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Abstract

In the present communication, a very recently proposed bi-parametric (R, S)-

norm discriminant measure for picture fuzzy sets has been utilized and different

important properties have been discussed. The bi-parametric discriminant mea-

sure would give diversification in handling the inexact/incomplete information in

terms of obtaining the degree of association and closeness in the data of various

applications. The monotonicity of the newly presented discriminant measure in

relation to the involved parameters R and S has also been discussed in detail along

with its empirical proof. Further, the bi-parametric measure under consideration

has been successfully applied in the principle of minimum discriminant informa-

tion with the help of some illustrative numerical applications in the field of pattern

recognition/clustering etc. Additionally, for the validity and efficacy of the pre-

sented approach, necessary and detailed comparison studies along with important

findings, advantages and limitations have been mentioned.

Keywords : Picture fuzzy information; Decision Science Problems; Machine-Learning;

Clustering; Pattern Recognition.

1 Introduction

The involvement of vagueness in decision-making problems is increasing day by day and

to handle such complications, the researchers have explored the generic framework of
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fuzzy sets for making the computation structure more practical in context with real-life

problems. Zadeh [1] introduced the concept of fuzzy sets and their entropy measures and

then on the basis of cross-entropy measure of probability distributions given by Kullback

and Leibler [2], various authors have presented different kinds of divergence/discriminant

measures for different extensions of fuzzy sets. Also, various studies handling the un-

certainty feature for capturing the inconsistency, impreciseness, and inexactness in a

systematic extended fashion by different researchers and notions such as type-2 fuzzy

sets [3], rough fuzzy sets [4], neutrosophic sets (NS) [5], intuitionistic fuzzy sets (IFS)

[6], Pythagorean fuzzy sets (PyFs) [7], picture fuzzy sets (PFS) [8] and many more have

been introduced. Amongst various generalizations of fuzzy sets, the concept of picture

fuzzy set’s entropy [9] and its properties gained a significant amount of attention and

popularity in the research community due to its additional component of uncertainty in

a linear way with applications in image processing, machine learning, clustering, electric

vehicle charging station, medical diagnosis etc.

It may be noted that various divergence measures [10] are available in the literature

that have their own limitations and are not able to address the features encountered

by picture fuzzy information measures. However, a lot of studies have been done by

various authors in the field of picture fuzzy sets and their applications, but no research

has been carried out in the field of bi-parameterizations of the discriminant information

measure. For determining the degree of association and proximity in the data of different

applications, the bi-parametric discriminant measure would provide suitable and flexible

diversification in managing the issues of uncertainty in the picture fuzzy information.

The contributions of the present manuscript are listed and enumerated below:

• A very recently proposed (R, S)-norm discriminant measure for the picture fuzzy

sets has been utilized.

• Various important properties and monotonicity of the proposed discriminant mea-

sure have been studied in detail.

• The implementation of the proposed measure and its properties in the field of ma-

chine learning problems, viz. pattern recognition and clustering has been presented

with illustrative examples.

The manuscript has been organized as follows. A detailed literature review related to

the proposed work has been presented in Section 2. Also, in view of the topics under
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the proposition, some related fundamental concepts and basic definitions are presented in

Section 3. In Section 4, a very recently proposed bi-parametric (R, S)-norm picture fuzzy

discriminant measure has been proposed along with some important properties, results,

and its validity in accordance with the existing axioms. Further, the monotonic behavior

of the proposed measure with respect to the involved parameters has been studied em-

pirically in Section 5. Section 6 comprehensively presents the illustration of the newly

provided parametric discriminant measure in machine learning decision-science problems

- “pattern recognition and clustering analysis” by solving a numerical example for each. A

detailed comparative analysis for the application problems under consideration has been

comprehensively outlined in Section 7 Also, the numerical examples show the practical

usefulness of the proposed methodology/measure with comparative remarks. Finally, the

manuscript is concluded in Section 8.

2 Literature Review

In the field of picture fuzzy sets, various related operations for interval-valued picture

fuzzy sets [8] have been provided and applied in the field of decision-making. Wei et al.

[11] presented some mathematical models to deal with the problems of MADM in picture

fuzzy setup. Further, Wang et al. [12] incorporated the VIKOR method and the mathe-

matical models in an integrated framework so as to obtain the compromise solution in the

multi-criteria decision problems. Ashraf et al. [13] (t-norm and t-conorm), Thong and

Son [14] (clustering), Jana et al. [15] (Dombi t-norm/t-conorm) studied novel techniques

for handling the MADM problem under picture fuzzy information. A novel clustering

technique called distributed picture fuzzy clustering technique was provided by Son [16]

and in addition to this, picture fuzzy distance measure and analogous hierarchical picture

clustering method have also been presented by Son [17] in a generalized way. Further,

in order to study the cross-relationship among the criteria and the impact of preferential

information, Tian et al. [18] proposed some picture fuzzy weighted operators for solv-

ing MCDM problems. Also, some aggregation operators termed Archimedean picture

fuzzy linguistic [19] and Einstein weighted/ordered weighted operators [20] have been

developed for solving multi-attribute group decision-making problems in picture fuzzy

environments. Also, Ejegwa and Zuakwagh [21] used the Fermatean fuzzy composite

relations and successfully applied in the problems of pattern recognition. A hybrid tech-

nique for assessing analogical skills has also been studied [22]. In addition to this, the
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trapezoidal fuzzy numbers have also been implemented with the incorporation of some

new similarity functions in the decision-making techniques [23], [24].

