
Scientia Iranica (2024) 31(5), 373{387

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
https://scientiairanica.sharif.edu

A self-adaptive approach to job scheduling in cloud
computing environments

A. Sheibanirad and M. Ashtiani�

Cloud Computing Center, School of Computer Engineering, Iran University of Science and Technology, Tehran, P.O. Box
1684613114, Iran.

Received 30 September 2021; received in revised form 7 April 2023; accepted 21 November 2023

KEYWORDS
Cloud computing;
Reinforcement
learning;
Job scheduling;
Autonomicity;
Soft actor-critic.

Abstract. Manual con�guration of available resources in the data center, as well as
manual decision-making for customers' requests, makes the resource management process
potentially error-prone. Therefore, the resource manager should make intelligent decisions
for assigning available resources to existing requests to ensure scalable and e�cient
on-demand resource provisioning. Cloud job scheduling mechanisms aim to allocate the
resources to users' submitted jobs optimally, yet optimal scheduling is an NP-complete
problem. To address these challenges, many researchers have tried to tackle the job
scheduling problem by proposing automatic solutions using Reinforcement Learning (RL)
methods. Unfortunately, most of these methods ignore fair response time to all the
incoming jobs with the proper utilization of data center resources. In this research, we use
deep RL as a sequential decision-making method for automatic resource management that
changes its behavior to deal with environmental changes. The approach uses the discrete
soft-actor-critic algorithm. It has e�cient sampling and stable learning convergence, as
well as a precise adjustment of learning hyperparameters. Results show that compared
to DeepRM and DeepScheduler, our approach improves slowdown and the balance of
slowdown by at least three times using Google's dataset.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

A massive number of jobs are submitted daily to
cloud systems which need to be mapped to the exist-
ing resources simultaneously and e�ciently. Therefore,
devising an appropriate approach that minimizes the
jobs' execution delay and balances the cloud resource
utilization is crucial. The advent of cloud automation

*. Corresponding author. Tel.: +98 21 73225328;
E-mail addresses: sheibanirad@mail.mui.ac.ir (A.
Sheibanirad); m ashtiani@iust.ac.ir (M. Ashtiani)

reduces manual intervention and improves resource
management in large-scale workloads. It encompasses
designing automation techniques and tools for resource
allocation and management that execute on top of
the virtualized cloud environment to make real-time
decisions [1].

One of the challenges in cloud computing is job
scheduling, which aims to minimize the response time
of required jobs based on user-de�ned job pro�les.
Scheduling in cloud computing has two points of
view: (1) the users' viewpoint and (2) the providers'

To cite this article:
A. Sheibanirad, and M. Ashtiani, \A self-adaptive approach to job scheduling in cloud computing environments", Scientia Iranica
(2024), 31(5), pp. 373-387
DOI: 10.24200/sci.2023.59168.6090

374 A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387

viewpoint. Job scheduling cannot be solved using linear
programming approaches, which means it is impos-
sible to �nd an ideal solution (it is an NP-complete
problem). Several branches and bound approximation
methods have been proposed to deal with this issue [2].

Autonomic cloud computing approaches are po-
tential solutions for e�ective resource allocation by real-
izing users' Quality Of Service (QoS) requirements and
handling unexpected failures at runtime to optimize
QoS parameters [3].

E�cient job scheduling faces heterogeneous com-
plexity. The policy of the scheduler signi�cantly
depends on understanding the workload and environ-
ment. Hence, the scheduler needs to consider the
execution time of each distinct workload and the
overall performance based on the type of workload,
namely heterogeneous workloads (i.e., di�erent QoS
requirements) and homogenous workloads (i.e., similar
QoS requirements) [4].

Currently, most research approaches use heuris-
tics that are applied to solve job scheduling for di�erent
optimization objectives. These heuristics depend on
domain parameters de�ned by experts and optimizing
performance metrics in a principled manner is noto-
riously challenging [5]. The recent development of
arti�cial intelligence evinces new automation methods
to help reach an optimal situation in a dynamic and
complex environment like the cloud. In this work,
we propose an approach that schedules batch, unpre-
dictable, and diverse incoming jobs online and dynam-
ically. We have designed the proposed scheduler based
on Reinforcement Learning (RL). In this research,
self-adaptation and system e�ciency are realized by
performing continuous monitoring, understanding the
characteristics of the environment and its potential
changes as well as dynamically and automatically
changing the scheduler's policy. The scheduler uses the
soft-actor-critic algorithm [6] which is sample e�cient,
considers automatic management, and uses curiosity
learning to explore a variety of states. The proposed
load-sensitive scheduler focuses on response time and
the fair assignment of resources to the existing jobs.
The rest of the paper is structured as follows: Section
2 gives a comprehensive overview of related work,
discussing the pros and cons of existing approaches.
Section 3 presents the details of the proposed approach,
consisting of the architecture, main components, and
algorithms. In Section 4, the evaluation results are
provided. Some of the practical limitations and real-
world applicability challenges are discussed in Sec-
tion 5. Finally, Section 6 concludes the paper.

2. Related work

Traditionally, researchers have used heuristics such as
fair scheduling [7,8], �rst-�t [9], simple packing strate-

gies [10], and meta-heuristic algorithms like genetic al-
gorithms [11] or ant colony optimization [12] to address
resource management issues, which led the system to
use its resources e�ectively by ensuring fairness and
e�cient scheduling. These simple heuristics prioritize
generality to attain the best performance on a speci�c
scenario and workload and regulate parameters by
complex, tedious, and iterative tests [5,13].

For four reasons, RL is an acceptable approach
for decision-making problems like job scheduling.
Firstly, it can model and solve job scheduling within
complex data center environments and decision-
making policies as deep neural networks. Secondly, it
works with unlabeled data. Thirdly, it can be trained
using related policies and reward signals. Finally,
its continuous and rapid learning capabilities enable
agents to converge towards optimal conditions based
on speci�ed workloads [5].

For the �rst time, Mao et al. [5] proposed a sim-
ple multi-resource cluster scheduler (DeepRM), which
manages incoming jobs based on the scheduler's policy
and allocates them to the data center. DeepRM
operates online, packing jobs with multiple resource
demands. It tends to optimize the average slowdown
or completion time as an objective function.

