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Abstract:  As one or more poles are located on the right side of the s-plane, the unstable processes are challenging to 

control. The presence of dead time in such systems makes control much more difficult. This work focuses on the 

control of unstable processes with dead-time using sliding mode control in a parallel control structure. Two controllers 

for set-point tracking and load-disturbance rejection are designed with a proportional-integral-derivative-

acceleration based sliding surface. The parameters of the continuous and discontinuous control laws are obtained 

using the particle swarm optimization technique. An objective function is constituted in terms of a performance 

measure (integral absolute error). The proposed sliding mode controller design in a parallel structure gives enhanced 

set-point tracking and load disturbance rejection. Illustrative examples demonstrate the superiority of the proposed 

controller over earlier reported work in this realm, especially in terms of load rejection. Furthermore, the robustness of 

the proposed controller is also investigated by including perturbations in the parameters. The obtained results clearly 

show how well the suggested controller works. 

Keywords: sliding mode control, unstable process with dead-time, parallel control structure, particle swarm 

optimization, SOPDT process 

List of symbols 

0t  : Time delay 

1 2,   : Time-constants 

   : Tuning parameter 

 r t   : Reference command 

 e t  : Error signal 

 x t  : Process output 

 U t  : Controlled input 

K  : Plant/process gain 

l   : Dead-time 
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 s t  : Sliding surface 

1 2 3, , , ,  , p Dk k k k k  : Sliding mode controller tuning parameters 

ccu  : Continuous control law 

dcu  : Discontinuous control law 

 

1. Introduction 

1.1 Overview of controllers for unstable processes 

It is well known that obtaining appropriate closed-loop step responses for processes with unstable 

dynamics is difficult [1]. Furthermore, the presence of dead time makes it more challenging to control such 

unstable processes. Various control solutions have been presented by researchers in the field of control 

engineering who have focused on how to handle unstable plants that have dead time. A relatively common 

and effective controller for unstable delayed plants is the proportional-integral-derivative (PID) controller 

[2]–[5]. Recently, some internal model control based multi-loop P/PD/PID controllers have been presented 

by [6]–[8] to deal with unstable integrating/first/second order plus dead-time processes. However, most of 

the aforementioned schemes are complex as they use multiple controllers. Furthermore, there are instances 

where the P/PD/PID tuning rule is insufficient to address process perturbations and load disturbances. The 

sliding mode-based control (SMC) is well recognized in this context for its ability to overcome modeling 

errors in the plant and unidentified disruptions. It has been extensively shown to be beneficial for nonlinear 

and time-varying systems with a nominal model as well as a perturbed model. These characteristics make 

SMC widely used in a variety of industries, including the chemical industry, process control, power system, 

and biomedical processing. 

1.2  Literature survey of sliding mode control schemes 

Researchers in the process control field have become fascinated with SMC for the regulation of 

industrial processes over the past two decades [9]–[11]. SMC has been utilized by Camacho and Smith [9] to 

control stable chemical processes, based on the first-order plus dead-time (FOPDT) model that was found 

using an open-loop step test. However, their approach has a significant overshoot and a lengthy settling 

period. They have developed a sliding surface having two unknown parameters. By combining a novel 
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sliding surface with four unknown parameters with the SMC approach, Kaya [10] has demonstrated 

enhanced performance over [9]. In addition, Kaya has used a stable FOPDT-based plant model; nonetheless, 

the parameters of Kaya were determined using a closed-loop test with relay feedback. Camacho and Rojas 

[11] has extended the work of [9] using a PID type surface selection to regulate the integrating process and 

multiple input multiple output operations.  

The aforementioned approaches are based on the short-delay FOPDT model, and when used with delay-

dominant processes, their performance degrades. Researchers have employed sliding mode controller 

(SMCr) with modified control structures to regulate the delay-dominant processes [12]–[16]. A dynamic 

SMCr with modified SP for longer dead time processes with inverse response dynamics has been given by 

[12]. By transforming higher-order processes into FOPDT models, their methodology—which was 

predicated on the FOPDT process model—can be applied to them. SMC with a generalized predictive 

control (GPC) has been used by Parte et al. [13] to regulate the FOPDT process model. Smith-predictor (SP) 

architecture and SMC have been integrated by Camacho and Cruz [14] to regulate first order delay 

dominating processes with a delay-to-time-constant ratio ( 0t


) of up to 2.5. Camacho et al. [15] employed 

the internal model control scheme-based sliding mode controller (SMCr) for processes with high 0t


 

relationships. Their approach was based on the FOPDT model, and the Nelder-Mead search algorithm was 

used to find the controller settings. In order to increase load-disturbance responsiveness for large dead-time 

processes, Mehta and Kaya [16] suggested an SP-based SMCr that uses the particle swarm optimization 

approach.  