Ganie et al. [25] presented the new correlation coefficients for picture fuzzy sets and

utilized them in some MCDM problems. Singh and Ganie [26] also provided another

picture fuzzy correlation coefficient to study the pattern recognition problem and iden-

tification of an investment sector based on it. Also, Khan et al.[27] presented some

parameterized distance and similarity measures for picture fuzzy sets and applied them

to the problem of medical diagnosis. Kadian and Kumar [28] presented a new picture

fuzzy divergence measure for the MCDM problem on the basis of Jensen-Tsallis entropy.

An innovative form of picture fuzzy distance and similarity measure has been proposed

by Ganie et al. [29]. Umar et al. [30] introduced a novel technique of decision-making

in machine learning problems with the incorporation of picture fuzzy divergence mea-

sures. A novel picture fuzzy entropy has been utilized by Kumar et al. [31] with partial

weight information on the basis of the hybrid picture fuzzy methodology. Further, in the

picture fuzzy environment aggregation operators based on Schweizer-Sklar norms with

unknown weights have been proposed for a new decision-making methodology [32]. Also,

for the complex nature of the picture fuzzy sets Hamacher aggregation operators have

been implemented for the decision-making techniques [33].

3 Preliminaries

Here, we present some basic definitions that are in relation to the picture fuzzy set and

are available in the literature for ready reference.

Definition 1 Intuitionistic Fuzzy Set (IFS) [6]: “An intuitionistic fuzzy set I in

X (universe of discourse) is given by I = {< x, ρI(x), ωI(x) >| x ∈ X} ; where ρI : X →
[0, 1] and ωI : X → [0, 1] denote the degree of membership and degree of non-membership

respectively and for every x ∈ X satisfy the condition 0 ≤ ρI(x) + ωI(x) ≤ 1; and the

degree of indeterminacy for any IFS I and x ∈ X is given by πI(x) = 1− ρI(x)− ωI(x).”

Definition 2 Picture Fuzzy Set(PFS) [8]: “A picture fuzzy set U in X(universe of

discourse) is given by

U = {< x, ρU(x), τU(x), ωU(x) >| x ∈ X} ;

4



where ρU : X → [0, 1], τU : X → [0, 1] and ωU : X → [0, 1] denote the degree of positive

membership, degree of neutral membership and degree of non-membership respectively and

for every x ∈ X satisfy the condition

0 ≤ ρU(x) + τU(x) + ωU(x) ≤ 1;

and the degree of refusal for any picture fuzzy set U and x ∈ X is given by θU(x) =

1− ρU(x)− τU(x)− ωU(x)”.

Here, it may be noted that 0 ≤ ρU(x)+ τU(x)+ωU(x) ≤ 1; where in case of intuitionistic

fuzzy set, we have 0 ≤ ρI(x) + ωI(x) ≤ 1; for ρU(x), τU(x), ωU(x) ∈ [0, 1].

Remark: It may be noted that the concept of neutrality degree can be seen in situations

where human opinions involve responses in the form of yes, abstain, no and refusal. The

degree of abstain or abstinence means the rejection of yes as well as no.

Definition 3 [8]: “If U, V ∈ PFS(X), then the operations can be defined as follows:

(a) Complement: U = {< x, ωU(x), τU(x), ρU(x) > | x ∈ X};

(b) Subsethood: U ⊆ V iff ∀x ∈ X, ρU(x) ≤ ρV (x) τU(x) ≥ τV (x) and ωU(x) ≥
ωV (x);

(c) Union: U ∪V = {< x, ρU(x)∨ρV (x), τU(x)∧ τV (x) and ωU(x)∧ωV (x) > | x ∈ X};

(d) Intersection: U ∩ V = {< x, ρU(x) ∧ ρV (x), τU(x) ∨ τV (x) and ωU(x) ∨ ωV (x) >

| x ∈ X}.

In this paper, we use PFS(X) to denote the collection of all the PFSs defined on the

domain of discourse X.”

