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Abstract: The numerical solution of the flow of non-Newtonian fluid induced by symmetrically 7 

stretching fractal sheet in the region of oblique stagnation point flow under the inducement of ex- 8 

ternally applied uniform magnetic field orthogonal to the flow is presented. The analysis is made 9 

under the assumption of a boundary layer which arrives at the system of partial differential equations 10 

which afterward is transformed into ordinary differential equations by using appropriate similarity 11 

transformations. The numerical solution of the modeled system of equation is obtained by parallel 12 

shooting technique and then presented for different variations of involved parameters. It is noted that 13 

enhancement in the magnetic field results in a decrease in horizontal velocity and the boundary layer 14 

becomes thinner. The behavior of streamlines shows that the symmetry of the flow is highly de- 15 

pendent on the obliqueness of the stagnation point flow. It is seen that when the ratio of / 1a c  , the 16 

flow has a normal boundary layer structure but when / 1a c  then the structure shows inverted 17 

behavior. It is also seen that there exists no boundary layer when / 1a c  . The obtained results are 18 

also compared with the available results in the literature and found in excellent agreement in the 19 

limiting cases. 20 

Keywords: Thermal radiation; uniform magnetic field; boundary layer; Maxwell fluid; oblique 21 

stagnation point  22 

1. Introduction 23 

When a fluid reaches the stagnation point, its local velocity becomes zero. The surface of the 24 

body exists in the flow at fluid stagnation point, and the fluid of the body is at rest. The oblique 25 

stagnation point flow discussed and combined at a plane wall are free restriction positions. Stagnation 26 

point flow at oblique flow consists of an orthogonal flow to which an infinite velocity is added. When 27 

a fluid collides with a surface, its velocity vanishes, or becomes zero, this is referred to as a stagnation 28 

point. Recently many researchers have been taking extra interest in stagnation point flows due to 29 

numerous applied applications in different industries. Cooling of nuclear reactors is an example of 30 

stagnation flow. In stagnation flow, the attention-able thing is that the greatest heat moves, and 31 

pressure gradient is found at stagnation stage. Initially Stuart [1] worked on stagnation flow obtained 32 

the analytical solutions for the flow. Tamada [2] and Dorrepaal [3] were the first who generalize the 33 

flow involving stagnation point and obtained solution for oblique stagnation point. In their study, 34 

Tooke and Blyth [4] conducted a concise examination of oblique stagnation point flow. Their find- 35 
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ings revealed that, in the presence of significant adverse pressure gradients, there exists a region near 36 

the wall where the shear component experiences reversed flow. Interestingly, the integration of or- 37 

thogonal flow with shear flows, each exhibiting varying degrees of reversed flow, consistently results 38 

in the same oblique flow pattern. However, the attachment point of stagnation is predictably dis- 39 

placed along the wall. Husain et al. [5] worked on continuous the work viscoelastic fluid model in 40 

stagnation point flow. 41 

The non-Newtonian fluid model is more difficult and complex to solve the individual constitu- 42 

tive equation, but the Newtonian fluid model is easy to solve the constitutive equation. Moreover, the 43 

purpose of much research describes their application, Maxwell finds the proposal attention to the 44 

simplicity of viscoelastic fluid. Wang and Tan [6] studied the linear stability explanation by the 45 

Maxwell fluid model with the thermal diffusion effect. Mukhopadhyay [7] and Nadeem et al. [8] 46 

provided more generalized literature. The most important stretching surface used by industrial firms, 47 

such as warm progression, metal sheet freezing, crystal fibers, wire drawing, and various other ma- 48 

terials. The oscillatory convection damaged the system by thermal diffusion and undependability of 49 

the rise system due to increase time composure. Bilal et al. [9] the three combined convection radi- 50 

ative flow of non-Newtonian fluid over an inclined stretching surface in the presence of thermo- 51 

phoresis and the condition is convective. Javed et al. [10] noticed that Maxwell fluid is the more 52 

suggested flow of stagnation point comprehensively. Tariq et al. [11] study the numerical analysis 53 

mixed convection boundary layer flow second grand viscoelastic due to cylinder of the elliptic cross 54 

section with prescribed surface heat flux. 55 

A flow model solves the boundary layer approximation by a non-linear equation like continuous 56 

and momentum transformation. Sajid et al. [12] analyzed the heat transfer in the stagnation‑ point 57 

flow of a Jeffrey fluid elapsed lubricant to reduce friction and wear and tear in contact between two 58 

surfaces. Khan et al. [13] generalized diffusion effects on Maxwell nanofluid stagnancy point flow 59 

over an extended sheet with chemical reaction in slip conditions. Jawad et al. [14] studied the parti- 60 

tion of Non-linear thermal radiation and the sticky carelessness effect on the time-independent ro- 61 

tating in the three-dimensional flow of single-wall carbon nanotubes with sedimentary suspensions. 62 