All of the aforementioned methods were limited to an SMC for stable processes. In order to control 

unstable open-loop FOPDT processes, a new SMC approach has been presented by Rojas et al. [17]. 

However, if the 0t


 ratio is greater than 1, their approach is inappropriate. Sivaramakrishnan et al. [18] 

have succeeded in extending the 0t


 ratio to 1.8. However, there was a little improvement in load 

disturbance rejection performance. For unstable elevated delay FOPDT systems having enhanced load-
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disturbance rejection, Mehta and Rojas [19] have provided an SP-based SMC. In their research, a cuckoo 

search algorithm was used to obtain the controller parameter. 

According to the literature reviewed above, the majority of researchers have only provided SMC designs 

for the FOPDT process model. An approximated FOPDT model is insufficient to accurately depict the 

dynamics of higher-order unstable plants since these plants may also experience information suppression in 

addition to unstable dynamic delays [20]. In this direction, Siddiqui et al. [21] introduced an SMCr for 

unstable second-order plus dead-time (SOPDT) processes with a novel sliding surface, where the control 

parameters were determined using the root-locus approach and a metaheuristic grass-hoper algorithm. 

Recently, Reference [22] introduced an SMC strategy to regulate a second-order inverse process with 

variable dead-time. 

1.3 Key research gaps and motivation 

The application of SMC approaches in the process industry is given in Table I based on the literature 

review and Ref. [1], and the following inference can be made: 

 SMC is used fairly infrequently in process control, and the majority of the effort is focused on stable 

processes. Since most industrial processes are inherently unstable, handling them requires special 

attention. 

 Regardless of whether the system is stable or unstable, the model utilized for SMCr design is often of 

the FOPDT type. Their approach has been utilized to analyze higher-order processes by transforming 

them into the FOPDT model. 

 The SMC has been implemented with improved control structures utilizing the FOPDT model to 

increase performance in complex processes. 

 There hasn't been much attention given to controlling the unstable SOPDT process. 

As a result, a SOPDT model would be preferable over a FOPDT model for describing unstable higher-

order plants since it offers more accurate information on plant dynamics. Furthermore, SMC is not proposed 

in a two-degree-of-freedom parallel control structure (2DOF-PCS) to control unstable processes, as per the 

best knowledge of the authors. 

1.4 Contributions 
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With these motivations, this paper presents an SMC for controlling the unstable SOPDT in the 2DOF-

PCS scheme. In this proposed method, two separate SMCs are developed for closed-loop set-point tracking 

and load disturbance rejection. To achieve satisfactory closed-loop system performance, a sliding surface 

comprising three control parameters is used to control the SOPDT process. The control parameters are 

obtained from the set of tuning equations using the SOPDT model and the particle swarm optimization 

(PSO) algorithm. To demonstrate the benefits of the suggested technique over several current methods 

mentioned in the literature, some examples are simulated. Highlights of this work are summarized as 

follows: 

 As per the best knowledge of the authors, SMCR is designed for the first time in a parallel control 

structure for unstable SOPDT. 

 Two controllers dedicated to set-point tracking and load-disturbance rejection in the SMC scheme 

are proposed, which offer two degree of freedom. 

 The proposed controller gives satisfactory results, especially in terms of load disturbance rejection, 

over recently reported methods. 

 The effectiveness of the proposed controller is studied with the inclusion of perturbations. 

The organization of the paper is as follows: Section 2 presents the SMC design in a parallel scheme. 

Section 3 provides the optimal tuning of the controller parameters. The simulation results of the suggested 

approach are shown in Section 4, along with a comparison to previously published methods. Finally, some 

conclusions are presented in Section 5. 

