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This contribution introduces and investigates a small network of type-I, type-II, and type-III 

neurons. The considered network is made up of one Hindmarsh-Rose neuron (type-I), one 

FitzHugh-Nagumo neuron (type-II), and one Wilson neuron (type-III), all connected via a gap 

junction. The investigation of the stability in the presence of an external current revealed that 

the network is equilibrium-free; therefore, the network exhibits hidden collective behavior. 

The dynamical behavior of the model has been evaluated using the two-dimensional Largest 

Lyapunov Exponent (2D LLE), and it has been discovered that the network exhibits either 

regular or irregular firing patterns as the synaptic weights vary. It is also found that the 

network is able to exhibit the coexistence of firing activities involving coherent and 

incoherent spiking or coherent and incoherent bursting. Finally, the microcontroller 

integration of the set of considered neurons is presented, and the findings support those of the 

numerical simulations. 

Keywords: Heterogeneous network; Hindmarsh–Rose neuron; FitzHugh–Nagumo neuron; 

Wilson neuron; Coexisting patterns; Microcontroller validation. 

1. Introduction 

Various phenomena such as wave formation, multiple resonance and propagation, 

synchronization, information patterns, and many others Njitacke  et al. [1], are at the origin of 

many brain behaviors. Information patterns have recently drawn a lot of attention in neuro-

engineering based on some of the well-known neuron models Ramadoss et al. [2]. Among 

these neural models, we can mention as an example the Hodgkin-Huxley neuron by Wu et al. 

[3],  the Integrate and Fire (IF) neuron by Woo et al. [4], the FitzHugh-Nagumo (FHN) 

neuron by Izhikevich and FitzHugh [5], the Morris-Lecar (ML) neuron by Leigh et al. [6], the 

Wilson neuron by Wilson et al. [7],  the Hindmarsh-Rose (HR) neuron [8-10], the Chay 

neuron by Lu et al. [11], and the Izhikevich neuron by Izhikevich et al. [12], which are used to 

study the collective behavior of the set of connected neurons. Also, several works have been 

devoted to the study of the energy consumption of the biological neuron based on the 

Helmholtz theorem in order to support the varieties of electrical activities generated by those 

models as can be seen in Yang et al. [13],  Xie et al. [14] and Sun et al. [15]. Apart from the 

previously quoted classes of neurons, several works have been also devoted to the study 

Hopfield neurons type. For example in Lai et al. [16, 17]  the authors designed some 

memristive Hopfield neural networks with the properties of generating multiscroll. 

Particularly in ref. [16] an application to images encryption was develop using the random 
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sequences generated by their multiscroll system. As it can be seen in Lai et al. by [18, 19]  not 

only HNN are suitable for data protection. From the quoted references it is obvious that even 

discrete map are highly used for such applications. Also a particular attention has been 

recently devoted to the study of discrete neurons model such as Chialvo  neuron by Ma et al. 

[20]  or  of Ma et al. Rulkov [21]  neuron. From the investigation of such model authors 

realized such type of neuron model has less computational time than the continuous neuron 

model. 

In De et al. [22], the authors studied the dynamics of a model of the FHN neuron coupled with 

a model of the ML neuron via  a gap junction. The authors discovered that for different 

intensities of coupling strength, their considered coupled neuron could exhibit behaviors such 

as quiescence, coherent spiking, coherent bursting, and burst synchronization. The 

coexistence of firing patterns involving periodic and chaotic bursting has been reported in the 

work of Li et al. [23]. They also discovered phase synchronization in two different sets of 

connected neurons using a memristive synapse. In addition, a circuit realization of the 

connected neurons was also provided to further support their study. A model of HR neuron 

linked with a model of FHN neuron based on a memristive synapse has been investigated in 

Njitacke et al. [24]. The results showed that the coupled model could exhibit oscillatory 

dynamics. Furthermore, the model could also exhibit extreme homogeneous multistability, 

which is materialized by the simultaneous existence of an uncountable number of identical 

attractors. Finally, the authors presented a control technique that enables them to control that 

homogeneous extreme multistability through the selection of the desired pattern. Another 

study has been addressed in Njitacke et al. [25], where the dynamical analysis followed by the 

control of extreme multistability were addressed in the model of HR neuron coupled with 