Majeed et al. [15] studied the influence of rotating the magnetic field on Maxwell concentrated fer- 63 

rofluid flow over a heated widening sheet with heat generation. Khalid et al. [16] heat transfer in the 64 

flow of Jeffrey fluid past a lubricated surface near a stagnation point flow. Rasool et al. [17] the 65 

magnetic field and effects of radiation of stagnation point flow on mixed convection flow of a cyl- 66 

inder under local thermal non-equilibrium in a porous medium. Reza-E-Rabbi et al. [18] the fluid 67 

flow behavior over a stretching sheet computational modeling of multiphase radiative Casson and 68 

maxwell fluid the appearance of nano-size particles.  69 

Khan et al. [19] the analysis mixed convection flow of Maxwell fluid as the combination of both 70 

coupled free and force convection between two infinite stretching disks with the source of heat. This 71 

paper investigates the problem of oblique hydromagnetic stagnation flow of point an electrically 72 
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Casson fluid over a stretching sheet embedded in a doubly stratified medium in the presence of heat 73 

source and thermal radiation with the first chemical reaction. Ibrahim et al. [20] presented study 74 

slipped effect on stagnation point flow of upper converted non-Newtonian fluid of nanofluid passing 75 

a stretching sheet with chemical reaction. Mekheimer and Ramadan [21] provided the study about the 76 

perspectives on gyrotactic microorganisms in the context of bio-thermal convection of Prandtl 77 

nanofluid over a permeable sheet subjected to stretching or shrinking and revealed that temperature 78 

and density of motile microorganisms are elevated when a shrinking sheet is considered, in contrast 79 

to the case of a stretching sheet. 80 

Chu et al [22] investigated the heat and mass transfer in hydromagnetic stagnation point flow and 81 

provide the dual solution for the Carreau nanomaterial using Runge-Kutta Fehlberg method and 82 

concluded that velocity of fluid is raised for both solution by raising the intensity of suction param- 83 

eter. Khan et al. [23] presented the numerical solution of the stagnation point flow of non-Newtonian 84 

fluid Cattaneo-Chirstov heat flux model and deduced that magnitude of drag force or velocity gra- 85 

dient increases via increase in the strength of applied magnetic field. Mathew et al. [24] considered 86 

multi slip and nanoparticle shape to analysis the stagnation point flow of silver blood fluid. Stagna- 87 

tion point flow and heat transfer analysis over stretching surfaces like plates and cylinders are ad- 88 

dressed by Turkyilmazoglu [25]. He evaluated the exact solution for the flow modeled equations and 89 

deduced from the solution that heat transfer rates from the surfaces in both flow geometries are en- 90 

hanced by the action of walls, with more cooled surfaces in the presence of wall suction. Zaheer et al. 91 

[26] investigated Electroosmotic Forces Driving Boundary Layer Flow of a Non-Newtonian Fluid 92 

Containing Planktonic Microorganisms Using the Darcy-Forchheimer Model and concluded that In 93 

comparison to a Newtonian fluid, the boundary layer velocity is reduced when dealing with a 94 

non-Newtonian fluid. However, the presence of the electro-osmotic parameter causes an increase in 95 

boundary layer velocity. 96 

Abbasi et al. [27] gave the outcomes about the impacts of nonlinear warm radiation for axisymmetric 97 

rotational stagnation point stream with initiation energy and referenced that hub speed increments 98 

while auxiliary speed diminishes by expanding the turn boundary. Wahid et al. [28] looked into the 99 

MHD stagnation-point flow of nanofluid caused by a shrinking sheet with melting, viscous dissipa- 100 

tion, and Joule heating effects. They recommended that the concentrate likewise proposes consid- 101 

ering 2% of alumina volume part rather than 1% so the stream detachment interaction can be post- 102 

poned, and at the same time support the laminar stream. At a certain level of shrinkage, the increased 103 

melting effect reduces skin friction by approximately 5%. Reddy et al. [29] reasoned that an increase 104 

in the Prandtl number results in a reduction in the temperature profile when they examined the vehicle 105 

properties of the stagnation point stream of hydro-attractive radiative nanofluid on the extending 106 

surface. Baig et al. [30] examined the precise solution of stagnation point flow on a nanofluid cyl- 107 

inder in the presence of ambient heat. Their research revealed that stagnation flow prevails over 108 

stretching flow at higher oncoming pressure flow values. Most of the published research on stagna- 109 
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tion point flow uses numerical methods to explain the subject, but the goal of their study is to provide 110 

a precise solution to the issue at hand. Gadelhak et al. [31] provide the Numerical Analysis of Energy 111 