2 SMC design in parallel control structure 

Sliding mode control is a powerful control strategy that may be used to produce a robust closed-loop 

system even when there are disturbances and parametric uncertainties [1]. The main objective of SMC is to 

drag the system from its initial state to a selected surface so that it may slide to the desired value. Defining a 

sliding surface and creating a control rule that pulls the states of the system as fast as feasible to that surface 

are the two phases in a SMCr design. As illustrated in Figure 1, the SMC scheme in a parallel control 
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structure contains two controllers ( 1cG ) and ( 2cG ), which are intended to perform the functions of load-

disturbance ( d ) rejection and set-point   r t tracking, respectively [23]. 
1pG  represents the controllable plant 

model, while 
2pG  represents the process model. For perfect modeling, 

1 2p pG G  is selected. U1 and U2 are 

the control signals of both controllers 1cG  and 2cG , respectively. Both controllers, 1cG  and 2cG , are designed 

using the same SMC technique for 2DOF in PCS. 

The primary goal of SMC is to transition a system from its original state to a chosen surface so that it 

may glide to the desired value. The design of an SMC involves two steps: defining a sliding surface and 

developing a control rule that draws the system's states as soon as possible towards that surface. In this 

paper, the following sliding surface    , s t which is a proportional-integral-derivative-acceleration (PIDA) 

controller type, has been selected.  

      
   2

1 2 3 20
          .

t de t d e t
s t k e t k e t dt k

dt dt
     (1) 

In Equation (1),  e t  is tracking error and 1 k , 2k  and 3k  are tuning parameters that control how well the 

system performs on a sliding surface. The goal of control is to always bring the controlled variable to its 

reference value; therefore, both  e t  and its derivative must be zero. As soon as the reference value is 

attained, Equation (1) indicates that   s t has achieved a constant value, which means that  e t  is zero at 

0t  . To maintain  s t  at a constant value, it is desired to make 

  
   

 
   2 3

1 2 3 2 3
          0.

ds t de t d e t d e t
k k e t k

dt dt dt dt
      (2) 

It is necessary to construct a control rule  u t  that ensures the controlled variable will always equal its 

reference value and satisfies Equation (2) once the sliding surface has been determined. Control law   tu t

has two additive parts: first one is continuous control law,    ccu t , and second is discontinuous control law,

 dcu t . Hence, 

       t cc dcu t u t u t   (3) 
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 ccu t  is given by [1]:  

  ccu t =     , f x t r t  (4) 

where,   x t and  r t  are functions of the controlled variable and the reference value, respectively. If the 

initial trajectory is not towards the sliding surface, the   dcu t is responsible for deriving the system there 

[20]. This control rule is a nonlinear switching element, identical to an ideal relay or saturation relay. Due to 

the existence of finite delays and the physical constraints of actuators, it is very challenging to achieve high 

switching control utilizing these relays in practice. It may produce chattering across the sliding surface 

which is extremely unwanted [16]. High-frequency dynamics that are disregarded in system modeling may 

be excited by chattering, a high-frequency oscillation over the sliding surface. One method to lessen 

chattering is to choose,   dcu t as illustrated below [21].  

   
 

 
dc D

s t
u t k

s t 



 (5) 

where,  Dk is the tuning variable that causes the system to enter sliding mode. The reduction of the chattering 

phenomenon is achieved by tuning parameters  . In this work, following unstable SOPDT process models (

 aG s  and  bG s ) have been considered. 

   
 

    1 21 1

ls

a

t

X s Ke
G s

U s s s 



 
 

 (6) 

   
 

    1 21 1

ls

b

t

X s Ke
G s

U s s s 



 
 

 (7) 

where,  X s  is the output of the system,   U s is the input to the plant, K  is the gain of the plant, l  is delay 

of the plant, and 1  and 2  are time constants. The above equations have an exponential term (
lse

 ), which 

is required to be rationalized for ease of manipulation. The time delay component is approximated in this 

study by the first-order Taylor series formula     1/ 1lse ls   . Hence, these equations may be rationalized 

as 
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   
 

  3 2

3 2 1 0

 ,
t

X s K
G s

U s a s a s a s a d
 

  
 (8) 

where, for Equation (6) :    3 1 2 2 2 1 1 2 1 2 1  ,  , a l a l a l               and 0 1a   ;  

and for Equation (7) :    3 1 2 2 1 2 2 1 1 2 1 2 1,  , a l a l a l                  and 0 1a  . 

