uses cumulative feature
extraction and multi-class classification of HIs to
find CRC.  As a second input to the proposed
structure, each HI is also associated with the
correlation procedure to generate the two-
dimensional correlation matrix;

• It is possible to distinguish between several
different types of CRC using HI analysis. By
adopting this new strategy, the possibility of
uncertainty and generalizability has been
significantly reduced. The technique is unaffected
by the presence or absence of high-contrast or high-
quality information in the image;

• Various methods of algorithm training and testing
have been considered in order to achieve the desired 
results. For Cross-Validation (CV), 100,000 HIs
from two separate HIs were employed.

Accordingly, our research is organized as follows. Section 2 
provides a brief overview of the related research. Section 3 
discusses the novel technique for ensemble feature extraction 
and learning that is based on an optimized DTL structure. 
The experimental outcomes achieved with the suggested HI 
analysis approach are summarized in Section 4. A summary 
of the major points discussed in Section 5 follows the 
conclusion of this study. 

2. Related work
As opposed than conventional approaches that extract their 
characteristics from the texture of high-resolution images, 
DL methods produce a uniquely descriptive description 
directly from the raw image.  

Sirinukunwattana et al. [7] developed a technique for 
identifying and classifying nuclei in a variety of settings 
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using in-depth learning (miscellaneous, inflammatory, 
epithelial, and fibroblastic).  

The contour segmentation technique and Convolutional 
Neural Network (CNN) architecture were used by Haj 
Hassan et al. [20] to differentiate CRC tissues from 
multispectral HI. The three types of tissue associated with 
CRC degrees could be consistently identified using 
segmented HI areas, namely carcinoma (CA), Intraepithelial 
Neoplasia (IN), and Benign Hyperplasia (BH). 

Iizuka et al. [21] used WSIs of gastric and colorectal 
tumors to diagnose tumors by training Recurrent Neural 
Networks (RNNs) and CNN architectures. Researchers 
correctly identified three types of WSI images in three 
different types of tissue: adenomas, adenocarcinomas, and 
non-neoplastic tissues. 

A reliable CAD strategy was developed by Kwak et al. 
[22] to identify lymph node metastasis in patients with CRC 
using a combination of High-resolution Imaging and feature 
interpretation. Based on the CNN framework, they 
developed a DL model for detecting CRC texture, which was 
then applied to a variety of real-world situations. 

Additionally, Korbar et al. [23] devised a CAD method 
for identifying colonic polyps that could be used to visualize 
them. 

Using high-resolution colon images, Manivannan et al. 
[24] analyzed the endocrine systems. Their algorithm 
combined the features of a hand-made multiscale image with 
those calculated by a DL algorithm designed to convert 
segmentation predictions into results. A comparison was 
made between the developed system and the GlaS dataset. 

Ho et al. [25] combined the DL ResNet-101 model with 
the recurrent CNN to eliminate glandular segmentation from 
their results. Their blood test was able to distinguish high-
risk characteristics of cancer and dysplasia with an AUC of 
0.91 and a sensitivity of 97.4%. 

Using CNN and multi-channel attention mechanism 
models, Chen et al. [26] classified colorectal HI at the initial 
stage. The second step training set included incorrect 
classification images again, improving the model's accuracy. 
In their dataset, they achieved 98.98% classification 
accuracy, and in the HE-NCT-CRC-100K dataset, they 
achieved 99.77% classification accuracy. 

A proposed method of patch aggregation based on CNN 
structure has been proposed by Wang et al. [27] for the 
diagnosis of CRC clinics, according to which fragments of 
poorly labeled patient slide images could be pasted. Prior to 
their public dissemination, HIs' methodologies were refined 
and evaluated by a substantial sample of participants. Based 
on the calculated Kappa value, it averaged 0.896. According 
to the results of this study, the Area Under the Curve (AUC) 
for CRC diagnosis exceeded not only the performance of 
pathologists, as indicated by AUC values of 0.98 and 0.97, 
but also all other procedures examined. 

Riasatian et al. [28] combine HI in various topologies to 
distinguish between tumor types. The KimiaNet [28] 
network consists of several dense blocks based on DenseNet. 
In the Atlas of Cancer Genome Database, there are 7126 slide 

images of human pathology samples embedded in formalin-
fixed paraffin made from 240,000 images collected at 20 
magnifications. We evaluated KimiaNet's search and 
classification capabilities using three publicly available 
datasets: CRC images, endometrial cancer images, and the 
Cancer Genome Atlas. 