Definition 4 Average Picture Fuzzy Set[17]: “The average picture fuzzy set of Ui ∈
PFS(X), i = 1, 2, ..., n is represented by (Ui)av and given by

(Ui)av = {⟨x, 1
n

∑n
i=1 ρ(x),

1
n

∑n
i=1 τ(x),

1
n

∑n
i=1 ω(x)⟩|x ∈ X}.”
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4 (R, S)-Norm Picture Fuzzy Discriminant Measure

In the literature of information theory, there are several distance measures, similarity

measures, and divergence/dissimilarity measures for different extensions of fuzzy sets,

but there are some measures that can be very useful and involve fewer computations at

the cost that they do not satisfy the prerequisite standard axioms. In order to over-

come such limitations, there is a need to define the notion of discriminant information

measures which involves only two axioms. Various researchers have explored the con-

cept of parameterized discriminant information measures and utilized them in different

application fields. Some initial related notions [10] are described as follows:

“Let △n = {P = (p1, p2, ....pn), pi ≥ 0, i = 1, 2, 3, ......n and
∑

pi = 1} be the

set of all probability distributions associated with a discrete random variable X taking

finite values x1, x2,......, xn. For all probability distribution of P = (p1, p2, . . . , pn) and

Q = (q1, q2, . . . , qn) ∈ △n, Joshi and Kumar [10] proposed a divergence measure:

DS
R(P,Q) =

R× S

S −R

( n∑
i=1

(pSi q
1−S
i )

) 1
S

−

(
n∑

i=1

(pRi q
1−R
i

) 1
R

 ; (4.1)

where either 0 < S < 1 and 1 < R < ∞ or 0 < R < 1 and 1 < S < ∞.”

It may also be noted that, in an analogous fashion, various parametric discrimi-

nant measures for different types of sets such as fuzzy sets, intuitionistic fuzzy sets, and

Pythagorean fuzzy sets have been proposed and studied in detail.

Similarly, on the basis of the above proposed theoretic probabilistic information mea-

sure (4.1), Dhumras and Bajaj [34] presented a new bi-parametric picture fuzzy discrim-

inant measure for two PFSs U, V ∈ PFS(X) as follows:

ISR(U, V ) =
R× S

n(S −R)

n∑
i=1

 (
ρU (xi)

SρV (xi)
(1−S) + τU (xi)

SτV (xi)
(1−S) + ωU (xi)

SωV (xi)
(1−S) + θU (xi)

SθV (xi)
(1−S)

) 1
S

−
(
ρU (xi)

RρV (xi)
(1−R) + τU (xi)

RτV (xi)
(1−R) + ωU (xi)

RωV (xi)
(1−R) + θU (xi)

RθV (xi)
(1−R)

) 1
R

 ;

(4.2)

where either 0 < S < 1 & 1 < R < ∞ or 0 < R < 1 & 1 < S < ∞. ISR(U, V ) is not

showing the symmetric nature with respect to the argument sets. In accordance, it can

be structured as follows:

JSR(U, V ) = ISR(U, V ) + ISR(V, U). (4.3)

Guiwu Wei [35] presented the concept of discriminant information measure for PFSs

and defined “picture fuzzy cross entropy” as IPFS(U, V ) which satisfies two axioms -
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IPFS(U, V ) ≥ 0 and IPFS(U, V ) = 0 if and only if U = V . For fuzzy sets IFS(U, V ) ̸=
IFS(U, V ). However, for PFSs, IPFS(U, V ) = IPFS(U, V ) holds.

5 Monotone Behavior of Proposed Discriminant Mea-

sure

The monotonic behavior of the presented bi-parametric picture fuzzy (R, S)-norm dis-

criminant measure has been studied in detail for proper understanding and clarification.

For the sake of this, the following 4 pairs of picture fuzzy sets

A = (U1, U2), B = (U3, U4), C = (U5, U6) and D = (U7, U8)

over the universe of discourse X = {x1, x2, x3}:

U1 = {(x1, 0.1, 0.3, 0.5), (x2, 0.2, 0.4, 0.2), (x3, 0.1, 0.2, 0.4)};
U2 = {(x1, 0.2, 0.3, 0.2), (x2, 0.2, 0.1, 0.2), (x3, 0.1, 0.3, 0.4)}.

U3 = {(x1, 0.1, 0.1, 0.5), (x2, 0.2, 0.2, 0.3), (x3, 0.1, 0.4, 0.4)};
U4 = {(x1, 0.1, 0.3, 0.2), (x2, 0.2, 0.4, 0.3), (x3, 0.1, 0.2, 0.5)}.

U5 = {(x1, 0.1, 0.2, 0.5), (x2, 0.2, 0.2, 0.2), (x3, 0.2, 0.4, 0.4)};
U6 = {(x1, 0.2, 0.3, 0.1), (x2, 0.2, 0.1, 0.1), (x3, 0.1, 0.3, 0.5)}.

U7 = {(x1, 0.1, 0.1, 0.7), (x2, 0.2, 0.3, 0.2), (x3, 0.1, 0.4, 0.2)};
U8 = {(x1, 0.5, 0.2, 0.1), (x2, 0.2, 0.4, 0.2), (x3, 0.2, 0.4, 0.1)}.