Transport in Williamson Nanofluid Flow over a Curved Stretching Surface Using Finite Difference 112 

Method (FDM) and deduced that the heat flux decreases as the curvature parameter attains higher 113 

values further down. Additionally, both the Sherwood number and Schmidt number increase with 114 

higher values of the curvature parameter. 115 

Many analyses show that the study of two-dimensional boundary layer stagnation point flows is 116 

interesting in the analysis of fluid flow and heat transfer over a stretching sheet. The basis for this is 117 

that these kinds of research have been used in the manufacturing sector. The creation of glass fiber, 118 

hot rolling, continuous casting, extrusion, manufacture of sheets, coating, and production of paper are 119 

examples of manufacturing processes. In the present problem, the study of boundary layer oblique 120 

stagnation point flow of Maxwell fluid with radiation effects over a linear stretching sheet under the 121 

inducement of the magnetic field has been carried out which has not been studied yet. The mathe- 122 

matical modeling based on Tooke and Blyth [4] and numerical simulation using the parallel shooting 123 

technique of governing equations are presented. The effects of different involved parameters on heat 124 

and fluid flow are presented through tables and graphs and a detailed discussion is given in the later 125 

part of the manuscript. An excellent agreement of results has been found with Pop et al. [32] and 126 

Javed and Ghaffari [10]. 127 

2. Problem Formulation 128 

Consider the two-dimensional steady flow of Maxwell fluid over a stretching sheet in the region 129 

of non-orthogonal stagnation point under the influence of externally applied uniform magnetic field 130 

orthogonal to the flow. The stretching sheet is assumed along the plane 0y   and the flow moves 131 

along the y  axis. The velocity wU cx  is the stretching velocity of the sheet, with ( 0)c   being 132 

the stretch constant as shown in Figure 1. The governing equations in the presence of body forces that 133 

describes the current flow are, 134 

0,divV   (1) 

,
dV

p divS b
dt

      (2) 

2 1
. ,r

p p

T T k
u v T q

x y c c 

 
    

 
 (3) 

The div  characterizes the divergence operator, [ , ,0]V u v  is the vector velocity, u  and v  are 135 

the velocity movement components in the direction of x  and y  axis respectively. The bar shows 136 

that these quantities are in dimensionless form that will be converted into dimensional form where   137 

is the density, p  is the pressure,   is the thermal conductivity fluid, pc  is the steady pressure of 138 
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real heat, b  is the is the body force caused by the magnetic field and rq  represents the radiative heat 139 

flux and S  is the extra stress tensor for Maxwell fluid is explain below, 140 

44 *
,

3( )
r

r s

q T


 
  


 (4) 

1 1,
DS

S A
Dt

    (5) 

where Stefan Boltzmann's-constant is *  while , ,r s   , and 1  the Rosseland definition is the 141 

corresponding fluid for dynamic viscosity, scattering coefficient, absorption coefficient, and time 142 

relaxation content. 
1A  is the representation of the first tensor by Rivlin Ericksen, explained by, 143 

1 .TA L L   (6) 

The of velocity gradient and its transpose are represented by L  and 
TL  respectively which are 144 

defined as, 145 

0

0

0 0 0

u u

x y

v v
L

x y

  
  
 
  

   
 
 
 
 

 and 

0

0 .