Unfortunately, this research su�ers from a high
variance problem, which leads to low accuracy when
computing the gradient. Additionally, it relies on the
Monte Carlo method to update the parameters, which
requires massive calculations. Finally, DeepRM doesn't
support a multi-resource multi-machine environment.

Mao et al. [14] solves the dependent job scheduling
problem in a Spark cluster through a graph embedding
technique. This approach is a general-purpose schedul-
ing service for data processing jobs that can be used for
interdependent tasks. The approach uses the Monte-
Carlo method, which has low accuracy and requires
massive calculations, as also mentioned for DeepRM.

Chen et al. [15] improved and extended the
DeepRM approach to multiple server clusters through
deep RL. This model reconstructs the state space
representation, rewriting the reward function for the
RL agent, using a convolutional input layer. On the
other hand, this work su�ers from a high variance
problem. Also, updating the parameters requires
massive calculations.

DeepRM2 [16] proposes a preemptive and multi-
cluster model with two new ideas. The �rst idea
is imitation learning, which helps the scheduler learn
primitive policies before starting the training process
using deep RL The second idea is to change the policy
network's structure from a fully connected network to
a convolutional neural network that facilitates image
feature extraction. This approach can be used for
online and o�ine resource scheduling.

CuSH [17] is a resource management and job

A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387 375

scheduling framework that uses deep neural networks
and RL. This framework uses Neural Networks (NN)
as automatic agents which learn to make optimal
scheduling choices based on a dataset that contains
the jobs' history and performance characteristics. The
implementation consists of job and policy selector
modules, each of which trains its NN with an RL con-
�guration. The �rst module is the policy selector, and
the second module is the job selector. Unfortunately,
like previous research, this study su�ers from a high
variance problem and relies on the Monte Carlo method
to update the parameters. Another downside is its
focus on a single objective function.

SCARL [18] is an RL-based job scheduler devel-
oped to accommodate the diversity and heterogeneity
of jobs and machines in a cluster. The model includes:
(1) a cluster, (2) a scheduler based on RL, and (3)
an attentive interpreter. SCARL considers two perfor-
mance objectives: (1) maximizing job completion delay
(i.e., slow down) and (2) supporting jobs with deadline
constraints. However, this work su�ers from several
limitations. It faces a high variance problem, updating
the parameters requires massive calculations, and its
evaluation is only based on synthesized simulation
scenarios. Attentive learning takes time and has a
high overhead for the scheduler. Also, the RL-based
scheduler cannot operate on large-scale workloads over
multiple clusters.

DeepJS [19] is a job scheduling algorithm based on
deep RL and designed to accommodate the bin packing
problem. It calculates the �tness of each action to
solve the bin packing problem, which describes how
a machine and a task are mapped and minimizes the
makespan. This research, like previous research, su�ers
from a high variance problem and relies on the Monte
Carlo method to update the parameters which requires
massive calculation.

Liang et al. [20] proposed a policy-value-based
deep RL scheduling method called A2cScheduler [20].
A2cScheduler is based on an actor-critic method. The
multi-step Temporal-Di�erence (TD) method is a key
feature of the A2cScheduler for updating parameters,
which improves the speed of the scheduler's training
process compared to the conventional Monte Carlo
methods. The objective function of this approach is
to reduce the average job waiting time without any
background knowledge. Thus, it learns the scheduling
policies directly and automatically from past trajec-
tories. This approach is the most relevant research to
our work. Unlike this approach, our proposed scheduler
can optimize more than one objective. Also, curiosity
(i.e., entropy) as intrinsic motivation. The proposed
structure of the algorithm leads the agent to discover
rare events, have more e�cient sampling, reduce the
chance of halting in the local optimum, and learn
dynamically.

Guo et al. [21] presented a deep RL-based solution
(DeepRM-Plus) for the cloud resource management
problem [21]. The authors used a supervised learning-
based exploration called imitation learning. This
research considers two objectives: (1) minimizing
turnaround and (2) minimizing cycling time. In our
approach, the critic adjusts the initial parameters
without human intervention. Additionally, the Soft
Actor-Critic Discrete (SACD) algorithm uses entropy
to have more e�cient sampling for examining the
action space (using a non-random search and reduces
the chance of halting in the local optimum).

Xu et al. [22] proposed a multi-factored scaling
approach whose objectives are �nding the best scal-
ing technique based on execution cost and response
time. This approach, termed CoScal, is a resource
provisioning strategy in cloud environments that re-
sponds to potential workload uctuations by scaling
containerized microservices. Unlike other scheduling
approaches, CoScal doesn't decide the initial placement
of a containerized task [23]. Table 1 contains a
summary of the related works discussed in this section.

3. The proposed approach

In this section, we will describe the architecture of
the approach based on the MAPE-k and SACD algo-
rithms [24]. The formulations and theoretical details,
the model and formulation of the automatic scheduler
based on the SACD, and the scheduling process and its
algorithm based on the SACD are also given.

3.1. The components
In this part, we introduce the proposed cooperative
and centralized resource manager. Multiple cloud
customers send their requests to it to execute their
jobs. The resource manager is responsible for collecting
available resources in the data center and analyzing
requests from customers. More importantly, it should
make intelligent decisions regarding the assignment
of the available resources to requests. To ensure
scalable and e�cient on-demand resource provisioning,
the resource manager is designed to deliver a feasible
and optimal resource scheduling scheme for customers.

The resource manager consists of two core com-
ponents which are described as follows:

1. Environment: This component manages the moni-
toring and execution section of MAPE-K. The en-
vironmental information consists of the data center
resource's state, the independent jobs in the queue,
and the backlog. It is responsible for generating a
job sequence, getting a new job from the sequence,
and calculating the reward function for the jobs in
the requested pool. It also observes the resources
and the request pool and allocates the selected jobs
to available resources. We have formulated the

376 A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387

Table 1. A comparative summary of the reinforcement learning-based resource management approaches.
Research

article
Objectives Multi-Cluster

Cluster
con�g.