Kassani et al. study [29] presented empirical support for 
the effectiveness of using TL and CNN modules inside the 
encoding component of a segmentation framework. A 
comprehensive and comparative examination was 
undertaken to address the complex histology segmentation 
challenge. This study illustrated the advantages of including 
deep modules into the segmentation encoder-decoder 
network and elucidated the distinct functionalities of its 
different components. 

Raju et al. [30] proposed a CNN architecture based on 
DL models for HI multiclass categorization. This discovery 
was made by employing three distinct DL models. The most 
effective model was the recommended adaptive Resnet152 
model, producing 98.38% accuracy. Additional models 
included in the study encompassed VGG16, which achieved 
an accuracy rate of 96.16%, and a customized iteration of 
Resnet50, which yielded a higher accuracy rate of 97.08%. 
A colorectal imaging multiclass dataset of 5000 images 
across eight classes. In this study, the researchers utilized 
image augmentation techniques to generate a dataset 
consisting of 15,000 images. This was achieved by applying 
proportionate enhancements to all classes within the dataset. 

Bokhors et al. [31] employed Artificial Intelligence (AI) 
methodology for segmenting distinct tissue compartments 
within whole-slide images stained with H and E. This 
technique was intended to enhance tissue architecture and 
composition. The present work assessed a range of advanced 
loss functions applicable to segmentation models. It also 
offered guidance on their use in HI segmentation. This was 
achieved through an analysis of a multicentric cohort 
including CRC patients from five medical institutions 
located in the Netherlands and Germany. Automated models 
were employed to develop a CAD approach aimed at 
classifying colon samples into four distinct categories based 
on their pathogenic significance. 

Khazaee et al. [32] proposed the utilization of a dilated 
ResNet (dResNet) architecture along with an attention 
module to generate deep feature maps for tissue 
classification in HIs. The utilization of Neighborhood 
Component Analysis (NCA) also mitigates computational 
complexity. The hybrid technique was verified and evaluated 
using the NCT-CRC-HE-100 K and CRC-5000 datasets. The 
hybrid model's accuracy on CRC datasets was 99.5%. 

Compared to other tissues like breasts and prostates, 
CNN's development for colon histology is behind. Through 
the combination of their hybrid model with a modified DTL 
structure, we may be able to avoid issues such as 
overfitting, inadequate learning, and uncertainty. Rather 
than  relying  on  pre-existing  datasets  or  binary  classes,  
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Figure 1. It is shown in two sections, training and testing, how the 
approach works. 

researchers developed their own segmentation model and 
trained and evaluated it on a wide range of educational 
pictures (tumor or non-tumor). When applied to a WSI colon 
biopsy, machine learning is able to detect epithelial tumors, 
even when the background is benign as shown in the case 
study. In the field of colon histology, DL plays a very 
important role, as demonstrated in this study. 

3. Methodology
An overview of the introduced method illustrated in Figure 
1 how CRC is detected in HI. The sections of the introduced 
method are explained below. 

3.1. RGB to HSV color 

Since staining blends hues, His are inherently difficult to 
evaluate. In order for the HI processing phase to produce 
natural light homogeneity, the HSV color space, which 
includes color, saturation, and brightness, is necessary. HSV 
color facilitates the understanding of the correlation between 
image surface and perceived light intensity. Given that d=M-
m, m=min (R,G,B), and M=max (R,G,B), they provide a 
precise calculation of the H section. The values of r, g, and b 
may alternatively be determined using b= (M-B)/d, g= (M-
G)/d, and r= (M-R)/d. 

Since HSV's brightest color is relatively similar to white 
light, light scattering at high colors intensities can be 
minimized, which results in a homogeneous signal. Due to 
this effect, objects appear brighter and redder in bright light. 
However, dim light makes these objects appear darker. The 
method of HI is highly sensitive to light leakage, hence 
requiring the use of a point light source in the RGB color 
space. The HSV converter employs a processed RGB image 
to ensure uniform brightness levels. Figure 2 illustrates how 
to transform a RGB image into an HSV image. 