0 0 0

T

u v

x x

u v
L

y y

  
  
 
  

  
 
 
 
 

 (7) 

The /D Dt  is an operator explained correspondingly in the form of a contravariant vector and 146 

contravariant tensor of rank 2 in Eq. (8) and (9) respectively. 147 

,
DS dS

LS
Dt dt

   (8) 

.TDS dS
LS SL

Dt dt
    (9) 

Divergence applied on Eq. (5) yields, 148 

1 11 . . .
D

S A
Dt

 
 
    

 
 (10) 

Application of 11
D

Dt


 
 

 
 on both sides of Eq. (2) yields, 149 

1 1 11 1 1 ,
dV D D D

p divS b
dt Dt Dt Dt

    
      

           
      

 (11) 

.divS S  . (12) 

So, 150 
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1 1 11 1 . 1 ,
dV D D D

p S b
dt Dt Dt Dt

    
      

            
      

 (13) 

The body fore defined in the above equation represents the Lorentz force which can be expressed as, 151 

ib V B B      . (14) 

As flow is the x direction and 0B is the strength of uniform constant magnetic field that applied in 152 

y direction, therefore we have, 153 

 00, ,0B B . (15) 

Thus 154 

 00,0,V B uB    

and 155 

   2

0 ,0,0V B B uB    . (16) 

Using Eq. (16) in Eq. (14) yields, 156 

 2

00, ,0,0 .idivV b uB    (17) 

Using Eq. (17) in Eq. (13) and then expressed in component form,  157 

x component, 158 

2 2 2 2

1

2 2 2

2 2 2
2 2 2 2

1 0 1 02 2

λ      1   
 

λ 2 λ ,

u u p p p u p u p u u
u v u v v

x y x x x y x x y y x y

u u u u
u uv v uB B v

x x y y y

 

 

              
            

                

      
        

      
 

(18) 

y  component, 159 

2 2 2 2

1

2 2 2

2 2 2
2 2 2

1 1 02 2

λ      1   
      

λ 2 λ .

v v p p p v p v p v v
u v v u v

x y y y x y x x y y x y

v v v v
u uv v B u

x x y y x

 



              
            

                

     
      

      

 

(19) 

The boundary conditions discussed by Javed and Ghaffari [10] are given below in the present flow 160 

problem are, 161 

 ,      0, at    0

,      as   ,

u cx v y

u ax by y 

   


   
 

. 

(20) 

Eqs. (19) and (20) reduced by using boundary layer approximation as follows, 162 

asdsa 
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2 2 2 2

1

2 2 2

22 2 2
2 2 0

1 12 2

λ      1   
 

λ 2 λ .

u u p p p u p u p u u
u v u v v

x y x x x y x x y y x y

Bu u u u
u uv v u v

x x y y y

 





              
            

                

      
        

      

 

(21) 

To get the simulation of the modeled governing equations one need to transform the governing 163 

equations by using appropriate similarity transformation given as, 164 

  ,    ,  , ,

, ,w

v v
x x y y u u cv v v cv

c c

T T T T T p cvP 


    


     

. (22) 

Eq. (21) in dimensionless from takes the form given as, 165 

2 2 2 2
2 2

2 2 2

2

1

        
             2    

λ .

u u P u P u u u u
u v u uv v

x y x y y y x x y y

u
M u cv

y

 
              

             
                

 
   

 

. 

(23) 

Boundary conditions take the form given as, 166 

    ,    0 at  0, u x v y    (24) 

,      a .s  
a b

u x y y
c c

    (25) 

Now, for heat transfer analysis, assume that T  is the temperature of the fluid while the temperature 167 

of the stretching surface is represented by wT . By using the transformation given in Eq. (22) and Eq. 168 

(4), Eq. (3) becomes, 169 

  
3      1 4   

    1   1 1 .
3

w

T T T
u v Rd T

x y Pr y y


     
      

     
 (26) 

The boundary conditions become, 170 

1 at 0,

0 as  

T y

T y 

  


  
 (27) 

where 1c   is Deborah number which represents the fluidity of the material, /pPr c k  is 171 

the Prandtl number, 
2 2

0 /M B   is the Hartmann number,  * 34 / r sRd T k     and 172 

/w wT T   represents the temperature of the surface same used by Ghaffari et al. (2016). The 173 

stream function   that will be used in the governing equations, as shown below,  174 

  
  ,     u v

y x

  
  

 
. (28) 

Using Eq. (28) in (23) to (27), one can have, 175 
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2 22 2 3 3 3

2 3 2 2

2 3 2
2

2 3 2

              
  2       

        
       ,

P

y x y x y y y y x x y x x y x

P
M

y y y y x y

          


    
 

              
                            

          
        

          

 

(29) 

  
3         1 4   

    1   1 1 ,
3

w

T T T
Rd T

y x x y Pr y y

 


         
        

         
 (30) 

  
   0, , 1 at 0,x T y

y





   


 

, 

(31) 

1
  , 0 as  

2
.

a
xy y T y

c
       (32) 

where /b c   denotes shear in the free stream of the flow. Suppose the solution of Eqs. (29) and 176 