Without loss of generality, we can first fix up the values of S as S = 0.15, 0.25, 1, 4, 15, 60, 150,

then the value of R is translated in a range, say, (0.001 ≤ R ≤ 295) and then the val-

ues of the proposed measure are being tabulated for these pairs of picture fuzzy sets in

consideration. Based on the Table 1, we plot the charts that clearly reflect the mono-

tone behavior of the information measure in connection with the parameters as shown in

Figure 1.
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6 Applications of Proposed Discriminant Measure in

Pattern Recognition Problems

We utilize the newly proposed bi-parametric (R, S)-Norm discriminant information mea-

sure for PFSs in the different application areas of decision-making machine learning prob-

lems.

6.1 Pattern Recognition

In the problems of pattern recognition, a pattern that is completely unknown is grouped

into the already designed patterns by making use of various information measures like dis-

criminant/divergence measure, similarity measure, and distance measure. The method-

ology to solve a general problem of pattern recognition, we present the procedural steps

with the help of Figure 2.

Now we consider a numerical illustration of pattern recognition which is already

present in the literature. Also, the results are contrasted with those of the existing

measures to test the predominance of the proposed discriminant measure.

Remark: With reference to the dataset applicable in the proposed methodology, it is

being observed that the overall time complexity of the proposed technique is of linear

order, i.e., O(n); where n is the number of the point in the dataset.

6.1.1 Numerical Illustration [36]

In order to have a classification in the unknown pattern V with the prior known patterns
Uj(j = 1, 2, ..., n) by making use of different fuzzy measures. Suppose we consider 3
patterns which are already known be U1, U2 and U3. In the picture fuzzy representation
of these patterns in X = {x1, x2, x3} given as:

U1 = {(x1, 0.4, 0.3, 0.1), (x2, 0.5, 0.3, 0.2), (x3, 0.4, 0.3, 0), (x4, 0.7, 0, 0.2), (x5, 0.6, 0.1, 0.1)};

U2 = {(x1, 0.7, 0.1, 0.1), (x2, 0.2, 0.3, 0.4), (x3, 0.2, 0.1, 0.5), (x4, 0.1, 0.5, 0.2), (x5, 0.3, 0.3, 0.3)};

U3 = {(x1, 0.1, 0.3, 0.4), (x2, 0.4, 0.3, 0.1), (x3, 0.3, 0.4, 0.2), (x4, 0.2, 0.5, 0.3), (x5, 0.5, 0.3, 0.1)}.

Suppose there is an unclassified sample pattern V which is provided in the picture fuzzy

representation as:

V = {(x1, 0.6, 0.2, 0.1), (x2, 0.3, 0.4, 0.2), (x3, 0.4, 0.3, 0.2), (x4, 0.7, 0.1, 0.0), (x5, 0.4, 0.2, 0.2)}.
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Now, in order to find out the pattern to which the unknown pattern V belongs, we shall

make use of the principle of minimum discriminant information as given by [37], the

procedure for allotment of V to Uj∗ is determined by

j∗ = argmin
j
(ISR(Uj, V )). (6.1)

Now, using proposed discriminant measure (4.2), we get the values of argminj(ISR(Uj, V ))

tabulated in Table 2:

Hence, from Table 2, it can be seen that the completely unknown pattern V is clubbed

to pattern U1.

6.1.2 Numerical Illustration [38]

Let us consider another numerical illustration regarding pattern recognition for more

clarity on the proposed notion. Consider three patterns that are already known U1, U2

and U3. In the picture fuzzy representation of these patterns in X = {x1, x2, x3} given

as:

U1 = {(x1, 0.4, 0.4, 0.1), (x2, 0.7, 0.15, 0.1), (x3, 0.3, 0.3, 0.2)};
U2 = {(x1, 0.5, 0.3, 0.1), (x2, 0.7, 0.2, 0.05), (x3, 0.5, 0.3, 0.1)};
U3 = {(x1, 0.4, 0.5, 0.1), (x2, 0.7, 0.1, 0.1), (x3, 0.4, 0.3, 0.2)}.

Suppose there is an unclassified sample pattern V which is provided in the picture fuzzy

representation as:

V = {(x1, 0.1, 0.1, 0.4), (x2, 0.8, 0.05, 0.05), (x3, 0.05, 0.8, 0.05)}.

Now, in order to find out the pattern to which the unknown pattern V belongs, we shall

make use of the principle of minimum discriminant information as given by [37], the

procedure for allotment of V to Uj∗ is determined by

j∗ = argmin
j
(ISR(Uj, V )). (6.2)

Now, using the proposed discriminant measure (4.2), we get the values of argminj(ISR(Uj, V ))

tabulated in Table 3:

Hence, from Table 3, it may be noted that the completely unclassified pattern V is

clubbed to pattern U1.
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6.2 Clustering

In this section, the proposed discriminant measure is applied for clustering on various

PFSs. The method of clustering for PFSs has been introduced by Singh[39] on similar

lines as introduced by Xu et al.[40] for IFSs.