 Equation (8) may be written in differential form as 

 
          3 2 1 0 .tKu t a x t a x t a x t a x t     

(9) 

Solving Equation (9) for the third-order differential term in conjunction with Equation (2), it may be written 

as  

 
 

                2 1 0 2 2 3 1

3

1
0t

ds t
Ku t a t a x t a x t k r t k x t k x t k x t

dt a
           (10) 

where,      e t r t x t  . Control law   u t  can be obtained from Equation (10) as: 

   
          2 3 3 1 3 1 0 3 2 3 2 

t

x t a a k x t a a k x t a a k a k r t
u t

K

     
  (11) 

In the SMC technique, the total control law  tu t  relies on    ccu t  only when the system approaches the 

sliding surface. So, Equation (11) may further be simplified by putting 2 3 3 0a a k  , and 

   
       1 3 1 0 3 2 3 2

.cc

x t a a k x t a a k a k r t
u t

K

   
  (12) 

From Equations (3), (5) and (12), control law  tu t  may be written as: 

   
         

 
1 3 1 0 3 2 3 2

t D

x t a a k x t a a k a k r t s t
u t k

K s t 

   
 


 (13) 

where,  

         
   2

1 2 3 20
         

t de t d e t
s t sgn K k e t k e t dt k

dt dt

 
     

 
  (14) 
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In Equation (14), a signum function,   ,sgn K  is introduced for the controller to operate properly [16]. Since 

 sgn K  depends on the plant gain, the controller action never switches [11]. The overall control law    tu t

will be obtained from Equation (13). This law is used to design both the controllers, 1cG  and 2cG . 

3 Optimal tuning of 2DOF-PCS SMC parameters 

 The improved performance of the controller is attributed to the appropriate choice of objective function, 

which is highly significant [20]. It is well acknowledged that when a controller is designed to minimize 

integral absolute error (IAE), it often produces good results [21]. The objective function J  is defined in 

terms of IAE as 

   
0

.J IAE e t dt



    (15) 

IAE evaluates the output control performance by minimizing its value as low as possible.  

To solve the objective function without any major convergence problems, it is crucial to select the 

appropriate optimization approach. Various nature-aspired algorithms are available in the literature, like the 

genetic algorithm, particle swarm optimization, ant colony, cuckoo algorithm, etc. It has been demonstrated 

that the particle swarm optimization (PSO) technique produces the best possible combination of parameter 

values in a shorter amount of time [16]. Also, the motivation behind favoring this optimization is that it 

produced a good result in this study. PSO is a heuristic algorithm based on the social behavior of schools of 

fish and bird flocks. Members of fish schools or flocks of birds adhere to innate norms to move in unison so 

that they don't clash while searching for their food. As a result, it is expected that each member of the 

population, known as the swarm, would fly around the search area to locate the ideal solution in terms of its 

position. The principles governing how each member, known as the particle, in space changes its velocity 

and position were first inspired by behavioral models of flocking birds. Each time a better fitness value is 

found, 

it stores and displays it as pbest. This iteration continues until it updates the two best values, one of which is 

pbest and the other is gbest, which represents the overall best value for the whole population. Each particle 
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in PSO consists of the five variables 1 k , 2k , 3 k , DK , , and it updates the variables after each iteration to 

determine the pbest and gbest. The program then executes to reach an optimal outcome.  

At time  t , each i
th 

particle location is defined by  '

1 2, 3  , , ,i i i i iDx x x x x   in search space ( D ), and the 

current velocity is defined as  '

1 2, 3  , , ,i i i i iDv v v v v  . If the fitness function, also called the objective 

function, needs to be minimized to get the optimal solution, then the position and velocity of each particle in 

the k
th

 iteration can be calculated as 

    1

, 1 1 1, , 2 2 ,

k k k k

i D i D i D i Dv wv c r pbest x c r gbest x      , (16) 

 
1

,

k

i Dx  = 1

, ,

k k

i D i Dx v   (17) 

where, 1,2,3,i N   , w  is the weight function,  1c  is called the cognitive parameter, which drags each 

particle to its pbest  location, 2c  is known as the social parameter, which gives the gbest  position for each 

particle, and 1r  and 2r  are the random sequences in the range    0,1 . 