3.2. Deep CNN architecture 

CNNs are a sort of neural network that was invented [33]. 
The primary convolutional Eq. (1) was solved using a 

sequence of convolutional filters, and non-linearity was 
incorporated into this architecture. Numerous machine 
learning issues have been solved with remarkable results. A 
CNN's architecture is hierarchical. The following layers xj 
(Eq. (1)) are calculated from the input signal x: 

ρ= − +1 ( ).j j jx W x  (1) 
Despite the fact that Wj is a linear operator, there is a non-
linearity involved. In addition, Wj is typically used as a 
convolutional layer in a CNN, and is either a rectifier max 
(x;0) or a Sig (exp (-x) + 1)-1. Let Wj be a stack of 
convolutional filters. Each layer is a filter map, and its 
convolutions are defined as the sum of the previous layer's 
convolutions (Eq. (2) and (3)): 

( )ρ −= ∗∑ , 1,   ( (.,( ) (., ))( )) ,
jj j j k jk

x u k W k x k u             (2) 
∞

=−∞

∗ = −∑ ( )( )( ) ( ).
u

g f x g u f x u       (3) 

Convex optimization problems were used because of their 
numerous benefits, including their computational tractability 
and unique optimal solutions. Moreover, Stochastic Gradient 
Descent (SGD) is used to train the weights Wj, and the 
gradients are usually obtained by backpropagation. Data 
dependence is one of the key challenges associated with DL. 
Contrary to more traditional machine learning techniques, 
DL is primarily taught on massive amounts of data. In order 
to train the underlying data patterns, vast amounts of data are 
required. The benefits of HI processing include the 
development of intelligent technology as well as the 
diagnosis of many diseases. Consequently, it is necessary to 
monitor for diseases on a continuous basis and to properly 
design the decision-making architecture. We need an 
automated decision-making system capable of a variety of 
implementation capabilities, such as real-time detection of 
cancer, lesions, or aberrant tissue in HIs, to communicate 
with an expert monitoring system in a medical situation. 

3.3. Ensemble WideResNet 

Eq. (4) delineates a residual block that incorporates an 
identity mapping. 

+ = +1 ( ), .l l l lx x W x    (4) 

The function   is commonly regarded as a residual 
function, whereas Wl is used to denote the block parameters. 
The variables xl+1 and xl are representative of the input and 
output of the lth unit inside the network. A residual network 
is comprised of residual blocks that are organized in a preset 
order. Residual networks employ two essential construction 
components. The initial component is a convolutional layer, 
extracting distinctive characteristics from the input. The 
second unit comprises a Fully Connected (FC) output layer 
that utilizes the characteristics extracted in the preceding 
step. In other hand, we have two parts. The simple 
component comprises of two consecutive convolutions, each 
with a size of 3 × 3. Moreover, Batch normalization and 
Rectified Linear Unit (ReLU) activation function are applied 
between these convolutions. The convolutional operation of 
a 3 × 3 filter followed by another convolutional operation 
with Figure 3(a). 
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Figure 2. Conversion process from RGB image to HSV image. 

 

 
Figure 3. Various residual networks yield an appealing WideResNet topology. Additionally, it is worth noting that prior to each convolution 
operation, batch normalization and ReLU activation are applied. However, these steps are omitted from the provided illustration for clarity. 
The sequence of convolutional operations as: (a) basic, (b) bottleneck, and (c) WideResNet architecture.  

 

The second component is a bottleneck including a solitary 3 
× 3 convolution encircled by 1 × 1 convolutional layer that 
concurrently reduce and expand the input dimensionality. 
The sequence of convolutional operations consists of a 1 × 1 
convolution, followed by Conv1×1, Conv3×3, and Conv1×1 
as shown in Figure 3(b). The final structure is shown in 
Figure 3(c), which uses two 3 × 3 convolutional layers and a 
dropout part. 

After analyzing the features, the WideResNet structure 
will build the set of features used in the next step. The two-
dimensional correlation matrix is derived from the pixels of 
each HI and is used as the second input to the structure. 
WideResNet deep extracted features are employed to predict 

relationships between different variables. This correlation 
matrix can be used to gain insight into the underlying 
structure of the data and make predictions about features. By 
using a DL model, such as WideResNet, it is possible to learn 
complex relationships between different variables in HIs. 
This model can then be used to predict the value of a given 
variable based on its correlation with other variables. Thus, 
the Pearson Correlation Coefficient Matrix (PCCM) was also 
used to calculate correlation coefficients between signal 
features [34,35]. In our analysis, each HI was treated as a 
node (that is, both the original and HSV images). Pearson 
correlation coefficient was used to determine the correlation 
between the two HI. PCC uses  Eq. (5): 
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Figure  4. The framework of the proposed architecture based on ensemble WideResNet. 