(30) subject to boundary conditions Eq. (31) and (32) is of the form, 177 

    ( ) ( ), ( ).xf y g y T y     (33) 

The functions ( )f y  and ( )g y  are the oblique and normal elements of the streams. Using Eq. (33) 178 

in Eqs. (29) to (32) we have, 179 

                      
                 

            

2
' ' ' '' '' ''' '''

' ' '' '' '' ''' '''

2 ' ' '' ''

   

2          

,

xf y g y f y f y xf y g y f y xf y g y

P P
f y xf y g y f y xf y g y xf y g y

x y

M xf y g y f y xf y g y







    

 
       

 

    

 

(34) 

    
3

' '4
    1   1 1 0,

3
wRd Prf y

y
   

   
      

   
  (35) 

         ' '   0, 1  , 0, 0, 1  at 0,f y f y g y g y y y       (36) 

     ' '    ,     ,  0, s   .a
a

f y g y y y y
c

      (37) 

After eliminating the pressure from Eq. (34), it takes the form as follows, 180 

             

                 

   

            

' ' ' '' ''

2
''' ''' ' ' ''

2

''' ''' 2

2 ' ' '' ''

 

  2

     

.

xf y g y f y f y xf y g y

f y xf y g y f y xf y g y f y

a a
A x xf y g y M x

c c

M xf y g y f y xf y g y







  

   

   
        

   

    

 

(38) 

Now by comparing the coefficient as 
1x and 

0x  in Eq. (38), one can have, 181 
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 
2

'''  '2 '' 2 ''' ' '' 2 '' 2 2 '2 0
a a

f f ff f f ff f M ff M M f
c c


   

           
   

, (39) 

 ''' '' ' ' 2 '' ' '' 2 '' 2 '  2   ,g g f g f f g fg f M g f M g A         (40) 

where boundary layer displacement is represented by A . Now for more simplification using a new 182 

variable is introduced which is defined as, 183 

   ' .g y h y  (41) 

Eq. (38) and the associated boundary condition are reduced to, 184 

 '' ' ' 2 '' '' 2 ' 22   ,h h f hf f h fhf M h f M h A        (42) 

   0 at 0,h y y   (43) 

'( )  1  as   .h y y   (44) 

The local Nusselt number of physical quantities is defined below as, 185 

 

 
,w

x

w

x q
Nu

k T T



 (45) 

where, 186 

 

34 4 *
.

3
w

r s

T T
q k

y



 

   
         

 (46) 

Using dimensionless variables and transformation given in Eq. (22) the above equation reduces to, 187 

   
1

3 '
2

4
1     .

3
x x wNu Re Rd  

   
    

  
 (47) 

It is worth mention here that limiting case for Newtonian case can be obtained by placing 0   and 188 

case orthogonal stagnation point flow can also be obtained by placing 0  . 189 

3. Numerical Solution 190 

Using the boundary condition (36), (37), (43), and (44) in the non-linear equation of (35), (39), and 191 

(42). They solve these equations in numerical with the parallel shooting method. The simple shooting 192 

method is very easy in the compare of parallel shooting method, but the simple shooting method is 193 

very difficult to solve higher non-linear problems. That way we used parallel shooting as presented 194 

by Shi et al. (2021). The parallel method of shooting is well-organized. The technique is described 195 

below: 196 

Equations (35), (39) and (42) are reduced to the first order of differential equations by letting 1f f   197 

'

4  5   ,    ,   h f h f  and 6.f   198 

' '

1 2   2 3  , ,f f f f    

 
2

' 2 2 2 2

3 2 1   3  1   2   3  1   3  2  2

1  

1
2 ,

1

a a
f f f f f f f M f f M M f

f c c
 



    
                

 (47) 
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'

4 5 ,f f   

  ' 2 2

5 1   5  1   3   4  0 1   5  0 42

1  

1
2 ,

1
f f f f f f B f f B f A

f
  


     


 (48) 

'

6 7 ,f f   

  
       2 2'

7 6 7 1 7
3

6

1
4 1 1 1 .