 The goal of the controller design process is to choose controller parameter values from the search 

space that minimize the objective function under consideration. The fundamental block diagram for PSO 

algorithm-based controller tuning is shown in Figure 2. The PSO method initially assigns arbitrary values 

for 1 k , 2k , 3 k , DK ,   and computes the J . This process continues until  J reaches minJ  or the specified 

number of iterations has been attained. To determine the optimal control parameter values, the PSO 

algorithm is developed with   20N  , 1 2 2c c  , 0.8w   in MATLAB 18a (2018) on Windows 10 with 

Intel i5 processor and 8GB RAM. To determine the ideal control settings for the required optimization 

problem, the simulation was conducted for 100 iterations. 

4 Simulations, Results and Discussion 

In this section, the proposed SMC technique has been validated through various examples of dead-time 

unstable processes having one unstable pole and two unstable poles with dead-time. The simulation results 

taken from the suggested technique demonstrate the advantages, especially in terms of fast settling time and 

load disturbance (LD) rejection for nominal and perturbed systems, as compared to the results obtained from 
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recently reported methods. The controller effort of the proposed technique is also compared with recent 

methods, and it is found to be better or comparable. A comparison of performance measures IAE, integral 

square error (ISE), integral time absolute error (ITAE) and TV for each example is shown in Table II. 

Example 1 (An SOPDT with one unstable pole) 

An unstable SOPDT process is based on an article by Siddiqui et al. [21]. They have shown improved 

results over the results obtained from previous studies done by Mehta and Rojas [19] and Atic and Kaya 

[24]. The example is described by the following transfer function: 

   
  

0.5

1 .
2 1 0.5 1

se
G s

s s




 

 (18) 

This example is studied with the proposed strategy, and the control parameters for ( 1cG ) and ( 2cG ) are found 

as 1( 7.2k  , 2 34,   3.5, Dk k K  = 241.7 and 107.4)   and 1( 5.1k  , 2 34.1,   3.5, Dk k K  = 4.46 and 

95.7)   , respectively. Siddiqui et al. [21] have found the controller settings as 1 2k  , 

2 30.45,   3.5, Dk k K  =12.38 and 2.69   by their method. By using a relay feedback test, Atic and Kaya 

[24] approximated this process into the FOPDT model (
0.918 / 2.69 1se s  ). The closed-loop response and 

controller output are displayed in Figure 3 and Figure 4, respectively. It is observed from Figure 3 that the 

suggested strategy gives a faster set-point tracking as compared to the techniques of Siddiqui et al. [21] and 

Atic and Kaya [24]. There is a significant improvement in the LD rejection response with the proposed 

technique. The controller’s effort is vital in any closed-loop control system. Figure 4 shows that the control 

effort of the suggested technique is comparable. The performance indices IAE, ITAE, ISE, and TV are shown 

in Table II. A lower value of IAE, ITAE, ISE, and TV shows the superiority of the proposed method. 

For robustness analysis, a perturbation change of +10% in process gain ( K ), time-constant ( 2 ), and 

delay ( l ) of the nominal process is introduced simultaneously. The perturbed process considering these 

perturbed values may be written as  
  

0.55

1

1.1
 

2.2 1 0.5 1

se
G s

s s




 

. The process output and the controller output 

for the perturbed process by the suggested strategy and the methods considered for comparison are shown in 

Figure 5 and Figure 6, respectively. It is evident from Figure 5 that closed-loop performance is more robust 
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with the proposed method. The method of Siddiqui et al. fails to track the set-point and LD rejection is also 

poor. The controller response in Figure 6 and the lesser value of TV from Table II indicate that controller 

effort is smaller with the proposed method. It is also observed from the table that the performance indices 

IAE, ISE, ITAE and TV for the proposed method are lower than those of Siddiqui et al. [21] and Atic and 

Kaya [24]. Hence, it may be concluded that the proposed method gives quite satisfactory results for both 

nominal and perturbed systems. 