( )
ρ

σ σ
=,

,
,X Y

X Y

cov X Y
 (5) 

where X and Y are the feature vectors of two different input 
HIs. Furthermore, σX represents X's Standard Deviation 
(SD), and Cov(X,Y) denotes the Covariance (COV) between 
X and Y. Besides, σY shows the SD of Y. As a function of the 
mean and expectation, the Cov(X, Y) is written as Eq.  (6): 

( ) µ µ= − −[( ) ( )]  , .  X YCov X Y E X Y           (6) 

Assuming μX is the mean of X and E is the expectation. 
Therefore, Therefore, it can be concluded from Eq. (7) that: 

( )σ == − −
22 2 2( ) [ ] [ [  [ ] ]] .E X EX XX E X E  (7) 

The classification prediction model for CRC based on HI is 
derived from a modified WideResNet model. The proposed 
model effectively incorporates ResNet networks, where one 
network is provided with the HI and the other network 
receives the corresponding PCCM. Initially, the FC layers of 
the two networks were merged, and the output of the 
convolutional layer was then directed to a unified FC layer. 
The classification process was accomplished by integrating 
feature maps derived from the signal with feature maps made 
from the correlation coefficient matrix of HI. The signal 
properties for each channel were extracted based on various 
tissue characteristics. In order to enhance the model's 

accuracy, we calculated a matrix of Pearson correlation 
coefficients for the aforementioned features. Following the 
FC layer, a SoftMax layer was included to specify the input 
labels. To optimize the model's training efficacy, we 
provided a signal and the PCCM as inputs to two ResNet 
networks, and then recorded the resultant weights. The 
proposed ResNet architecture can be seen as an improved 
version of the commonly employed WideNet design. 
Ensemble learning, incorporating three distinct modified 
architectures, where concatenated features are employed in 
FC layers, has the potential to yield significant 
enhancements. The inclusion of these weights in the 
provided model can be attributed to the training process 
using two distinct ResNets. Accordingly, the proposed 
structure consists of the inputs extracted through the model 
and a matrix that relates the features together. After passing 
through the convolutional structure, these inputs are finally 
concatenated together. Each channel's output characteristics 
were extracted from HIs, and a PCCM was then produced 
and included in the model. After the FC layer, a SoftMax 
layer was used to specify the input label. ResNet networks 
were trained using the same input HIs (HSV), as well as the 
corresponding PCCM, with weights stored to improve the 
model's training. Due to the fact that the new model was 
trained using two unique ResNets, these weights are 
incorporated. Figure 4 illustrates the proposed architecture. 
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Figure 5. A row containing examples from just one class illustrates a sample image from a dataset. HIs from left to right and 
from top to bottom are: (1) Background, (2) Adipose tissue, (3) Mucosal glands, (4) Mucosal remnants, (5) Immune cells, (6) 
Complex stroma, (7) Simple stroma, and (8) Tumor epithelium [36].  

Based on the literature [35], WideResNet provides 
features to classify images, recognize objects, and identify 
anomalies. These features can be extracted using TL and DL. 
High-level features refer to features that are extracted from 
the input image and can be used to discriminate between 
different classes. Deep WideResNet can provide shape, 
texture, and color. These features can then be utilized to 
classify HIs, detect objects, and find anomalies in HIs. These 
features can also be used to detect and diagnose diseases, 
such as cancer, and to automate medical image analysis. In 
addition, these features can also be used to improve the 
performance of medical imaging systems. 

4. Experimental results
4.1. Dataset 
Data were received from the Medical Center of the 
University of Mannheim (Germany), which was previously 
mentioned [36]. Figure 5 illustrates that tumors are made up 
of eight different types of tissues. The cancer epithelium is 
followed by (1) Background, (2) Adipose tissue, (3) Mucosal 
glands, (4) Mucosal remnants, (5) Immune cells, (6) 
Complex stroma, (7) Simple stroma, and (8) Tumor 
epithelium. There are 5000 images in the collection with a 

150 × 150-pixel resolution and 74 × 74-micrometer 
resolution.  