Scheduling type Uncertainty Learning
method

Curiosity

DeepRM [5]

Minimizing
slowdown or
completion
time

� Uni�ed pool non-preemptive
p

DeepRL-
Reinforce
algorithm
(Monte Carlo)

�

DeepRM+ [15] Minimizing
slowdown

p
Uni�ed pool non-preemptive

p
DeepRL-
Reinforce
algorithm.
(Monte Carlo)

�

DeepRM2 [16]

Minimizing
slowdown or
completion
time

p
Uni�ed pool non-preemptive

p
DeepRL-
Reinforce
algorithm.
(Monte Carlo)

�

SCARL [18] Minimizing
slowdown

� Heterogenous non-preemptive
p

Attentive RL �

CuSH [17]

Minimizing
normalized
turnaround
time

p
Uni�ed pool non-preemptive

p
DeepRL-
Reinforce
algorithm.
(Monte Carlo)

�

DeepJS [19]

Minimizing
makespan and
maximizing
throughput

� Uni�ed pool non-preemptive
p

DeepRL-
Reinforce
algorithm.
(Monte Carlo)

�

DeepScheduler [20]

Minimizing
slowdown
and average
waiting
time and
completion
time

p
Uni�ed pool non-preemptive

p
DeepRL-
ActorCritic
algorithm.
(Advantage-
Actor -Critic)

�

DeepRM Plus [21]
Minimizing
the turnaround and
cycling times

p
Uni�ed pool non-preemptive

p

DeepRL-
Reinforce
algorithm.
(Monte Carlo)
with imitation
learning

�

Proposed approach

Minimizing
slowdown and
improving
resource
utilization

p
Uni�ed pool non-preemptive

p
DeepRL-
Soft-
ActorCritic
algorithm.

p

changed status (the scheduler's input) as a distinct
and comprehensive image. The status consists of
the data center's resources and the queued jobs
at time t (i.e., the incoming request queue and
backlog). The details will be explained further in
Section 4.3;

2. Agent (SACD scheduler): This component manages
the analysis and planning section of the MAPE-K,
interacting with the environment. The scheduler

receives the state of the environment and, based
on its model (i.e., the SACD algorithm), selects
proper actions. This component plays a key role in
the resource manager's ability to schedule resources
most appropriately.

3.2. The scheduler's architecture
The scheduler uses a SACD which consists of two
interactive components: (1) the actor and (2) the critic.
The actor adjusts the scheduler policy based on the

A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387 377

Figure 1. The proposed architecture for the scheduler, its components, and its interaction with the data center.

selected jobs from the queue, the available resources of
the data center, and the reward function's goals. The
critic automatically evaluates the actor's policies based
on the state-action function. Based on this algorithm,
the proposed scheduler interacts with the incoming jobs
and converges to a stable situation in its training phase.
Figure 1 shows the internal details of the proposed
scheduler.

In Figure 1, the critic contains four NNs that
correct or con�rm the actor's behavior using the reward
function and the previous trajectories in the replay
bu�er. The critic receives the state of the environment
(i.e., data center state, the queue of incoming jobs, and
the current backlog) to estimate the Q-value function
and evaluate the actor's policy. The actor modi�es
its policy distribution based on the gradient descent of
the critic state-value function and the entropy. This
regulation makes the scheduler's policy more adaptive
to its environment. Due to the nature of the SACD,
the scheduler encounters a variety of incoming jobs and
their uctuations. Thus, it uses trial-and-error search
to reach an optimal policy.

The proposed scheduler's main parts are: (1) the
trained policy, (2) the objective (reward) function, (3)
the replay bu�er, and (4) the critic. The trained policy
speci�es the scheduler decision to select the incoming
jobs. The objective (reward) function determines the
quality and usefulness of the scheduler's chosen actions
based on entropy and penalties related to delay, wait-

ing, and increased job response time. The replay bu�er
stores the trajectories and provides them randomly to
the scheduler. The critic dynamically evaluates the
scheduler behavior according to the data center status
and the reward function. The scheduler performs non-
preemptive online job scheduling. This component
receives the submitted jobs in its queue. Then, it
maps the available resources based on the requested
resource pro�le of each job and its objective function.
It evaluates its learned policy by TD (0) error. Figure 2
shows the automated iterative scheduling process.

3.3. The proposed scheduling algorithm
The SAC algorithm is a model-free deep RL algorithm
that has been successfully applied to a wide range of
sequential decision-making and control tasks. It com-
putes an optimal policy that maximizes both the long-
term expected reward and the entropy of the policy.
Policy entropy is a measure of policy uncertainty given
by the state. A higher entropy value promotes more
exploration. Maximizing both the reward and the
entropy balances the exploration and exploitation of
the environment [25].

During the training phase, a SAC agent:

1. Updates the actor and critic's properties at regular
intervals;

2. Estimates the mean and standard deviation for se-
lecting an action in the continuous action space and

378 A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387

Figure 2. The scheduler's process for the incoming jobs.

randomly selects actions based on the probability
distribution;

3. Updates an entropy weight term;

4. Stores prior experiences using a circular experience
bu�er. The agent updates the actor-critic using a
mini-batch of experiences randomly sampled from
the bu�er.

The scheduler uses SACD algorithm to maximize the
reward function (Section 3.3.4.4). The main goal of
designing this approach is to automatically react to
uncertainty, dynamism, and a variety of workloads
without human intervention.

3.3.1. Algorithm optimization method
In SAC, the agent considers minimizing entropy (the
average level of information (i.e., uncertainty) inher-
ent in the variable's possible outcomes) besides the
expected sum of rewards. In [26], the Shannon entropy
(H) of a discrete random variable X with possible
values fx1; :::; xng and probability mass function P (X)

is de�ned as:

H(X)=�Xn

(i=1)
P (xi)logbP (xi)=E[�logbP (X)];(1)

where b is the logarithm base. Common values for b are
2, Euler's number e, and 10. The corresponding units
of entropy are the bits for b = 2, nats for b = e, and
bans for b = 10.

One may also de�ne the conditional entropy of
two events X and Y taking values xi and yi respec-
tively, as:

H(XjY) = �X
i;j

P (xi; yi) log
P (xi; yi)
P (yi)

; (2)

where P (xi; yi) is the probability that X = xi and
Y = yi. This quantity should be understood as the
amount of randomness in the random variable X given
the random variable Y .