4
1 1 1

3

w w

w

f Rd f f Prf f

Rd f

 



     

  

 (49) 

The boundary conditions are given below, 199 

     1 2 20 0,  0 1,  ,
a

f f f y
c

    (50) 

   4 50 0,  1.f f y   (51) 

The considered domain from 0  to y  is divided into the ' 'n  number of intervals where ' 'n  200 

depends strictly on the required convergence of the solution. The problem is solved for the first in- 201 

terval by setting suitable initial guess and the obtained solution is considered as an initial guess for 202 

next interval and this process is carried out until the solution for the last interval is obtained. The 203 

solution for each interval is obtained such that it satisfies the boundary condition at y . The algo- 204 

rithm is self-developed in MATLAB R2015a.  205 

4. Validation 206 

To present the accuracy of our present computed results the comparison of 
''(0)f and  ' 0h  has 207 

been made with Pop [32] and Javed and Ghaffari [10] which includes the results for Newtonian and 208 

non-Newtonian Maxwell fluid given in Table (1). It is found that our present computed results are 209 

highly convergent with Pop [32] and Javed and Ghaffari [10] It is clear from the table that the value of 210 

''(0)f  is increases as we enhance the value of /a c  but  ' 0h  increases at a certain value and then 211 

decreased. 212 

5. Results and Discussion 213 

Eqs. (35), (39) and (42) with appropriate conditions given in Eqs. (36), (37), (43) and (44) have been 214 

solved by implementing above mentioned scheme for various values of involved parameters 215 

, / ,    a c  and M . Figures (2a) to (2d) are plotted to present the variation of horizontal velocity u  216 

for various values of velocities ratio /a c  with fixed values of ,    , ,   0.0,  0.5,1  .0 x M   and5.0  217 

It is seen that the velocity u  increase with enhancement of  . The Figure (2a) represents the or- 218 

thogonal flow i.e., 1.0  , whereas Figure (2b) to (2d) shows the non-orthogonal stagnation point 219 

flow ( 0)  . It is observed from the figures that there exist two boundary layer structures which 220 

depend upon the ratio of straining and stretching velocities. It is seen that when / 1a c  the flow has 221 

normal boundary layer structure but when / 1a c  then the structure shows inverted behavior which 222 
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is same as reported by Javed and Ghaffari [10]. It is also noted that the thickness of boundary layer 223 

decreases as we increase the value of /a c . It is also seen that there exists no boundary layer when 224 

/ 1a c  its means that viscous effects near the boundary vanishes when both shearing and straining 225 

velocities are equal. This behavior is same for both orthogonal and non-orthogonal stagnation point 226 

flows. The Figures (2a) to (2d) show that velocity increases as there is an increase in value of  . 227 

Figure (3a) and (3b) is plotted to examine the variational effects of Deborah number   for or- 228 

thogonal flow ( 0)   and non-orthogonal flow ( 1.0)   with a fixed value of M  on horizontal 229 

velocity u . It is seen that by increasing the value of   figures show that for the inverted boundary 230 

layer, the horizontal velocity decreases and thickness of boundary layer decrease but for normal 231 

boundary layer the velocity increases and thickness increases for both 0  and 1  . Figures (4a) 232 

and (4b) shows the variational effects of magnetic field on the orthogonal stagnation point flow and 233 

non-orthogonal point flow respectively for fixed values of  . It is clear from the figures that by 234 

enhancing the magnetic field the horizontal velocity decreases, but the boundary layer becomes 235 

thinner for an inverted boundary and for the normal boundary layer, the horizontal velocity  in- 236 

creases and the boundary layer thickness decreases. The Deborah number ( )De  is a dimensionless 237 

number, often used in rheology to characterize the fluidity of materials under specific flow condi- 238 

tions. It quantifies the observation that given enough time even a solid-like material might flow, or a 239 

fluid-like material can act solid when it is deformed rapidly enough.  240 

Figure (5) shows that the horizontal velocity decreased when the value of   is enhanced by keeping 241 

the other parameters fixed. The enhancement in the strength of the applied magnetic field dominates 242 

the electromagnetic forces in comparison to the viscous forces which retards the motion of the flow. 243 

Therefore, successive decrement in the magnitude of axial velocity in the center of the channel is 244 

addressed by incrementing the value of magnetic parameter M , whereas one can see the counter 245 

behavior of the fluid’s velocity near the boundary. Figure (6) is designed to examine the effects of 246 

varying M  on horizontal velocity for fixed values of , /a c  and  . Same behavior is observed 247 

as that was in the case of effects of   but a minor decrease is observed for 1M  and 2 . Figures 248 