Staining is usually visible on the images that a 
pathologist needs to make an accurate diagnosis. The 
pathologist can distinguish them from one another by using 
additional histological markers, such as formalin. The 
images in this dataset have been labeled by experts. 

The NCT-CRC-HE-100K HI kit is a publicly accessible 
collection of 100,000 images divided into nine distinct 
classes each with an aspect ratio of 224 × 224 pixels and an 
average pixel size of 0.5 mm. The nine types of tissues that 
can be analyzed are as follows: Adipose tissue (ADI), 
Normal colon mucosa (NORM), CRC, Debris (DEB), 
Hematoxylin-Eosin (HE), Lymphocytes (LYM), Mucus 
(MUC), smooth muscle (MUS), NCT, and cancer-associated 
stroma (STR). 

4.2. Setting 
The computational system used in our technique was equipped 
with a Core i-7 CPU and 16 GB of RAM. A variety of web-
based add-ons and toolkits are included in MATLAB's 
software environment. The computer is not equipped with 
a  dedicated  electronic  Graphics Processing Unit (GPU). 
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Table 1. For the first dataset with eight classes, this table presents the accuracy of CRC categorization through HI analysis. 

Dataset 1 
BasicResNet ResNeXt WideResNet Ensemble 

WideResNet 
Min Max Min Max Min Max Min Max 

Background 97.48 98.19 98.78 98.88 98.78 99.22 99.08 99.62 
Adipose 96.54 97.61 97.62 98.17 97.94 98.51 98.19 98.70 
Glands 96.59 97.73 97.28 98.11 97.90 98.41 98.39 98.85 
Debris and mucus 96.98 97.77 97.64 98.12 98.33 98.93 98.74 99.29 
Immune cell conglomerates 96.56 97.83 97.31 98.42 98.07 98.78 98.41 99.12 

Stroma (complex) 97.21 97.92 97.49 98.13 98.02 98.65 98.34 98.73 
Stroma (simple) 96.54 97.65 97.43 98.10 97.82 98.41 98.03 98.63 
Tumor epithelium 96.27 96.91 96.88 97.28 97.10 98.03 97.23 98.44 
Average 96.77 97.70 97.42 98.11 97.99 98.61 98.55 98.93 

Table 2. For the second dataset with nine classes, this table presents the accuracy of CRC categorization through HI analysis. 

Dataset 2 BasicResNet ResNeXt WideResNet Ensemble 
WideResNet 

Min Max Min Max Min Max Min Max 
Adipose tissue (ADI) 95.54 97.95 96.08 98.22 98.12 99.73 98.31 99.73 
Background (BACK) 96.48 97.22 96.35 98.31 98.27 99.44 98.48 99.44 
Debris (DEB) 97.72 98.79 96.67 98.33 98.51 99.28 98.73 99.28 
Lymphocytes (LYM) 95.70 96.57 95.42 96.63 97.70 98.38 98.44 99.38 
Mucus (MUC) 95.76 97.91 96.36 97.24 98.33 99.41 98.65 99.41 
Smooth muscle (MUS) 95.49 97.28 96.09 98.17 97.51 98.28 98.51 99.28 
Normal colon mucosa (NORM) 96.54 97.42 96.05 97.49 97.47 98.12 98.47 99.12 
Cancer-associated stroma (STR) 95.85 97.19 95.80 97.42 99.67 99.48 99.67 99.48 
Adenocarcinoma epithelium (TUM) 96.27 97.03 96.43 98.41 98.82 99.39 98.82 99.39 
Average 96.15 97.54 96.13 97.80 98.26 99.05 98.68 99.40 

In order to  construct  training, testing, and validation sets, 
the data can be split into three groups with a ratio of 60-20-
20. With a primary learning rate (µ) of 0.002 and 100-1000
iterations, the models have been trained to be effective in the 
real world. 

Moreover, the mini-batch size was limited to 32 and the 
early-stopping period was limited to 10 epochs in the 
absence of accuracy gain. We applied the Root Mean Square 
Propagation (RMSProp) method, as well as momentum and 
the Stochastic Gradient Descent (SGD) method, to this 
optimization problem. To prevent the over-fitting challenge 
within the suggested DL structure, we combined dropout and 
early-stopping strategies when defining the optimal training 
iteration. When we fine-tuned the network, we incorporated 
a Softmax layer as classification layer, which was achieved 
by replacing the final three layers with a FC component. The 
bias learn rate factor (value of 20) and weight learn rate 
factor (value of 10) needed to be set to values that were 
higher than those used in the traditional structure in order to 
accelerate learning in the new layers. During the tuning 
phase, a bias learns rate factor of 20 and a weight learn rate 
factor of 10 were employed. 