Another important part of information theory is
the concept of mutual information, which measures
the mutual dependence between two variables. More
speci�cally, it quanti�es the information gain from a

A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387 379

random variable X about another random variable Y .
It can also be represented as the decrease of disorder
for a random variable Y on a random variable X [27].
The mutual information is de�ned by:

I(X;Y) = H(X)�H(XjY): (3)

Similar to conditional entropy, conditional mutual
information measures the information contained in
a random variable about another random variable,
knowing the value of a third one. It can be written
as below:

I(X;Y jS) = H(XjS)�H(XjY; S)

= H(Y jS)�H(Y jX;S)

= DKL [p(x; yjs)jjp(xjs)p(yjs)] : (4)

Haarnoja et al. [25] proposed a SAC algorithm whose
policy aims to maximize the maximum entropy objec-
tive based on Eq. (5):

J(�) =
TX

(t=0)

E(st;at)���
h
r(st;at) + �H(�(:jst))

i
; (5)

where J(�) is the performance policy (�) between 0
to T and � is the agent's policy, T is the number
of steps the agent takes during an epoch, the reward
function is indicated by r : S � A! R, 2 [0; 1]
is the discount factor, st 2 S is the status of the
environment at timestep t, at 2 A is the action
that the agent takes at timestep t, and �� is the
trajectory distribution of the agent based on policy
�. � is the temperature parameter, which shows the
signi�cant correlation between the entropy and the
reward. Finally, the entropy of the policy � at the
state st is H(�(:jst)) = � log �(:jst).
3.3.2. General policy iteration
To maximize the expected cumulative discounted re-
ward, Howard [28] devised a standard approach that
�nds an optimal policy for every state called policy
iteration. Policy iteration involves two steps: policy
evaluation and policy improvement. Policy evaluation
aims to �nd the accurate value function. In each step,
the value function of the current policy updates to
a new approximate value function. Thus, the policy
improvement step (Eq. (7)) is performed repeatedly by
applying Bellman's operator (i.e., the right side of Eq.
(6)) [29].

[��V] = Ea��(:jS)
�
r(S; a) + ESjS0;a [V (S0)]

�
; (6)

[��V] = max� [��V] : (7)

In Eqs. (6) and (7), �� represents the value iteration
operator on policy �, and V is the initial value function

that aims to converge to the optimal value function
V �. The convergence similarity of Bellman's operator
and the optimality operator are considered based on
their contraction mappings. Furthermore, the optimal
policy �� can be reached using the optimal value
function, which minimizes a set of metrics between the
current policy and the derived update policy with an
initial policy �.

3.3.3. Soft policy iteration
By adding the reward term as the entropy of the policy,
soft policy iteration extends the concept of general
policy iteration. In particular, the agent aims to
maximize both the environment's expected reward and
the policy's entropy. Thus, Eq. (6) is regularized with
an entropy term as shown below [29]:

��Q(st; at)
�= r(st;at)

+ Ea0�� [Q(st+1; a0)� log �(a0jst)] : (8)

Similar to the general policy and Eq. (6), �� indicates
the soft value iteration operator, Q is a state-action
function, r is the reward function of the state and
action, is the discount factor representing the degree
to which the future reward is a�ected by past actions,
and a0 is the next action. At is the policy improvement
step, and the current Q function will be updated by the
policy distribution (J�(')) towards the softmax distri-
bution. Speci�cally, this step helps us minimize the
distance (\divergence") between the two distributions
by minimizing their Kullback-Leibler (KL) divergence
as below [24]:

�new = arg
J�(')
min
�2Q ; (9)

J�(')=Est�D
�
DKL(�'(:jst))jjexp(1

aQ�(s; :))
Z�(st)

�
:(10)

For the tabular case, Haarnoja et al. [30] have proved
that this property guarantees the monotonic improve-
ment of the policy. Later, Geist et al. [31] generalized
the KL and entropy regularization to any formulation.
Removing Z, which is a constant, and expressing the
integration as an expectation, this equation reduces to
the equation below:

J�(') =

Est�D
�
Eat��' [� log(�'(atjst)�Q�(st; at)]� : (11)

Finally, if the categorical distribution is used as the
policy, the following equation is derived:

J�(') =

Est�D
h
�'(:jst)T [� log(�'(atjst)�Q�(st; at)]

i
:(12)

380 A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387

Figure 3. The scheduler input consisting of the data center's state and the jobs' pro�le in the queue and backlog.

3.3.4. The SACD core tasks
In this section, we will represent the SAC tasks based
on [20]. These tasks consist of the states, actions,
discount factor, and reward function.

1. State st 2 S: State represents the status of the data
center's resources st according to the cluster status,
the queue of user requests at time t (incoming jobs
in the queue), and backlog (jobs that cannot be
placed in the scheduler's window) in a �nite set.
More precisely state (st) includes: (1) allocated
and available data center resources, (2) the pro�le
of each job in the requested queue, and (3) the
backlog. Figure 3 shows an example of the state
in a time step;

2. Action (at 2 A): An action at selects a request (i.e.,
job) from the scheduler's window (waiting jobs). If
the scheduler's queue has N slots for allocating the
data center's resources at time t for the waiting
jobs, then at = fatgN1 indicates the respective
plan. Here, A is the action space of all possible job
allocation strategies that the scheduler can select
for the waiting jobs in its next iterations. It has
N + 1 discrete actions (f;; 1; 2; :::; Ng) in which
at = i(8i 2 f1::Ng) denotes the ith job allocation
in one of the N window slots [20]. Also, at = ;
means no job will be allocated and the scheduler
should do a MoveOn action (speci�cally, Mao et al.
[5] proposed this action to reduce the action space
of A);

3. Discount factor (): The parameter is a discount
coe�cient in the range of [0; 1] that indicates the
degree of impact of instant and future rewards
on the reward function. This �xed parameter is
manually de�ned by the designer. Due to delay in
receiving the agent's reward and the consequences
of long-term actions, we have used a value close to
one for ;

4. Reward function (r 2 R = S �A! (�1; 0)): The
actor's feedback in interaction with the data center
and the incoming jobs leads the agent to receive
a response from the scheduling environment. The
actor seeks to maximize the reward function and
minimize entropy. The reward function at time t in
our scheduling problem is de�ned as below:

rt = �1=Tj : (13)

The parameter Tj is the alive time of a request (i.e.,
job) in the scheduler's window or backlog. The
scheduler uses the expected total reward with a
discount to evaluate its performance in an epoch.
The time parameter Tj consists of the delay, hold,
and dismiss times of the incoming jobs. The
negative inverse ratio indicates the penalty for delay
in processing existing jobs in the current state,
keeping jobs in the new state of the data center,
or losing a request due to the queue being full. The
agent examines di�erent policies and learns how to
optimize its objectives.