FHN neuron by a memristor synapse, having a multistable property. The collective behavior 

of the photosensitive FHN neuron coupled with the thermosensitive FHN neuron using a 

memristive synapse has been carried out in Fossi et al. [26]. The investigation by the authors 

showed that the set of considered neurons was capable to experience phase synchronization 

for some discrete values of the coupling strength. More importantly, the phenomenon of the 

coexistence of an infinite number of patterns as well as its control was also addressed. The 

collective dynamics of a small set of three non-identical  neurons have been explored in 

Njitacke et al. [27]. In this quoted work, the network is built in the relay configuration, 

meaning two HR neurons are coupled through one FHN neuron based on the gap junction. 

The sufficient energy needed by the coupled neurons to provide electrical activity was 
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established using the Helmholtz theorem. Also, the exploration of the dynamics of the model 

showed it was capable to support the simultaneous existence of up to three firing modes of 

oscillations for the same sets of the connection weight by exploiting three different initial 

states. Several studies have been conducted on independent neurons in Bao et al.[28] and Hou 

et al. [29]  as well as identically coupled neurons in Wouapi et al. [30] and Zhou et al. [31]. 

Therefore, from these works, it is obvious that the study of heterogeneously connected 

neurons has retained attention in recent years. However, the study of a full heterogeneous 

network in the ring configuration is still to be presented. In this contribution, special emphasis 

will be given to the proposal of a full heterogeneous network comprised of one HR neuron, 

one FHN neuron, and a Wilson neuron, all coupled in a ring topology using gap junction. 

Afterward, the collective behavior will be investigated based on the 2D LLE diagrams. In 

Section II, a model of a network of three different neurons is introduced. In Section III, 

computational analysis tools are used to reveal the evolutional behaviors of that set of 

neurons. In Section IV, the microcontroller investigation of the set neuron is used for the 

validation of the results. The last section concludes this paper and gives an ideal of future 

work on such a model. 

2. Design of the coupled model 

Neurons provide a means for the exchange, storage, learning, and processing of information 

in the brain. Those neurons are generally connected through their synapses, which can be 

electrical, chemical, or memristive. Among the wide classes of neurons studied in the 

previous research works, we have the famous 2D HR neuron as expressed in Eq.(1), which is 

considered as our type type-I neuron model.  
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                                                                                          (1) 

That model was introduced by Hindmarsh and Rose [32]. Besides this model, we have the 2D 

FHN neuron model as provided in Eq.(2), and it is used as our type-II neuron model. It was 

introduced  by Izhikevich and FitzHugh [5]. Finally, the third model considered in this work 

is the 2D Wilson neuron [7]  of Eq. (3) used as our type-III neuron model. 
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  2

3 3 317.8 47.6 33.8m x x x     ,   2

3 3 31.24 3.7 3.2r x x x                                   (3b)    

From Eqs. 1, 2, 3,  1,2,3ix i   are fast variables, corresponding to the membrane 

potentials of each neuron,  1,2,3iy i  designate the parameters for recovery of the 

transmembrane current due to ions Na or ions K  ,   1,2,3ii i   represent external forcing 

currents,  3m x and  3r x  denote the activation function of the Na  ion and state equation 

of the transmembrane current recovery parameter, respectively. From Table 1 of Xu et al. [33]   