4.3. Evaluations 

For detecting distinct classes (textures found in HI) and 
classifying CRCs based on HI, we compared family-based 
ResNet learning algorithms to WideResNet ensemble 

architecture. The WideResNet Ensemble is employed in both 
datasets, as seen by the data presented in Tables 1 and 2, in 
order to ensure optimal performance in feature extraction. 
According to the findings shown in Table 1, it is evident that 
many categories may be assigned to each class within the 
initial dataset, ranging from 1 to 8 categories. For feature 
extraction, ResNet DTL algorithms were employed, but the 
rest of the methodology remained unchanged. Ensemble 
learning determined the best classifier, for example. 
WideResNet's ensemble learning approach has proven 
considerably effective overall as a result of its contribution 
to the classification process.  
   The suggested method has also been compared with similar 
methods such as BasicResNet, ResNeXt, and WideResNet. 
Despite the fact that the suggested DL feature extraction 
approach outperformed the others in some aspects, other 
models within the ResNet architecture families occasionally 
showed a medium classification error. The results in Tables 
1 and 2 indicate that learning can be improved by increasing 
the classifier associated with the right deep transfer method 
and its ensemble processes. With the suggested methodology 
and a small number of replications, it is possible to generate 
relevant feature maps of HI in just a few minutes. Certain 
transfer techniques that rely on time transfer might be 
computationally intensive, especially during the training 
phase. Consequently, these approaches may not be 
appropriate for real-time applications. However, it is worth 
noting that deeper structures can potentially provide 
improved features in certain situations.  
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Figure 6. For two different test data, the confusion matrices of the classification process of the first HI dataset are shown in this figure. 

Figure 7. For two different test data, the confusion matrices of the classification process of the second HI dataset are shown in this figure. 

The confusion matrices of the classification process for 
the first and second HI datasets are depicted in Figures 6 and 
7. To define the choice technique and maintain the
processing time, possible accessible features were used to 
classify by DTL structures and identify the approach to use. 
Studies have shown that between 98 and 99% of the variation 
in CRC accuracy measurements is caused by HIs. Based on 
the extracted features and CRC challenges, a classification 
method was developed using two datasets. According to the 
test findings, both datasets were assigned suitable 
classification forms. 

Validation data had an average accuracy of 98.64%. 
Based on the distribution of anticipated classes from the 
confusion matrix, the accuracy of the test data in both 
portions of Figure 6 was independently determined. The 
same output is shown in Figure 7, which reaches a 99.16% 
accuracy rate on both test data sets derived from the second 
HI dataset. A total of 98.98% of HIs were accurately 
classified.  

The inclusion of characteristics obtained by automated 
processes, together with the process of learning the dataset, 
can lead to a notable improvement in classification accuracy. 
This is despite the possibility of the findings being less 
precise than the original dataset. We demonstrate in Scenario 
2 that the classification approach has the same level of 
reliability by using a second data set with a large number of 
HIs. Using the method described here, CRC tissues of 
different types can be identified. Additionally, it achieved 
99% accuracy when dealing with a wide variety of texture 
classifications, indicating that the extraction of the suggested 
feature and the developed learning methods obtain a 
reasonable level of generalization and certainty. The results 
show that the proposed model is competitive in terms of CRC 
classification and diagnosis. 

In classification problems with multiple thresholds, the 
Area Under the Curve of the Receiver Operating 
Characteristics (AUC-ROC) can be used to measure 
performance. By analyzing the AUC, we can determine the 
level of discrimination. 
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Figure  8. As demonstrated by this figure, the AUC values for different classes of unseen HIs were calculated. The diagrams (a) and (b) show 
the ROC results for unseen images from dataset 1,  (c) and (d) show the ROC results for unseen images from dataset 2.  