Noise may come from the industrial process itself, control valves, and control equipment. In order to 

justify the usefulness of the present technique under noisy conditions, the simulation of the example is done 

while taking into account white noise (noise power of 0.0015, seed equal to 1, and sampling time of 0.001 

s). Figure 7 displays the system output in noisy situations. From Figure 7, it has been noted that the 

suggested technique performs well even in noisy environments. 

 

Example 2 (An SOPDT with two unstable poles) 

From the literature, it is observed that very few examples of unstable SOPDT were studied in process 

control with the application of a sliding mode controller. So, this example is taken from the literature of 

Raza and Anwar [4] and Cho et al. [25], in which they have designed a PID controller for the process 

defined by the transfer function 

  
  

0.2

2 .
3 1 1

se
G s

s s




 

 (19) 

The control parameters of Raza and Anwar [4] for PID controller design are  2.39,     0.87,   8.49p i dK K K   . 

The proposed method is applied for the  2 , G s and control parameters for ( 1cG ) and ( 2cG ) are found to be 

1( 13.5k  , 2 312.3,    3.5,   Dk k K  =70.1 ,   33.9)   and 1( 2.96k  , 2 380.4,    3.5,   Dk k K  =97.9

,   97.5)  .The process model is simulated with a set-point change of magnitude 1 at 0t   at using these 

controller settings and a disturbance change of two unit step at   25t s . The process output and controller 

output from the proposed method and the methods of Raza and Anwar [4] and Cho et al. [25] are shown in 

Figure 8 and Figure 9. The figures shows that the suggested technique performs the best among the methods 
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provided by [4] and [25]. The overshoot is less for the set-point response with the suggested technique. 

Furthermore, the settling time of the set-point response of the suggested method is faster than that of Raza 

and Anwar [4] and Cho et al. [25]. Also, excellent LD rejection is observed with the suggested method. The 

performance indices IAE, ITAE, ISE, and TV are shown in Table II. Integral errors are lesser for the 

proposed method as compared to [4] and [25], but the TV value is higher for the proposed method. The 

reason behind higher TV is that Raza and Anwar [4] and Cho et al. [25] have used PID controllers, and the 

suggested method is based on SMC, which has a chattering phenomenon. 

To show the robustness of the suggested SMC, perturbation changes of +20% in both the gain and the 

dead-time i.e.  
  

0.24

2

1.2

3 1 1

se
G s

s s




 

 are considered. The responses for the process output and controller 

output under these perturbations are shown in Figure 10 and Figure 11. The figures show that the set-point 

response of the perturbed system by the proposed method is comparable, while the LD rejection of the 

proposed technique outperforms the methods given by Raza and Anwar [4] and Cho et al. [25]. The 

performance indices are shown in Table II for evaluation of the suitability of the proposed technique. The 

integral errors IAE, ISE, and ITAE of perturbed systems for the set-points are lower in the proposed method. 

 

5 Conclusion 

In this work, a 2DOF-SMC design in PCS for unstable SOPDT has been presented. Two separate 

SMCs—set-point tracking and load disturbance rejection—are developed for PCS. The controller 

parameters are obtained using the PSO technique by minimizing an objective function consisting of IAE. 

The suggested approach is used to simulate several cases, and the results are effective under different load 

disturbances and parameter variations. The suggested technique is found to have lower integral errors (IAE, 

ISE, and ITAE) and TV than the previously reported SMC method. This approach may be extended to 

unstable processes with zeros and unstable higher-order processes. Future developments of this work could 

include the analysis of delay-dominant systems, the development of fractional-order IMC and Smith 

predictor controllers, and the use of complex optimization approaches.  
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Table I: An overview of SMC usage in process industry 

Literature 

Process 

model 

Used 

Type of 

sliding 

surface 

taken 

Continuous control law (  cu t ) 

Technique for 

obtaining  

 cu t   

Discontinuous 

control law 

(  du t ) 

Technique for 

obtaining 

 du t  

Structure 

used 

Herrera et 

al. [12] 

Stable 

FOPDT 
PI 

 

   

*

0 0

* *

0

1
*

2 λ

( λ 2 )Y 1

2 (λ 2Y 2

m

m m m

m m m DSMC

k

t t

t e t k U t



 



 
   

   
 
    

 