5. State-action function (Q(st; at)): The e�ectiveness
of various policies of the actor is evaluated by
the state-action function. The critic iteratively
estimates this function and corrects its predicted
value to correct the actor's policy and improve it
rapidly.

Below, we provide the algorithm for the discrete soft
actor-critic-based scheduler. The algorithm tries to
�nd the optimal policy based on the incoming jobs as
well as the current state of the data center's resources.

3.3.5. Objective
In the proposed scheduling algorithm (Algorithm 1),
the scheduler seeks to maximize the reward and entropy
target functions. The entropy target function (as
shown in the Eq. (14)) acts as a threshold to give
an approximately equal chance for all possible and

A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387 381

Algorithm 1. The scheduler's algorithm based on discrete-soft-actor-critic.

available actions in the action space (The scheduler
could choose non-frequent or rare selected actions in
its exploration step).

J(�) = �t(st)T
��� log �(st) + �H

�
;

�H = 0:98 � log jAj: (14)

Additionally, entropy is an exploration tool that causes
curiosity. It prevents the scheduler from getting stuck
in local optimal points and making swift decisions
without su�cient examination and searching.

3.3.6. Complexity analysis
In this section, we discuss the time and space complex-
ity of the SACD algorithm. These are estimates, and
the actual space complexity may vary depending on the
implementation.

Time complexity
The time complexity of the algorithm in formal nota-
tions is:

O(T � P + T �N �D �A+ T �A � (D + 1));

�This time complexity assumes that the NN takes O(1)
to evaluate a single state-action pair.

Where T is the number of training iterations; P
the number of parameters in the NN; N the size of the
replay bu�er; D the dimensionality of the state space;
A the number of discrete actions.

The �rst term, T � P represents the time com-
plexity of updating the NNs, which is proportional to
the number of parameters in the networks. The second
term, T �N �D �A, represents the time complexity of
sampling from the replay bu�er and computing the Q-
values for each action. It involves retrieving a batch of
transitions from the replay bu�er and computing theQ-
value for each state-action pair. The time complexity
of this operation is proportional to the size of the replay
bu�er, the dimensionality of the state space, and the
number of discrete actions.

The third term, T �A�(D+1), represents the time
complexity of computing the policy distribution and
the entropy regularization term. It involves the logits
computation for each action, the softmax probabilities,
and the entropy regularization. The time complexity of
this operation is proportional to the number of discrete
actions and the state space dimensionality.

Space complexity
The SACD algorithm's space complexity is O(P +N �
(D + 1 + A)) where p is the number of parameters in
the NNs used in the algorithm, N is the size of the
replay bu�er, D is the dimensionality of the state space
of the problem being solved by the algorithm, and A
is the number of discrete actions in the action space
of the problem being solved. The space complexity
of the NN itself can be expressed as O(P), and the
space complexity of the replay bu�er can be denoted
by O(N � (D + 1 +A)). The total space complexity of
the algorithm is the sum of these two terms.

4. Evaluations

The performance of the approach is evaluated with
respect to the balance of slowdown and resource
(i.e., CPU and memory) utilization using Google's
dataset [32].

4.1. Environmental setup
The evaluation and implementation of the approach
are based on DeepRM. The data center has a
centralized M cluster in which each cluster has K
resources. It is assumed that each cluster has the
same type and quantity of resources. The clusters'
resource fragmentation is not considered and each
job has the same execution time across all clusters.
Resource allocation is non-preemptive. The queue and
backlog have �xed sizes. We used Python 3 as the
programming language. The self-adaptive algorithm
is modeled by the Numpy framework and PyTorch
[33] library. The hardware used for evaluation has 8
virtual CPU cores, 16 GB of RAM, and 30 GB of disk

382 A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387

Table 2. The initial discrete-soft-actor-critic algorithm parameters used to train the scheduler.

Parameter Value
Critic's learning rate 0.01
Number of epochs 500
Simulation length 50
Number of sequences 10
Maximum episode length 2000
Number of data center resources 2
Number of allowed jobs in the scheduling window 10
Time horizon 20
Maximum job duration 15
Maximum requested resource slot 10
Maximum available resource slot 10
Backlog size 60
New job rate 0.5
 0.99
� 0.003
Target entropy ratio 0.98
Target critic update interval 250
Starting steps (random) 80000
Memory size 100000
Batch size 64
Initial weight N ��; �2� ; � = 0; �2 = 0:1
Initial bias 0

Table 3. The normalized real-world dataset.

Normalized service time Normalized requested
CPU of each job

Normalized requested
Memory of each job

0.722512039 0.007244731 0.131669952
0.00682183 0.01473928 0.132658107
0.675561798 0.018781795 0.144515817
0.301163724 0.007063045 0.084115618

space. The experiments are executed on a Windows
10 and compiled by PyCharm [34].

4.2. Real-world dataset
The approach's performance was evaluated using
Google's Brog cluster dataset. We calculated the
di�erence between the start time and the end time
of the measurement period as the job service time
and the CPU and memory usage for each job based
on maximum usage. Finally, we normalized the job
service time, CPU, and memory usage based on the
following formula:

Z =
x�min(x)

max(x)�min(x)
; (15)

where Z is the normalized job service time and

converted to the interval of [0, maximum dura-
tion/maximum requested] resource slot (shown in Ta-
ble 2). Table 3 shows an example of the data used in
this test.