Plotting ROCs demonstrates that the model is able to 
distinguish between various types of CRC in HIs. Figure 8 
shows the results of a series of studies in which the AUC 
values for four different classes of unseen HIs were 
calculated. Because this is a multi-class mode of CRC, the 
logic for drawing a curve relies on the classification of one 
class against another. The first two diagrams in Figure 7 
depict unseen data from dataset 1, and the second two 
diagrams show the classification and plotting of ROCs in 
dataset 2. In Figure 8(a), respectively, the AUC values for 
classes 1 to 8 are equal to 0.984, 0.988, 0.994, 0.987, 0.995, 
0.989, 0.997, and 0.993, and for Figure 8(b) are 
corresponding to 0.989, 0.984, 0.985, 0.988, 0.977, 0.988, 
0.995, and 0.992. Moreover, in Figure 8(c), respectively, the 
AUC values for classes 1 to 8 are equivalent to 0.984, 0.988, 
0.994, 0.987, 0.995, 0.989, 0.997, and 0.993. For Figure 8(d) 
are equivalent to 0.989, 0.984, 0.985, 0.988, 0.977, 0.988, 
0.995, and 0.992. Moreover, in Figure 8(c), respectively, the 
AUC values for classes 1 to 8 are equal to 0.993, 0.993, 
0.995, 0.995, 0.994, 0.995, 0.997, 0.997, and 1.000. For 
Figure 8(d) are equal to 0.993, 0.991, 0.996, 0.995, 0.993, 
0.994, 0.996, 0.997, and 1.000. 

4.4. Discussion 
The proposed approach must be capable of classifying 
tumors and colon tissue into at least two distinct groups in 

order to identify them and categorize them. As a result, 
clinicians can more accurately diagnose patients. Each 
approach is used for a different purpose in the classification 
of CRCs. It is vital that a record of similar cases be available 
to make an accurate diagnosis. A pathologist uses 
microscopic criteria to diagnose sick slides, including the 
color, size, texture, shape, and blackness of cells. According 
to early research [37], color information can be preserved by 
retaining the HSV color space. HIs can be employed to detect 
healthy cells from malignant cells based on their hues. If the 
color of a HI is to remain constant, then the original color 
must be preserved. The HSV color representation is more 
realistic than RGB because it more closely resembles how 
humans perceive color. However, lighting and contrast may 
make it difficult to distinguish the correct features. 
Therefore, an HSV color model was proposed, which 
preserves color while addressing challenges outside the 
model's scope. 

By incorporating a wideResNet structure into an 
ensemble, meaningful features can be extracted at a suitable 
level of processing complexity. As a result of WideResNet's 
structure, it is simple to develop a architecture with many 
layers,     thereby    reducing   the  number  of   training  and 
testing errors.   In contrast  to  earlier  learning  architectures, 
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Table 3. We evaluate our suggested model against other quantitative approaches using the same data sets. 
Author(s) Used dataset Proposed structure Accuracy Computational 

complexity 
Generalizability 

Chen et al. [26] NCT-CRC-HE-100K 
MCAM 99.68% High Medium 
IL-MCAM 99.78% High Medium 

Kather et al. [40] NCT-CRC-HE-100K VGG-16 and TL 98.70% Low Medium 

Hamida et al. [39] 
Kather texture 2016 ResNet and TL 96.60% High Medium 
NCT-CRC-HE-100K ResNet and TL 99.76% High Medium 

Ghosh et al. [38] NCT-CRC-HE-100K Ensemble learning based on
the CNN 96.16% High Medium 

Raju et al. [30] Kather texture 2016 Adaptive Resnet152 model 98.38% High High 

The proposed 
model 

Kather texture 2016 
Ensemble WideResNet 

98.74% Low High 
NCT-CRC-HE-100K 99.23% Low High 

WideResNets uses identity mapping to avoid disappearing 
gradients. WideResNet's residual blocks eliminate the 
problem of vanishing gradients. Ensemble learning in 
networks is enabled by convolutional layers, which are the 
last bottleneck blocks. An ensemble is more effective than a 
single model because it can make more accurate predictions 
and perform better than any single model. 

There is a significant difference between the rate at which 
DL algorithms converge and the credibility of their results. 
The WideResNet technique outperformed the other two in 
terms of relevant attributes and convergence speed (e.g., in 
comparison with BasicResNet and ResNeXt architectures). 
In order to obtain the most accurate results for feature 
extraction, it became increasingly critical that CRC 
classification be reliable and robust in order to handle the 
growing number of His classes. As seen in Figure 9(a), the 
first set of HIs investigated during the DL model's initial 
phase produced the best results in terms of accuracy and loss 
computations. Using loss and accuracy computations, we can 
build a DL model based on the last two components of Figure 
9(b) to reliably identify the sections. 