In order to examine the applicability of the proposed discriminant measure, its practi-

cality is given by the help of a numerical illustration.

Note: The various steps of the methodology involved in clustering has been shown in

Figure 3.

6.2.1 Numerical Illustration [41]

A collection of data for building materials is provided in Table 4 which is composed of 5

main materials: “sealant, floor varnish, wall paint, carpet, and chloride flooring” which

are to be evaluated against eight criteria. The main aim behind this collection of data

is to verify the method of clustering on a collection of data having a large number of

objects.

The methodology of clustering involves the following steps as:

Step 1: In the first step, all of the PFSs Cj(j = 1, 2, 3, 4, 5) is counted as single cluster

{C1}, {C2}, {C3}, {C4}, {C5}.

Step 2: In the next step, draw a comparison between each of the PFSs Cj by making

use of the proposed discriminant measure (4.2) (R=S=1) as:

I(C1, C2) = I(C2, C1) = 0.1471

I(C1, C3) = I(C3, C1) = 0.1835

I(C1, C4) = I(C4, C1) = 0.1358

I(C1, C5) = I(C5, C1) = 0.1234

I(C2, C3) = I(C3, C2) = 0.1005

I(C2, C4) = I(C4, C2) = 0.1693

I(C2, C5) = I(C5, C2) = 0.4454

I(C3, C4) = I(C4, C3) = 0.1307

I(C3, C5) = I(C5, C3) = 0.1603

I(C4, C5) = I(C5, C4) = 0.1202

since,
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I(C1, C5) = min{I(C1, C2), I(C1, C3), I(C1, C4), I(C1, C5)} = 0.1234;

I(C2, C3) = min{I(C2, C1), I(C2, C3), I(C2, C4), I(C2, C5)} = 0.1005;

I(C4, C5) = min{I(C4, C1), I(C4, C2), I(C4, C3), I(C4, C5)} = 0.1202.

Now, in every step only two clusters can be grouped, the PFSs Cj(j = 1, 2, 3, 4, 5) can

be grouped into the following three clusters as

{C1}, {C2, C3}, {C4, C5}.

Step 3: Here, the centers of each grouped cluster are computed with the definition 4

and shown in Table 5.

Now, again compare each of the grouped clusters with their centers by making use

of the proposed discriminant measure given by equation (4.2) and we get

I(C(C1),C(C2, C3)) = I(C(C2, C3),C(C1)) = 0.0305

I(C(C1),C(C4, C5)) = I(C(C4, C5),C(C1)) = 0.0094

I(C(C2, C3),C(C4, C5)) = I(C(C4, C5),C(C2, C3)) = 0.0061

I(C(C2, C3),C(C4, C5)) = min{I(C(C1),C(C2, C3)), I(C(C1),C(C4, C5)), I(C(C2, C3),C(C4, C5))}

Hence, on similar lines, the PFSs Cj(j = 1, 2, 3, 4, 5) can be grouped into the following

clusters as:

{C1}, {C2, C3, C4, C5}

Step 4: In the final step, the above two clusters can be further grouped into a single

cluster as:

{C1, C2, C3, C4, C5}

The overall process of the above clustering is shown in the following Table 6:

Remarks: It appears to be prominent that the values of the discriminant information

measure computed above are somewhat promising and more reliable which establishes

and affirms the effectiveness of the proposed technique.
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7 Comparative Analysis & Discussion

In this section, we have presented a detailed comparative analysis based on the numer-

ical examples solved in the previous section. In this process, the necessary respective

comparative remarks have been listed along with advantages and limitations.

Comparative Remarks: (Referring to the numerical illustration presented in subsec-

tion 6.1.1)

In order to check the predominance of the proposed discriminant measure over the

existing measures a tabular comparison has been carried out in Table 7.

Now, from Table 7, it can be clearly seen that the proposed discriminant measure

(4.2) and the other existing measures give the same results and the completely unknown

pattern V is grouped to U1 with the help of these measures. This shows the consistency

of the result with more prominent classifier score values.

Comparative Remarks: (Referring to the numerical illustration presented in subsec-

tion 6.1.2)

In order to check the predominance of the proposed discriminant measure over the

existing measures a tabular comparison has been carried out in Table 8:

Now, from Table 8, it can be clearly seen that the newly presented discriminant

measure (4.2) and the other existing measures yield similar results and the completely

unclassified pattern V is grouped to U1 with the help of these measures.

Comparative Remarks: (Referring to the numerical illustration presented in subsec-

tion 6.2.1)

In order for the validation of the proposed discriminant measure, a comparison is

drawn with the two methods, i.e., hierarchical picture fuzzy clustering method (HPC)

given by Son [17] and intuitionistic hierarchical clustering method (IHC) given by Xu [42]

in the Table 9 and Table 10. From the comparative analysis, it can be clearly seen that

the technique of clustering by making use of the proposed discriminant measure is good

and is of great effectiveness. There is no restriction on the number of attributes(which

can be increased) in the collection of datasets.