From tuning 

equations 

obtained for 

crirtical or 

overdamped 

system 

  DK sgn   

From tuning 

equations 

obtained for a 

crirtical or 

overdamped 

system 

Complex due to 

use of 

compensator 

Camacho 

[26] 

Stable 

FOPDT 
P   mx t

K

 
 
 

 

From tuning 

equations having 

dead time, gain 

and time constant 

 

 

 
D

s t
K

s t 
 

From tuning 

equations 

having dead 

time, gain and 

time constant 

Complex due to 

use of Smith 

predictor (SP) 

Camacho 

and Smith 

[9] 

Stable 

FOPDT 
PID 

 
 0

0

0

λ 
X tt

e t
K t





  
  

   
  

Using Nelder-

Mead search 

algorithm 

 

 

 
D

s t
K

s t 
 

Using Nelder-

Mead search 

algorithm 

Complex due to 

use of Iinoya 

and Altpeter 

compensator 

Camacho 

et al. [27] 

Stable 

FOPDT 
PI  

 
 0

0

0

λ 
X tt

e t
K t





  
  

   
 

Using Nelder-

Mead search 

algorithm 

 

 
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D

s t
K

s t 

 

Using Nelder-

Mead search 

algorithm 

Complex due to 

use of  IMC 

Kaya [10] 
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2 2

4

k 
kTL

k c t r t
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s t
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equation and 

fitting technique 

 

 

 
D

s t
K

s t 

 

From tuning 

equation and 

fitting technique 

Complex due to 

use of  GPC 

Mehta and 

Kaya [16] 

Stable 

FOPDT 
PI 

 

   
1
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m
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 
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 
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* S t
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0
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e t
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Mead search 

algorithm 

 

 
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D

s t
K

s t 
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Mead search 

algorithm 
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complex both 
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Mehta and 
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m
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From 

controllability 

relationship 

 

 
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algorithm 
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Rojas et al. 
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    
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  

 

From tuning 

equations 

obtained for a 

crirtical or 

overdamped 

system 
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 
D

t
K

t



 
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Mead search 

algorithm 
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Sivarama-

krishnan 

et al. [18] 
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   
 

From tuning 
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obtained for an 

overdamped 

system 
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 
D
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K
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minimising ISE 

using matlab 

least squares 
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Siddiqui et 
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 
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 

 
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   
 

Using Nelder-

Mead search 

algorithm 

 

 

 
D
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K
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Using Nelder-

Mead search 

algorithm 
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PIDD 
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Table II: Performance Indices 

Method 
Controlle

r Type 

Nominal System Perturbed System 

Set-Point Response Load Response Set-Point Response Load Response 

IAE ISE ITAE TV IAE ISE ITAE TV IAE ISE 
ITA

E 
TV IAE 

IS

E 

ITA

E 
TV 

Example 1 

Propose

d 
SMC 2.9 1.1 41 458.4 4.0 0.4 96.6 543 7.2 2.1 

143.

7 
542 7.5 1.7 187.2 627 

Siddiqui 

et al. 

[21] 

SMC 4.9 1.4 85.8 683.8 9 5 125 
372.

6 
7.6 2.3 

134.

6 

627.

8 
10.8 6.8 163.9 350 

Atic and 

Kaya 

[24] 

PID 29 45.6 347.6 14.24 26.2 34.7 327.4 8.6 27 
40.

5 

348.

6 
20.9 25.7 32 356 

12.

9 

Example 2 

Propose

d  * a F  
SMC 0.67 0.14 1.6 19.38 0.07 0 0.9 5.9 1.9 0.3 28.6 87.6 0.08 0 0.9 7.7 

Raza 

and 

Anwar 

[4] *

b F  

PID 2.4 0.4 25.2 10.2 1.1 0.2 4.5 4.8 2.2 
0.2

9 
23.8 10.3 2.4 0.8 10.3 9.7 

Cho et 

al. [25] *

c F  

PID 2.5 0.4 23.8 10.3 1.1 0.2 3.8 4.9 2.1 
0.2

6 
21.4 10.5 2.3 0.8 8.9 9.7 
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*Set-point filter used:

2 2

a b c2 2

1 1.49 2.44 1 1.49 2.44 1
   ,  , 

1 9.65 2.7 1 9.65 2.7 1

s s s s
F F F

s s s s s

   
  

    
. 

 