4.3. Evaluation assumptions
In the performed evaluations, there exist 16 data center
nodes, with the range of resource of each job pro�le
being between 0 to 15. The incoming jobs' queue
capacity is 10, and the backlog capacity is 60. The
simulation length is equal to the number of jobs *
num exe. We have used two types of jobs: (1) dominant
and (2) usual. The dominant jobs request resource(s) in
the interval [0:05r; 0:025r] of the uniform distribution,
and usual jobs announce their requests in the interval
[0:005r; 0:01r]. The job request time corresponds to

A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387 383

Table 4. Performance comparison of the proposed approach with the random, Tetris, and Shortest-job-�rst algorithms.

Type Random Tetris Shortest-job-�rst SACD

CPU utilization 0.258673 0.092534 0.075208 0.261788
Memory utilization 0.263191 0.092712 0.078417 0.279105

Balance of slowdown 6.562134 7.813635 7.072100 6.588019
Slowdown 10.362481 11.64630 8.342642 10.216499

Table 5. Performance comparison of the proposed approach with the DeepRM and DeepScheduler.

Type DeepRM DeepScheduler SACD

CPU utilization 0.133744 0.06455 0.27526
Memory utilization 0.120993 0.06078 0.27124
Balance with the slowdown 20.36493 18.86114 11.99066
Slowdown 11.39213 14.14282 6.26761

the uniform distribution and the patterns introduced
in Section 5.2. The maximum requested resources (r)
and the time interval of resource usage (t) are 10 and
15, respectively. Finally, the proposed approach was
evaluated using Google's 2019 dataset [35]. Jobs arrive
online and not simultaneously at the data center based
on the Bernoulli process. The incoming job rate is kept
constant during the training and evaluation processes.

4.4. Evaluation metrics
The convergence speed of the RL approach is not
applicable and informative for cloud applications such
as scheduling [20]. Therefore, we have used Liang
et al.'s metrics [20] for a better assessment of the
approach's performance.

Based on [20], if a set of jobs J = fj1; :::; ji; :::; jNg
is assumed in which ji consists of arrival time (tai),
�nish time (tfi), and execution time (tei), then the
average job slowdown and the waiting time would be

de�ned as Savg = 1
N

nP
i=1

tfi�tai
tei

= 1
n

NP
i=1

ci
Ti , and twi =

tsi � tai , respectively.
The balance of slowdown is another metric that

consists of the maximum, minimum, and average
slowdowns. It shows how well the scheduler can
distribute jobs on the data center resources. The
balance of slowdown is de�ned as: Degree of Balance
(DB) = Smax�Smin

Savg where Smax = maxn1f ciTi g and
Smax = minn1f ciTi g.
4.5. The results
Based on Table 2, we examined the scheduler's trained
policy and the performance of the approach. Then, we
compared the approach's performance with DeepRM
and DeepScheduler, which are based on the RL algo-
rithm. Finally, we studied the impact of the learning
parameters of the scheduling algorithm.

4.6. Scheduler comparison
The experimental results indicate that the scheduling
algorithm (Algorithm 1) improves the evaluated crite-
ria compared with the Tetris and random scheduling
algorithms. The SACD algorithm focuses on fair job
response time with the proper balance with the slow-
down and better utilization of data center resources,
while the shortest-job-�rst policy only schedules jobs
with minimum service times. Table 4 demonstrates
the performance of the proposed approach compared
to the classical and heuristic-based algorithms.

4.7. Approach comparison
Table 5 shows the comparison results of the proposed
approach. The approach outperforms DeepRM and
DeepScheduler without any manual recon�guration.

4.7.1. The state-action critic function
Figures 4 and 5 show the critic's prediction error and
target critic (Q1, Q2) in the learning phase. The
horizontal axis represents the training iteration, while
the vertical axis represents the loss function of the
state-action. Initially, the critic makes completely
random predictions and the loss function grows quickly.
After a few iterations, the scheduler, unaware of

Figure 4. The online critic's prediction error for the
state-action function.

384 A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387

Figure 5. The target critic's prediction error for the
state-action function.

its performance, learns that its predictions are not
compatible with the target state. It tries to improve
its experiences through trial-and-error interactions in
the environment. This process helps the scheduler to
converge to the assumed objective policy.

Q loss = MSE(qpred; qtarget); (16)

qpred = Qnetwork(state; action); (17)

qtarget =reward+ � (targetQ(s0; a0))

� � � log �(a0js0); (18)

JQ(�) = E(st;at)�D
�

1
2

(QQ(st; at)� qt)2
�
; (19)

where D is all the transition data in a replay bu�er,
QQ is qpred, and qt is qtarget.

4.7.2. The actor policy
The actor can choose a job from the queue based on
the action probability generated by the policy �. � is a
mapping from the state st to action at, which generates
a probability for each possible action. For instance,
given the action probability P = fp1; :::; pNg for N
actions, pi denotes the probability that action ai will
be selected. Exploration is allowed in this research.
The policy is estimated by a NN �(ajs; �), where a is
an action, s is the state of the system, and � is the
weight of the policy network.

Figure 6 shows how the actor automatically
optimizes its policy. The actor updates the policy
parameters in the direction suggested by the critic
based on Eq. (21). The actor's network is updated
by minimizing the actor's loss policy in Eq. (20). The
policy loss function leads the scheduler to the optimal
policy. Initially, the parameters in the NN are random,
resulting in a random policy. The actor initially makes
completely random decisions and the pending job
queue quickly grows. After a few iterations in which
the policy loss is decreased, the actor understands that
its scheduling policy does not match the target state

Figure 6. The actor policy error based on the assumed
objectives.

Figure 7. The entropy changes during the scheduler's
training process.

of the environment. Thus, it tries to change its actions
based on the criticism score of the critic. This process
is a non-trivial step, and during the training process,
the scheduler changes its policy to reach the given
objective. It will also be aware of its environmental
changes, especially incoming jobs.

policy loss = �J�('); (20)

J�(')=Est�D
h
�t(st)

T [� log �'(st)�Q�(st)]
i
: (21)

4.7.3. Target entropy
The parameter (�) is responsible for improving or
correcting the entropy of the scheduler's policy. Eq.
(14) and Figure 7 demonstrate the entropy changes
during the learning phase. Target entropy acts as a
threshold. Entropy loss increases � and the entropy.
When the entropy is lower or higher than the target
entropy, the value of � is decreased. Therefore, by
setting the target entropy ratio, we are setting the
exploration/exploitation ratio in the scheduler.