(7a) and (7b) shows the streamlines for oblique flow for / 0.5a c  (dashed lines) and 5.0 (solid 249 

lines) with fixed 4, 2.0M   and 0.2   and 2.0 , It is seen that by increasing stretching 250 

velocity the streamlines symmetry of the flow disturbs and lines get more tilted towards left due to 251 

increase in straining velocity for  but there is no tilted behavior is seen for 0.2  and flow 252 

becomes symmetric. 253 

Figure (8a) and (8b) shows streamlines for oblique flow, for 10   and 30 (dashed lines) and 10 254 

and 30 (solid lines) with fixed 4, 2.0M   nd / 0.5a c  . It is seen that by increasing the value 255 

of | | results in more obliqueness consequently causes the disturbance in the symmetry of the flow. 256 



12 

 

Figure (9) is plotted to represent the effects of w  for various values of w  with fixed values of  257 

, , , / ,PrM a c   and Rd . It is seen that the temperature of fluid increases rapidly by increasing 258 

the value of surface temperature. A concave curve is seen at 2.0w  . Figure (10) is designed to 259 

elaborate the effects of Prandal number with fixed values of 0.2, 1.0, 5.0, / 0.2,M a c     260 

2.0Rd   and 2.0w  . It is observed from the figure that the enhancement in the Prandtl number 261 

results in a decrease in the value of temperature of flow. This figure demonstrates that the increase of 262 

Prandtl number which consequently decreases of thermal conductivity that results in decrease of 263 

temperature distribution which tend to zero as the space variable   increase from the wall and hence 264 

thermal boundary layer thickness decreases as Prandtl number Pr increases. Near the boundary the 265 

thermal boundary layer thickness is higher. Figure (11) shows the effects of radiation parameter 𝑅𝑑, 266 

with fixed values of 0.2, 1.0, 5.0, / 2.0,Pr 0.05M a c       and 2.0w   It is observed 267 

the by increasing the values of  the temperature of flow increases; also, concave curves are ob- 268 

served for 5Rd   and 10 . 269 

6. Closing Remarks 270 

The stretching surface is surrounded by a small band of static fluid layer known as the boundary 271 

layer. How quickly fluids and energy are transferred from the surface to the surrounding fluid de- 272 

pends on the thickness of the boundary layer. The amount of heat, energy, and fluid that a layer re- 273 

leases into the system can be decreased by a thick boundary layer. The influence of Hartmann number 274 

and radiation parameter on the boundary layer flow of Maxwell fluid in the region of oblique stag- 275 

nation point over linear symmetrically stretching sheet is investigated. The participation of the in- 276 

volved parameters is studied by plotting their different variation through graphs and tables. This 277 

study concludes increase in the parameter /a c  decreases the boundary layer thick of oblique 278 

stagnation point flow of non-Newtonian fluid while radiation parameter and surface heating param- 279 

eter increase the thermal boundary layer thickness. By increasing the value of Deborah number for 280 

inverted boundary layer, the horizontal velocity decreases, and thickness of boundary layer de- 281 

creases. It is also noted that enhancing the strength of magnetic field, the horizontal velocity de- 282 

creases but boundary layer becomes thinner. Streamlines shows that increasing the value of | |  283 

results in more obliqueness. Temperature of fluid increases rapidly by increasing the value of surface 284 

temperature and radiation parameter but decreases by increasing the Prandtl number. The boundary 285 

layer flow of oblique stagnation point flow disturbs the symmetry of the flow. 286 

Nomenclature:  

  Absorption coefficient E  Activation energy 

T  Ambient temperature A  Boundary layer displacement 
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b  Body forces k  Boltzmann constant 

,x y  Cartesian coordinates   Chemical rate constant 

  Deborah number   Dynamic viscosity 

  Density of fluid   Dimensionless temperature 

C  Dimensional constant T  Fluid temperature 

1A  First tensor by Rivlin Ericksen a  Fluid velocity 

M  Hartmann number   Kinematic viscosity 

2  Laplacian operator B  Magnetic field vector 

( )g y  Normal element of the streams xNu  Nusselt number 

( )f y  Oblique element of the streams Pr  Prandtl number 

P  Pressure of fluid Rd  Radiation parameter 

r  Roseland definition rq  Radiative heat flux 

s  Scattering coefficient   Stream function 

cS  Schmidt number 0  Strength of magnetic field 

  Shear in the free stream of the flow S  Stress tensor 

  Similarity variable c  Stretching constant 

pc  Steady pressure of real heat wT  Stretching surface temperature 

*  Stefan Boltzmann's-constant wU  Stretching velocity of sheet 

  Temperature relative parameter   Thermal stratification parameter 

  Thermal conductivity 1 , Time relaxation content 

  Thermal diffusivity  TL  Transpose of velocity gradient 

L  Velocity gradient ,u v  Velocity components 

V  Velocity vector wT  Wall temperature 

w  Wall temperature   Weissenberg number 

 287 

  288 
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Table 1: Numerical values of ''(0)f  and '(0)h  for the different values of   and /a c  