NaE  is the reverse potential of Na  ion channel,  mc  represents the membrane capacitor, kE  

the reverse potential of K  ion channel, r  channel activation constant of K   ion and kg  

the maximal conductance of K  ion channel. From these three described models of neurons, 

the full hybrid small network of Fig. 1 has been proposed. The topological configuration that 

takes into account all the neurons is bidirectionally coupled through a gap junction, and all 

three-coupled neurons are different, so they can perform different tasks. Therefore, from that 

topological connection, the mathematical model from which their collective behavior will be 

investigated is given in Eq. (4). The motivation of such topology come from the fact that The 

organization of neurons in the cerebellum, which is responsible for motor coordination, is an 

example of a neuron-connected heterogeneous network [34]. The structure of the 

hippocampus, which is involved in memory formation and spatial navigation, is another 

example of a neuron-connected heterogeneous network [35]. The connections between 

neurons in the olfactory bulb, which is responsible for processing smells, are also an example 

of a neuron-connected heterogeneous network [36]. 
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  2

3 3 317.8 47.6 33.8m x x x    ,      2

3 3 31.24 3.7 3.2r x x x                                     (4a)      

In the coupled network of Eq.4,  1 6im i  are the coupling weight of the considered 

topological connection. Based on previous work on the HR neuron, FHN neuron, and Wilson 

neurons, we would like to stress that Eq. 4, which presents the dynamic model of the three 

coupled neurons, is purely mathematical, and the parameters of the dimensionless model are 

defined as follows: 

1 1a  , 1 3.05b  , 1 1c  , 1 5d   , 1 0.4i  , 2 0.77a  , 
2

1
3

b  , 2 0.8c  13  , 2 0i   , 

3 0.1i  1,  0.5,  0.95,  26,  m Na k kc E E g     5,  0.5r     and 𝑚𝑖(𝑖 = 1, … ,6).   

From the set of parameters used for the investigation, it was found that the small network 

exhibited hidden collective behavior since all the equilibria of the model were complex 

instead of real. 

3. Numerical findings 

Using nonlinear analysis techniques including bifurcation graphs, phase portraits, time series, 

and basins of attractions, the suggested network's overall behavior will be examined in this 

part. The Runge-Kutta algorithm is used to compute each of these tools, and the values of the 

parameters and variables are chosen using the extended precision mode. 

3.1. Two-parameters Lyapunov charts 

In this section, the behavior of the considered network is studied, considering as control 

parameters the synaptic weights of the electrical coupling. Each two-parameter Lyapunov 
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exponent graph is captured by simultaneously sweeping two synaptic weights and saving the 

value of the LLE at each iteration, as shown in Fig. 2.  For each set of synaptic weights, the 

Lyapunov exponent chart is obtained by increasing both synaptic weights starting from the 

same fixed initial condition as provided in the caption of Fig. 2. From those maps, two main 

patterns can be recorded. On one hand, irregular patterns characterized by a positive 

Lyapunov exponent are found, and on the other hand, regular patterns characterized by a 

negative Lyapunov. From the two parameter diagrams in the plane (𝑚6, 𝑚3) , it is clear that, 

for a suitable choice of 𝑚3, the considered network can generate a wide range of irregular 

patterns when varying the synaptic 𝑚6. 

 

3.2.Bifurcation Diagrams and coexisting patterns 

As said previously, a suitable choice of 𝑚3, the considered network can generate a wide range 

of irregular patterns when varying the synaptic weight  𝑚6.  For example, when 𝑚3 = −0.1. 

the 1D evolutional diagram of Fig.3 (a) is constructed. From that diagram, only a few 

windows of synaptic weight 𝑚6 where regular patterns can be captured can be recorded. This 

bifurcation diagram result corroborates well with the evolution of the LLE shown in Fig. 3(b).  

In the same vein, the graphs in Fig. 4 were studied using a series of parameters leading to the 

plan (𝑚1, 𝑚3)  as shown in Fig. 2 when 𝑚1 = 1. On these bifurcation diagrams, two sets of 

data are accumulated. The data set in magenta is recorded by increasing the tuning parameter 

with fixed initial conditions, while those in blue are obtained with the continuation technique. 