Advantages and Limitations: On comparing our proposed technique with the

existing ones, we find that our method is equally consistent with the importance given
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to the decision-makers by assigning their weights. In addition, the suggested approach

concurrently recommends the exact input and strategy, which is not the case with other

methods. Additionally, compared to other ways that involve a complex process to reach a

conclusion, the suggested method is easier to apply and involves fewer computations. The

limitations of the presented methodology lie in the fact that it won’t be able to cover the

“sub-parametrization features” inherited in information related to some decision-making

problem. As a future work, it may be suggested that the notion of picture fuzzy hypersoft

sets may accordingly be implemented.

As a result, the performance of the suggested method is really good. A characteristic

comparison table explaining the advantages and features of the proposed measures and

techniques is given in Table 11 for understanding the motivation and the necessity of the

proposed techniques:

8 Conclusions and Scope for Future Work

The proposed bi-parametric measure for PFSs has been feasibly utilized and the mono-

tonicity of the discriminant measure in R and S has been successfully established. The

discriminant measure’s efficiency has been better than the existing measures due to the

parameters and uncertainty components (degree of abstain and refusal) which are very

necessary for the practical problems. Further, the discriminant measure has been imple-

mented in the machine learning decision science problems which are related to the field

of “pattern recognition and clustering”. The methodology for each application has been

outlined separately and illustrated with the help of a numerical example for each. The

outcomes in each of the applications considered in the manuscript are in line with the

existing practices in use but with less computational effort. The suggested methodology

assesses each choice in relation to each criterion separately by assigning considerable im-

portance/weightage while deciding the preference in case of a decision-making dilemma.

When compared to various existing strategies, the proposition advises the particular

input & straightforward procedure simultaneously.

In the future, the notion of useful bi-parametric discriminant measures for the more

generalized T -spherical fuzzy sets on the basis of the utility distribution information mea-

sures discussed by Hooda et al. [43] can be proposed. This proposition will be supported

by the concept of integrated ambiguity and information improvement measures. Addi-
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tionally, the constrained optimization of these information measures may be discussed in

detail with the possible scope of applications in various other types of decision-making

problems. Besides the above-stated possibilities, these deliberations may be analogously

devised by taking soft sets, bipolar sets [44], complex fuzzy sets, bipolar soft sets [45]

and spherical and T -spherical fuzzy sets [46] [47] into account as per the necessity raised

due to uncertainty of the information.
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Figure Captions

• Figure 1: Monotonicity Property of Bi-parametric Discriminant Measure

• Figure 2: Procedural Steps for Solving a Pattern Recognition Problem

• Figure 3: Procedural Steps of Solving the Clustering Problem

Table Captions

• Table 1: Values of R, S Norm Discriminant Measure

• Table 2: Values of ISR(Uj, V ), with j ∈ {1, 2, 3}

• Table 3: Values of ISR(Uj, V ), with j ∈ {1, 2, 3}

• Table 4: Collection of data for building materials
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• Table 5: Centers of grouped clusters

• Table 6: Clustering results of proposed measure

• Table 7: Comparative Analysis with Some Existing Measures

• Table 8: Comparative Analysis with Some Existing Measures

• Table 9: Clustering results of existing measures

• Table 10: Clustering results of existing measures

• Table 11: Characteristic Comparison with the Existing Techniques
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Figure 1: Monotonicity Property of Bi-parametric Discriminant Measure
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Figure 2: Procedural Steps for Solving a Pattern Recognition Problem
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Table 1: Values of R, S Norm Discriminant Measure

No
R S = 0.15 S = 1 S = 15 S = 150

A B C D A B C D A B C D A B C D

1 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003

2 0.005 0.000 0.000 0.001 0.000 0.001 0.001 0.002 0.001 0.008 0.007 0.01 0.011 0.009 0.008 0.012 0.013

3 0.01 0.000 0.000 0.002 0.000 0.002 0.002 0.005 0.002 0.015 0.014 0.021 0.022 0.018 0.016 0.024 0.027

4 0.05 0.001 0.001 0.01 0.001 0.009 0.008 0.022 0.012 0.076 0.068 0.102 0.113 0.091 0.081 0.119 0.134

5 0.1 0.002 0.002 0.017 0.002 0.019 0.017 0.038 0.024 0.152 0.136 0.195 0.225 0.181 0.162 0.229 0.267

6 0.2 0.005 0.005 0.024 0.004 0.039 0.034 0.061 0.051 0.304 0.272 0.374 0.452 0.358 0.321 0.441 0.532

7 0.3 0.007 0.007 0.028 0.007 0.06 0.051 0.082 0.081 0.454 0.406 0.549 0.677 0.533 0.478 0.646 0.793

8 0.5 0.013 0.012 0.034 0.013 0.104 0.089 0.127 0.152 0.748 0.669 0.894 1.125 0.871 0.781 1.046 1.305