5. Practical limitations

Despite the advantages o�ered by the approach in
solving automatic job scheduling and resource man-
agement, it also has its disadvantages and practical
limitations, which are described below:

1. Space and time overhead: The scheduler learns to

A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387 385

converge based on a NN method that lacks prior
knowledge about its estimations. Thus, it must
iteratively test and evaluate its actions to improve
its policy. On the other hand, entropy causes
turmoil to select actions. So, the scheduler needs
more experience and time to learn a stable policy
based on the proposed training set;

2. Lack of resource heterogeneity in the data center:
Data centers consist of various resources with dif-
ferent capacities. The variation in data centers'
resources isn't considered in this research. This
decision is for simpli�cation purposes and may be
a limiting factor in practical applications;

3. Non-preemptive job scheduling: In this type of
scheduling, jobs exclusively use resources until their
execution is �nished. This approach results in less
e�cient resource utilization and longer waiting and
response times compared to preemptive schedul-
ing. This assumption is made for simpli�cation
purposes;

4. Independent incoming jobs: Each batch job process
consists of a group of tasks with a Directed Acyclic
Graph (DAG) structure, which wasn't considered in
the proposed approach due to the relaxing assump-
tion of independent incoming jobs. Additionally,
the job's (i.e., Virtual Machine (VM) or container
application) location on the hosts (i.e., servers) in
the data center has a side e�ect on the data center's
resource utilization.

6. Conclusions

In this paper, we proposed a resource management
approach for cloud computing environments. The
scheduler automatically and without prior knowledge
allocates data center resources to users' submitted jobs.
It schedules incoming jobs based on an Reinforcement
Learning (RL) algorithm. After several iterations, the
scheduler learns how to interact with the environment
to accomplish the given objectives. This characteristic
of the algorithm gives the scheduler the ability to adapt
to incoming jobs and properly execute them in the data
center.

Although progress has been achieved in apply-
ing the proposed adaptive approach, there are still
some recommendations and improvements that can be
worked on to enhance the performance even further.
The following is a summarized list of future work that
can be performed in this regard:

1. In the Discrete-Soft-Actor-Critic (SACD) algo-
rithm, it is possible to use parallel actors. This fea-
ture can help the scheduler gain more trajectories
without experiencing a new state. Having multiple
actors helps correlate the encountered states and

attenuate the feedback loops while allowing us to
leverage the parallel architecture of modern CPUs
and GPUs;

2. As a future direction to reduce learning time,
further research can be performed on optimizing
learning hyperparameters such as the number of
neurons, epochs, and minibatch size using typical
optimization heuristics [36];

3. The host temperature problem in data centers was
outside the scope of the current research. By
using predictive machine learning-based schedul-
ing algorithms that manage data centers' energy
consumption by monitoring their sensor data, this
aspect can be also taken into account [23];

4. Based on the limitations mentioned in Section 6,
non-homogeneous resources and multi-hybrid cloud
infrastructures can be considered in future exten-
sions to formulate resource provisioning problems.

Compliance with ethical standards

This study has received no funding from any organiza-
tion.

Conict of interest

All of the authors declare that they have no conict of
interest.

Ethical approval

This article doesn't contain any studies with human
participants or animals performed by any of the au-
thors.

Funding

No funding was received for this research.

Availability of data and materials

Not applicable as already public datasets are used in
this research.

Competing interests

The authors declare that they have no competing
interests.

Authors' contributions

The �rst author participated in the design, implemen-
tation, and evaluation phases of this research as well as
creating the �rst manuscript draft. The second author
participated in the design, veri�cation, and revising of
the original draft.

386 A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387

References

1. Rjoub, G., Bentahar, J., Abdel Wahab, O., et al.
\Deep and reinforcement learning for automated task
scheduling in large-scale cloud computing systems",
Concurrency and Computation: Practice and Experi-
ence, (2020). DOI: 10.1002/cpe.5919.

2. Maqableh, M., Karajeh, H., and Masa'deh, R. \Job
scheduling for cloud computing using neural net-
works", Communications and Network, 06(03), pp.
191{200 (2014). DOI: 10.4236/cn.2014.63021.

3. Singh, S. and Chana, I. \QoS-Aware autonomic
resource management in cloud computing", ACM
Computing Surveys, 48(3), pp. 1{46 (2016). DOI:
10.1145/2843889.

4. Liang, S., Yang, Z., Jin, F., et al. \Data centers job
scheduling with deep reinforcement learning", In Pro-
ceedings of 24th Paci�c-Asia Conference on Knowledge
Discovery and Data Mining, Singapore, Singapore, pp.
906{917 (2020).

5. Mao, H., Alizadeh, M., Menache, I., et al. \Resource
management with deep reinforcement learning", In
Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, Atlanta GA, USA, pp. 50{56 November-
(2016).

6. Haarnoja, T., Zhou, A., Abbeel, P., et al. \Soft actor-
critic: O�-Policy maximum entropy deep reinforce-
ment learning with a stochastic actor", arXiv preprint
arXiv: 1801.01290 (2018).

7. \Apache Hadoop 3.3.0-Hadoop: Fair Scheduler", URL:
https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html
Access date: 7 September (2020).

8. Ghodsi, A., Zaharia, M., Hindman, B., et al. \Dom-
inant resource fairness: Fair allocation of multiple
resource types", In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Imple-
mentation, Boston, MA, USA, pp. 323{336 (2011).

9. Song, W., Xiao, Z., Chen, Q., et al. \Adaptive resource
provisioning for the cloud using online bin packing",
IEEE Transactions on Computers, 63(11), pp. 2647{
2660 (2014). DOI: 10.1109/tc.2013.148.

10. Grandl, R., Ananthanarayanan, G., Kandula, S., et
al. \Multi-resource packing for cluster schedulers", In
Proceedings of the 2014 ACM Conference on SIG-
COMM, Chicago Illinois, USA, pp. 455{466 (2014).