The continuation technique consists of increasing the control parameter while considering the 

initial condition of the next iteration as the final state of each iteration. These obtained 

diagrams enable us to support the simultaneous appearance of firing patterns observed in the 

considered model. For two discrete values of the control parameter 𝑚3 chosen on those 

diagrams, the basins of attraction in Fig. 5 have been determined. From those diagrams, two 

domains of initial conditions associated with each coexisting pattern can be recorded. Among 

them, the blue region is associated with a regular pattern and the magenta region with an 

irregular pattern. Using a discrete value of the control parameter  𝑚3 = 1.41 coexisting phase 

portraits of Figs. 6 (a1), (b1), and (c1) related to the HR neurons, FHN neurons, and Wilson 

neurons have been captured. From their corresponding coexisting time series in Figs. 6 (a2), 

(b2), and (c2), it is obvious that the coexisting patterns found for that set of parameters 

involve periodic (blue) and chaotic spiking (magenta). Using a discrete value of the control 
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parameter  𝑚3 = −0.33 coexisting phase portraits of Figs. 7 (a1), (b1), and (c1) related, 

respectively, to the HR neurons, FHN neurons, and Wilson neurons have been captured. From 

their corresponding coexisting time series in Figs. 7 (a2), (b2), and (c2), it can be concluded 

that the coexisting patterns found for that set of parameters involve periodic (blue) and 

chaotic bursting (magenta). 

4. Experimental validation 

The implementation of this model of coupled neurons was designed around an 

STM32F407ZGT6 microcontroller board (see Fig. 8). The used microcontroller is a 32-bit 

ARM® Cortex®-M4 RISC core and has the property of operating at a high frequency of 

around 168 MHZ. More importantly, it has some specialized functions such as timers, PWM, 

ADC, and DAC, just to name a few. With a suitable configuration environment, the Arduino 

IDE can be used to provide the code that will run and be uploaded to the STM board to enable 

the reproduction of the behavior of the coupled neurons. Since this implementation approach 

does not use usual electronic components, it can be considered a digital implementation of the 

considered set of coupled neurons. 

We employ the fourth-order Runge-Kutta method with a time step of 0.005 to build a 

digital version of our model of coupled neurons that was previously presented with the 

STM32F407ZGT6 microcontroller. The microcontroller's internal DAC makes it possible to 

retrieve analog quantities that reflect the system state variables at the output of the pins. As 

seen in Figs. 9(a) and 9(b), a quick data acquisition module built using an Arduino Mega 

board is used to display the received analog values on a computer. 

We can reproduce the complex dynamic behaviors generated in coupled neurons as 

described by the ODE equations using this experimental setup of the Fig. 9. Figs. 10 and 11 

show experimental results demonstrating the simultaneous existence of firing patterns in the 

set of considered neurons, which are consistent with the numerical simulation results shown 

in Figs. 6 and 7, respectively. Based on these findings, this microcontroller approach is a fast 

and useful tool for implementing neural circuits. 

5. Conclusion   

The investigation of the collective behavior of a set of three linked non-identical neurons has 

been carried out in this contribution. From the stability analysis  of the model, we found that 

it was an equilibrium-free type. The collective behaviors of the networks were characterized 
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in terms of their regular and irregular dynamics using 2D LLE, bifurcation diagrams, phase 

diagrams, time series, and regions of attraction. For some particular value of the gap junction 

strength, we discover that the model could support coexisting patterns involving coherent and 

incoherent spiking or coherent and incoherent bursting. The results of this coexisting behavior 

have been further confirmed using a microcontroller implementation of the proposed network. 

Information coding in a set of homogeneous neurons has recently attracted attention in neuro-

engineering. So the investigation of that phenomenon (information coding) in a heterogeneous 

network of neurons will be the topic of our next investigation. 