This approach also has a manageable level of 
computational complexity. In addition, the WideReNet 
ensemble is useful because it produces related features that 
are then optimized through the collection mechanism, as 
shown in Figure 10. In this figure, the values of accuracy, 
sensitivity, and specificity for an unseen data sample are 
displayed, which are shown in sections (a) and (b) for 
datasets 1 and 2, respectively. With our concept, unlike 
Softmax and End-to-End (e2e) designs, computing 
complexity is reduced while maintaining high accuracy and 
competent processing performance. Additionally, an 
examination was conducted on the computational 
complexity issue, as well as an evaluation of the 
effectiveness of the suggested method for feature extraction 
and ultimate classification. 

Table 3 compares the results of similar approaches to the 
results of the proposed method. In this table, quantitative 
approaches and the proposed algorithm are compared using 
NCT-CRC-HE-100K and Kather texture 2016 pictures, 
demonstrating that the proposed algorithm has a strong 
multi-class capability. However, the algorithm's results have 

not yet been tested on unseen data in an analogous fashion. 
Thus, the generalizability of the suggested technique can be 
demonstrated with respect to a substantial portion of the HI 
visual data. 

Using the NCT-CRC-HE-100K dataset, Ghosh et al. [38] 
demonstrated 96.16% accuracy with high computing 
complexity using ensemble learning based on CNNs to 
identify various lesions in HIs. We have improved the 
accuracy by 2-2.5% compared to this model. In a study by 
Hamida et al. [39] with 96.6% accuracy, these results were 
implemented in Kather texture 2016. The NCT-CRC-HE-
100 K database was also expressed with 99.76% accuracy 
and low generalization. 

The proposed approaches are 0.02% less accurate than 
MCAM and 0.06% more accurate than IL-MCAM, 
according to Chen et al. [26]. Compared to their models, our 
method has a significant reduction in computing complexity. 
They also overlooked the intricate nature of the tissue 
depicted in the photograph, as well as the asymmetrical 
dispersion of light caused by the staining process, which 
results in variations in color intensity.  

Kather et al. [40] also used NCT-CRC-HE-100 K and VGG-
16 with TL structures, which reached 98.70%, a little lower than 
our proposed model. There are a number of challenges in similar 
approaches, including overfitting, a lack of available HIs, and 
added artifacts from the environment during the recording of 
WSIs. Because early identification of colon cancer is so vital, 
swift and precise classification of HIs is a crucial stage in the 
process. To ease pathologists' labor, accurate categorization 
techniques must perform well in the absence of annotated 
databases. This research lays out a generalizable technique for 
overcoming learning and time restrictions, as well as making HI 
pictures more accessible in clinics and ensuring accurate 
classifications. 

5. Conclusion
Using three WideResNet-based Deep Transfer Learning  (DTL) 
algorithms and effective learning, we classified Colorectal 
Cancer (CRC) from Histopathology Imaging (HI). An 
ensemble model of WideResNet modules is proposed to 
analyze the texture of CRC histology. When microscopy was 
used to record various colon tissues, the HSV-based color 
transform  method  was  used  to  reduce  image  artifacts.  These 
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Figure 9. For both datasets, we selected several unseens HIs and compared our model with BasicResNet and ResNeXt based on accuracy in 
(a), (c) and loss in (b), (d), respectively. 

Figure 10. As shown in sections (a) and (b) for datasets 1 and 2, the accuracy, sensitivity, and specificity values are shown for an unseen sample 
of data. 
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features and ensembles were then used to generate a texture 
with many classes. In both training and testing, the proposed 
method outperforms conventional Deep Learning (DL) 
models. Hence, the new model is an effective tool for 
detecting and classifying colon cancer. Since this method is 
generalizable and is invulnerable to uncertainty, it is superior 
to previous similar methods since it retains accuracy even 
when HIS contains complex components and textures. The 
generalizability of the Kather texture 2016 and the NCT 
CRC-HE-100K dataset has been extensively tested. In order 
to compare histology photographs, we used a variety of 
unseen HIs. DL models will integrate and reorganize 
attention processes in the future. Consequently, our research 
aims to investigate the impact of incorporating attention 
mechanisms into various components of DL architectures on 
the classification accuracy of convolutional layers. 
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