𝑎/𝑐 

Newtonian Fluid ( 0.0)   Non-Newtonian Fluid ( 0.2)   

Pop 

[32] 

Javed 

and 

Ghaffari 

[10] 

Present 

Results 

Pop 

(2004) 

Javed 

and 

Ghaffari 

[10] 

Present 

Results 

Javed 

and 

Ghaffari 

[10] 

Present 

Results 

''(0)f  ''(0)f  ''(0)f  ''(0)f  ''(0)f  ''(0)f  '(0)h  '(0)h  

0.01 -0.9981 -0.99802 -0.9980 -1.0499 -1.05009 -1.0500 -0.51368 -0.5137 

0.02 -0.9958 -0.99579 -0.9957 -10476 -1.04778 -1.0477 -0.24667 -0.2467 

0.05 -0.9876 -0.98758 -0.9875 -1.0393 -1.03939 -1.0394 0.07239 0.0724 

0.10 -0.9694 -0.96939 -0.9693 -1.0207 -1.02082 -1.0208 0.28154 0.2815 

0.20 -0.9181 -0.91811 -0.9181 -0.96823 -0.96823 -0.9683 0.49218 0.4922 

0.50 -0.6673 -0.66726 -0.6672 -0.70779 -0.70779 -0.7077 0.79610 0.7961 

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 

2.00 2.0175 2.01749 2.0175 2.2225 2.22314 2.2231 1.09213 1.0921 

3.00 4.7294 4.72824 4.7294 5.3544 5.35217 5.3522 0.78434 0.7843 

5.00 11.7537 11.75190 11.7534 14.0144 17.00169 17.0017 -2.04649 -2.0465 

10.0 36.2689 36.25704 36.2699 48.3354 48.33540 48.3354 -2.34185 -2.3419 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 
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Figure 1: Geometry of the considered physical plane 

 302 

  

  

(a) (b) 

  

(c) (d) 

Figure 2. Graph of variation of horizontal velocity u  along y  axis at 1x   for various values of 

/a c  and 0.4   and 2.0M   with (a) 0.0   (b) 0.5   (c) 1.0   (d) 5.0   
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(a) (b) 

Figure 3. Graph of variation of horizontal velocity u  along y  axis at 1x   for various values of 

  and / 0.1,0.5,1.0a c   and 1.5  and 2.0M   with (a) 0.0   (orthogonal flow) (b) 

1.0   (non-orthogonal flow) 

  

(a) (b) 

Figure 4. Graph of variation of horizontal velocity u  along y  axis at 1x   for various values of 

M  when / 0.1,0.5,1.0a c   and 1.5  and 0.5   with (a) 0.0   (orthogonal flow) (b) 

1.0   (non-orthogonal flow) 

  

Figure 5. Graph of variation of horizontal veloc-

ity u  along y  axis at 1x   for various val-

ues of   with fixed / 0.2a c   and 1.0M 

for 1.0   (non-orthogonal flow) 

Figure 6. Graph of variation of horizontal veloc-

ity u  along y  axis at 1x   for various val-

ues of M  with fixed / 0.2a c   and 0.5 

for 1.0   (non-orthogonal flow) 
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(a) (b) 

Figure 7. Graph of streamlines for oblique flow, for / 0.5a c   (dashed lines) and 5.0  (solid 

lines) with fixed 4, 2.0M    with (a) 0.2   and (b) 2.0   

  

(a) (b) 

Figure 8. Graph of streamlines for oblique flow, for fixed 4, 2.0M   and / 0.5a c   with (a) 

10    (dashed lines) and 10  (solid lines) and (b) 30    (dashed lines) and 30  (solid lines) 

 

Figure 9. Graph of variation of   for various values of w  with fixed 0.2, 1.0,M    

5.0, / 2.0, 2.0,Pr 0.05a c Rd      and 2.0Rd   
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Figure 10. Graph of variation of   for various values of Pr  with fixed 0.2, 1.0,M    

5.0, / 2.0, 2.0, 2.0a c Rd Rd      and 2.0w   

 
Figure 11. Graph of variation of   for various values of Rd  with fixed 

0.2, 1.0, 5.0, / 2.0,Pr 0.05M a c       and 2.0w   
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