11. Pezzella, F., Morganti, G., and Ciaschetti, G. \A
genetic algorithm for the exible job-shop scheduling
problem", Computers & Operations Research, 35(10),
pp. 3202{3212 (2008). DOI: 10.1016/j.cor.2007.02.014.

12. Azad, P. and Navimipour, N. \An energy-aware task
scheduling in the cloud computing using a hybrid
cultural and ant colony optimization algorithm", In-
ternational Journal of Cloud Applications and Com-
puting, 7(4), pp. 20{40 (2017). DOI: 10.4018/ij-
cac.2017100102.

13. Huang, J., Xiao, C., and Wu, W. \RLSK: A job
scheduler for federated kubernetes clusters based on re-
inforcement learning", In Proceedings of 2020 IEEE In-
ternational Conference on Cloud Engineering (IC2E),
Sydney, Australia, Australia, (2020).

14. Mao, H., Schwarzkopf, M., Venkatakrishnan, S., et al.
\Learning scheduling algorithms for data processing
clusters", In Proceedings of the ACM Special Interest
Group on Data Communication, Beijing, China (2019).
DOI: 10.1145/3341302.3342080.

15. Chen, W., Xu, Y., and Wu, X. \Deep reinforcement
learning for multi-resource multi-machine job schedul-
ing", arXiv preprint arXiv:1711.07440 (2017).

16. Ye, Y., Ren, X., Wang, J., et al. \A new approach for
resource scheduling with deep reinforcement learning",
arXiv preprint arXiv:1806.08122 (2018).

17. Domeniconi, G., Lee, E., Venkataswamy, V., et
al. \CuSH: cognitive scheduler for heterogeneous
high-performance computing system", In Proceedings
of DRL4KDD 19: Workshop on Deep Reinforce-
ment Learning for Knowledge Discovery (DRL4KDD),
Alaska, USA (2019).

18. Cheong, M., Lee, H., Yeom, I., et al. \SCARL:
Attentive reinforcement learning-based scheduling in
a multi-resource heterogeneous cluster", IEEE Ac-
cess, 7, pp. 153432{153444 (2019). DOI: 10.1109/ac-
cess.2019.2948150.

19. Li, F. and Hu, B. \DeepJS: Job scheduling based on
deep reinforcement learning in cloud data center", In
Proceedings of the 2019 4th International Conference
on Big Data and Computing, Guangzhou, China, pp.
48{53 (2019).

20. Liang, S., Yang, Z., Jin, F., et al. \Data centers job
scheduling with deep reinforcement learning", In Pro-
ceedings of 24th Paci�c-Asia Conference on Knowledge
Discovery and Data Mining, Singapore, Singapore, pp.
906{917 (2020).

21. Guo, W., Tian, W., Ye, Y., et al. \Cloud resource
scheduling with deep reinforcement learning and im-
itation learning", IEEE, Internet of Things Journal,
8(5), pp. 3576{3586 (2021).

22. Xu, M., Song, C., Ilager, S., et al. \CoScal: Mul-
tifaceted scaling of microservices with reinforcement
learning", IEEE Transactions on Network and Service
Management, 19(4), pp. 3995{4009 (2022).

23. Zhong, Z., Xu, M., Rodriguez, M.A., et al. \Machine
learning-Based orchestration of containers: A taxon-
omy and future directions", ACM Computing Surveys,
54(10)s, pp. 1{35 (2022).

24. Christodoulou, P. \Soft actor-critic for discrete action
settings", arXiv preprint arXiv: 1910.07207 (2019).

25. Haarnoja, T., Zhou, A., Abbeel, P., et al. \Soft actor-
critic: O�-Policy maximum entropy deep reinforce-
ment learning with a stochastic actor", arXiv preprint
arXiv: 1801.01290 (2018).

26. Arndt, C., Information Measures, 1st ed. Berlin:
Springer (2004).

A. Sheibanirad and M. Ashtiani/Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 373{387 387

27. Aubret, A., Matignon, L., and Hassas, S. \A survey on
intrinsic motivation in reinforcement learning ", arXiv
preprint arXiv:1908.06976 (2019).

28. Howard, R. \Dynamic programming and Markov pro-
cesses", Cambridge: M.I.T. Press, (1972).

29. \In-depth review of soft actor-critic", URL:
https://towardsdatascience.com/in-depth-review-of-
soft-actor-critic-91448aba63d4, Access date: May
17th, (2021).

30. Haarnoja, T., Zhou, A., Hartikainen, K., et al.
\Soft actor-critic algorithms and applications", arXiv
preprint arXiv:1812.05905 (2019).

31. Geist, M., Scherrer, B., and Pietquin, O. \A theory of
regularized Markov decision processes", arXiv preprint
arXiv:1901.11275 (2019).

32. \Google's dataset", URL: gs://clusterdata 2019 a/ in-
stance usage-0000001.json.gz.

33. \PyTorch", URL: https://pytorch.org/, Access date:
March 12th, (2020).

34. \PyCharm", URL: https://www.jetbrains.com/
pycharm/, Access date: March 14th, (2020).

35. \Google Cluster Workload Traces 2019", URL:
https://research.google/tools/datasets/google-cluster-
workload-traces-2019/, Access date: April 1th, (2020).

36. Khan, T., Tian, W., Zhou, G., et al. \Machine
learning (ML)-centric resource management in cloud
computing: A review and future directions," Journal
of Network and Computer Applications, 204, pp. 1{51
(2022).

Biographies

Ahmadreza Sheibanirad received his BSc degree in
Software Engineering from the University of Isfahan
(2016), Isfahan, Iran, and his MSc degree in Soft-
ware Engineering from Iran University of Science and
Technology (2020), Tehran, Iran. His main research
interests include cloud computing, automation, and
applications of self-adaption in the domain of computer
science.

Mehrdad Ashtiani received his BSc degree in Soft-
ware Engineering from Iran University of Science and
Technology (2009), Tehran, Iran, and his MSc degree in
Software Engineering from the same institution in 2011,
and his PhD degree from Iran University of Science and
Technology (2015), Tehran, Iran. His main research
interests include trust modeling and the applications
of uncertainty modeling in the domain of computer
science.