9 0.75 0.021 0.018 0.041 0.023 0.165 0.138 0.191 0.261 1.103 0.988 1.314 1.665 1.272 1.142 1.523 1.911

10 0.9 0.026 0.022 0.046 0.032 0.204 0.169 0.234 0.336 1.306 1.172 1.557 1.972 1.498 1.347 1.796 2.251

11 1.5 0.048 0.040 0.071 0.072 0.369 0.301 0.434 0.661 2.031 1.841 2.426 3.015 2.287 2.073 2.746 3.377

12 2.1 0.072 0.059 0.1 0.114 0.37 0.435 0.642 0.941 2.592 2.386 3.087 3.752 2.88 2.637 3.452 4.165

13 5 0.154 0.134 0.2 0.233 0.1.041 0.907 1.239 1.617 3.814 3.593 4.564 5.741 4.134 3.842 4.994 5.977

14 7 0.183 0.162 0.231 0.273 1.199 1.065 1.425 1.828 4.122 3.839 4.974 6.25 4.44 4.084 5.404 6.475

15 10 0.207 0.185 0.26 0.308 1.329 1.19 1.582 2.012 4.361 4.011 5.299 7.038 4.672 4.257 5.717 6.84

16 30 0.251 0.225 0.313 0.372 1.55 1.394 1.855 2.329 4.712 4.28 5.772 7.038 5.01 4.537 6.171 7.377

17 75 0.265 0.238 0.331 0.392 1.619 1.457 1.941 2.431 4.811 4.366 5.904 7.039 5.112 4.626 6.306 7.542

18 100 0.267 0.239 0.334 0.396 1.631 1.468 1.956 2.448 4.828 4.38 5.927 7.041 5.129 4.641 6.329 7.57

19 200 0.271 0.243 0.338 0.401 1.649 1.484 1.978 2.474 4.853 4.402 5.96 7.059 5.155 4.663 6.362 7.614

20 250 0.272 0.244 0.339 0.402 1.652 1.487 1.982 2.479 4.858 4.406 5.967 7.119 5.16 4.669 6.371 7.621

21 260 0.272 0.244 0.339 0.403 1.653 1.488 1.983 2.48 4.859 4.407 5.968 7.133 5.161 4.669 6.372 7.622

22 270 0.272 0.244 0.339 0.403 1.654 1.488 1.984 2.481 4.859 4.408 5.969 7.134 5.162 4.770 6.373 7.623

23 280 0.272 0.244 0.339 0.403 1.654 1.489 1.984 2.481 4.860 4.408 5.969 7.135 5.162 4.770 6.374 7.624

24 290 0.272 0.244 0.339 0.403 1.654 1.489 1.985 2.482 4.861 4.409 5.971 7.136 5.163 4.771 6.375 7.626

25 295 0.272 0.244 0.34 0.403 1.655 1.489 1.985 2.482 4.861 4.409 5.971 7.137 5.163 4.771 6.375 7.627

Table 2: Values of ISR(Uj, V ), with j ∈ {1, 2, 3}
R S U1 U2 U3

V 0.1 10 0.1159 0.1292 0.1569

V 0.9 10 0.6952 1.0771 1.2706

Table 3: Values of ISR(Uj, V ), with j ∈ {1, 2, 3}
R S U1 U2 U3

V 0.1 10 0.1637 0.2019 0.2512

V 0.9 10 1.4326 1.7279 2.2817

Table 4: Collection of data for building materials
“Sealant”(C1) “Floor varnish”(C2) “Wall paint”(C3) “Carpet”(C4) “Chloride flooring”(C5)

A1 (0.9, 0.0, 0.0) (0.5, 0.2, 0.2) (0.45, 0.1, 0.25) (1.0, 0.0, 0.0) (0.9, 0.0, 0.0)

A2 (0.1, 0.3, 0.5) (0.6, 0.1, 0.05) (0.6, 0.1, 0.2) (1.0, 0.0, 0.0) (0.9, 0.1, 0.0)

A3 (0.5, 0.1, 0.2) (1.0, 0.0, 0.0) (0.9, 0.0, 0.0) (0.85, 0.05, 0.05) (0.8, 0.0, 0.1)

A4 (0.2, 0.0, 0.0) (0.15, 0.3, 0.35) (0.1, 0.5, 0.3) (0.75, 0.15, 0.0) (0.7, 0.1, 0.1)

A5 (0.4, 0.15, 0.2) (0.0, 0.3, 0.5) (0.2, 0.3, 0.4) (0.2, 0.2, 0.6) (0.5, 0.05, 0.1)

A6 (0.1, 0.4, 0.5) (0.7, 0.05, 0.1) (0.6, 0.1, 0.1) (0.15, 0.25, 0.6) (0.3, 0.35, 0.3)

A7 (0.3, 0.3, 0.2) (0.5, 0.1, 0.2) (0.15, 0.4, 0.4) (0.1, 0.3, 0.4) (0.15, 0.25, 0.5)