 

 

 

6. Nomenclature  

Designation  Function 

 1,2,3ix i   Membrane potential of each neuron 

 1,2,3iy i   Recovery variable for the transmembrane current due to ions Na or 

ions K  ,   

 1,2,3ii i   External currents 

 3m x
 the activation function of the Na  ion 

 3r x
 state equation of the transmembrane current recovery parameter 

NaE  reverse potential of Na  ion channel 

mc  the membrane capacitor 

kE  reverse potential of K  ion channel 

r  channel activation constant of K   ion 

kg  maximal conductance of K  ion channel 
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Figure Captions 

Fig.1. Topological configuration of the coupled neurons 

Fig.2. Two-dimensional (2D) charts showing the various behaviors of the coupled neurons in 

the various for different values of the electrical coupling weights based on the value of the 

associated (LLE). The plane (𝑚6, 𝑚3) is obtained for 𝑚1 = 1, 𝑚2 = 0.6, 𝑚4 =

−0.2 𝑎𝑛𝑑 𝑚5=-0.1. The plane (𝑚1, 𝑚3) is obtained for  𝑚2 = 0.6, 𝑚4 = −0.2 , 𝑚5=-0.1 and 

𝑚6 = 1,. The plane (𝑚1, 𝑚6) is obtained for 𝑚3 = 0.1, 𝑚2 = 0.6, 𝑚4 = −0.2 𝑎𝑛𝑑 𝑚5=-0.1. 

The plane (𝑚1, 𝑚2) is obtained for 𝑚6 = 5, 𝑚3 = 0.1, 𝑚4 = −0.2 𝑎𝑛𝑑 𝑚5=-0.1. These 

diagrams are obtained with fixed initial conditions (1, 0 ,0, 0.1,0.1,0). 

Fig.3. (a) dynamic behavior of the membrane potential of the first neuron 𝑥1 when the control 

parameter 𝑚6 is varied. (b)  is the graph of the LLE associated to (a). These diagrams are 

obtained for the parameters used to compute Fig.2 in the plane(𝑚6, 𝑚3). 

Fig. 4. (a) and (b) are bifurcation plots showing the peak of the membrane potential of the HR 

neuron when the gap junction strength 𝑚3 is varied. The diagrams in magenta are obtained 

using the upward direction of the control parameter with fixed initial conditions, while those 

in blue are obtained with the continuation technique. The remaining parameter values and 

initial states are found in the caption of Fig.2 with the plane (𝑚1, 𝑚3) for 𝑚1 = 1.   
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Fig. 5. Cross-section of the basin of attractions in the plane (𝑦2(0), 𝑥3(0)). (a) is obtained for 

a discrete value 𝑚3 = 1.41 while (b) is obtained for a discrete value 𝑚3 = −0.33. These 

basins of attraction are obtained when other initial conditions are set to zero. 

Fig.6. Phase portraits, showing the simultaneous existence of the firing patterns in the three 

sets of connected neurons. The incoherent spikings in magenta are obtained with initial 

conditions (1, 0 ,0, 0.1,0.1,0). While the coherent spikings in blue are captured with the initial 

conditions (0, 0 ,0, 0.1,0.1,0) when 𝑚3 = 1.41. 

Fig.7. Phase portraits, showing the simultaneous appearance of the firing patterns in the 

coupled neurons. The incoherent burstings in magenta are obtained with initial conditions 

(1, 0 ,0, 0.1,0.1,0). While the coherent burstings in blue are captured with the initial 

conditions (0, 0 ,0, 0,0.1,0) when 𝑚3 = −0.33. 

Fig.8. The STM32F407ZGT6 microcontroller 

Fig.9. Block diagram (a) and experimental setup (b) of the microcontroller-based realization 

of the coupled neurons model. 

Fig.10. Experimental phase portraits showing the simultaneous appearance of firing patterns 

in the sets of considered neurons. The incoherent spikings in blue are captured with initial 

conditions (1.0, 0, 0.1, 0.1, 0). While the coherent spikings in yellow are captured with initial 

conditions (0.0, 0, 0.1, 0.1, 0) when m3 = 1.41.  

Fig.11. Experimental phase portraits showing the simultaneous appearance of firing patterns 

in coupled neurons, the chaotic burstings in blue are captured with initial conditions (1, 0, 0, 

0.1, 0.1, 0). While the periodic burstings in yellow are captured with initial conditions (0, 0, 0, 

0, 0.1, 0) when m3 = -0.33. 
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