A8 (0.5, 0.1, 0.0) (0.65, 0.1, 0.1) (0.2, 0.05, 0.1) (0.3, 0.3, 0.4) (0.4, 0.2, 0.1)
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Table 5: Centers of grouped clusters
C(C1) C(C2, C3) C(C4, C5)

A1 (0.475, 0.15, 0.225) (0.95, 0.0, 0.0) (0.9, 0.0, 0.0)

A2 (0.6, 0.1, 0.125) (0.95, 0.05, 0.0) (0.1, 0.3, 0.5)

A3 (0.95, 0.0, 0.0) (0.825, 0.025, 0.075) (0.5, 0.1, 0.2)

A4 (0.125, 0.4, 0.325) (0.725, 0.125, 0.05) (0.2, 0.0, 0.0)

A5 (0.1, 0.3, 0.45) (0.35, 0.125, 0.35) (0.4, 0.15, 0.2)

A6 (0.65, 0.075, 0.1) (0.225, 0.3, 0.45) (0.1, 0.4, 0.5)

A7 (0.325, 0.25, 0.3) (0.125, 0.275, 0.45) (0.3, 0.3, 0.2)

A8 (0.425, 0.075, 0.35) (0.35, 0.25, 0.25) (0.5, 0.1, 0.0)

Table 6: Clustering results of proposed measure
Clusters

Stage 1 {“Sealant”}, {“Floor varnish”}, {“Wall paint”}, {“Carpet”}, {“Chloride flooring”}
Stage 2 {“Sealant”}, {“Floor varnish”,“Wall paint”}, {“Carpet”,“Chloride flooring”}
Stage 3 {“Sealant”}, {“Floor varnish”,“Wall paint”,“Carpet”,“Chloride flooring”}
Stage 4 {“Sealant”,“Floor varnish”,“Wall paint”,“Carpet”,“Chloride flooring”}

Table 7: Comparative Analysis with Some Existing Measures
Method U1 U2 U3 Results

Ganie et al. [25] 0.4929 0.1621 -0.7676 U1

Ganie et al. [25] 0.2270 0.1608 -0.6793 U1

Thao [38] 0.5586 -0.0480 -0.7284 U1

Dutta [48] 0.2000 0.3000 0.3400 U1

Dutta [48] 0.1789 0.2933 0.3162 U1

Singh [39] 0.9168 0.7625 0.7138 U1

Singh [39] 0.8838 0.7500 0.6739 U1

Umar et al. [30] 0.0901 0.1600 0.1785 U1

Proposed (R=0.1, S=10) 0.1159 0.1292 0.1569 U1

Proposed (R=0.9, S=10) 0.6952 1.0771 1.2706 U1
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Table 8: Comparative Analysis with Some Existing Measures
Method U1 U2 U3 Results

Thao et al.[38] 0.1184 0.1371 0.1359 U1

Thao et al.[38] 0.5103 0.6123 0.5968 U1

Le at al.[49] 0.1792 0.2000 0.1917 U1

Thao[50] 0.2208 0.2375 0.2360 U1

Wei[11] 0.7273 0.6744 0.6970 U1

Umar et al.[30] 0.2022 0.2348 0.2326 U1

Proposed 0.1637 0.2019 0.2512 U1

Proposed 1.4326 1.7279 2.2817 U1

Table 9: Clustering results of existing measures
IHC[42]

Stage 1 {“Sealant”}, {“Floor varnish”}, {“Wall paint”}, {“Carpet”}, {“Chloride flooring”}
Stage 2 {“Sealant”}, {“Floor varnish”,“Wall paint”}, {“Carpet”,“Chloride flooring”}
Stage 3 {“Sealant”}, {“Floor varnish”,“Wall paint”,“Carpet”,“Chloride flooring”}
Stage 4 {“Sealant”,“Floor varnish”,“Wall paint”,“Carpet”,“Chloride flooring”}

Table 10: Clustering results of existing measures
HPC[17]

Stage 1 {“Sealant”}, {“Floor varnish”}, {“Wall paint”}, {“Carpet”}, {“Chloride flooring”}
Stage 2 {“Sealant”}, {“Floor varnish”,“Wall paint”}, {“Carpet”,“Chloride flooring”}
Stage 3 {“Sealant”}, {“Floor varnish”,“Wall paint”,“Carpet”,“Chloride flooring”}
Stage 4 {“Sealant”,“Floor varnish”,“Wall paint”,“Carpet”,“Chloride flooring”}

Table 11: Characteristic Comparison with the Existing Techniques
Research Articles Parametrization

Involvement

Entropy & Dis-

criminant Mea-

sure

Assessment In-

formation of

Alternatives

Ganie et al. [25] × × Picture Fuzzy Set

Thao [38] × × Picture Fuzzy Set

Dutta [48] × × Picture Fuzzy Set

Singh [39] × × Picture Fuzzy Set

Umar [30] × × Picture Fuzzy Set

Proposed Methods ✓ ✓ Picture Fuzzy Set

25


