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Abstract 

One of the cost-effective methods of water purification is reverse osmosis. In the present 

work, the effect of pressure vessels with different numbers of membranes in two types of 

reverse osmosis system design is investigated. Simulation results showed that pressure 

vessels with more membranes have lower energy consumption and higher efficiency in 

different simple and hybrid designs of reverse osmosis systems. Findings showed that the 

first design performs better in terms of energy consumption and efficiency than the second 

design. The study also showed that maximum efficiency was achieved using the first design 

of the hybrid two-stage brackish water reverse osmosis system. The least efficient system was 

the hybrid single-stage seawater reverse osmosis system. 
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1. Introduction 

In recent years, the use of membranes and membrane processes has constantly been 

increasing [1]. One of the main applications of membranes is desalination, one of the main 

methods of producing freshwater [2]. In addition, membranes are used in many fields, such as 

electrodialysis, electroosmosis processes, and drug purification [3-5]. Simulation techniques 

have been used directly and indirectly in most areas of membrane processes [6-8]. 

Simulations of membrane-based processes are useful in predicting processes and enable fast 

and cheap optimization [9]. Saltwater desalination has become an important method to 

overcome the global shortage of fresh water. Thanks to the development of water desalination 

methods, fresh water supply can be increased beyond what the hydrological cycle can provide 

[10]. The processes involved in reverse osmosis (RO) systems are well-developed and 

unparalleled in case of reliability and energy efficiency. Due to these reasons, they have 

become the most popular method of purifying water among other available technologies. 

Thus, many researchers are putting efforts into developing RO systems to make utilization of 

these systems as a reliable source of supplying freshwater feasible [11, 12]. Currently, multi-

stage flash distillation (MSF), multi-effect distillation, vapor compression (VC), RO, and 

electrodialysis (ED) are the most popular commercially available methods of desalination 

[13, 14]. Most popular desalination processes rely on fossil fuels for energy [13-17].  

Ludwig [18] investigated the energy usage of seawater RO (SWRO) systems and analyzed 

the possibility of bettering their layout and function with Energy Recovery Instruments 

(ERIs). Data revealed that for purifying a seawater sample having a total dissolved solids 

(TDS) equal to 35,000 ppm, approximately 3.5 W.h/m
3
 of energy is typically used. Park et al. 

[19] theoretically analyzed low-energy SWRO plants. Methods of improving the energy 

efficiency of RO units have been divided into two groups: direct and indirect. An example of 

a direct method is diluting the feedwater, while an example of an indirect method is reducing 
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the difference in osmotic pressure. Unlike thermal desalination methods, the amount of TDS 

in seawater predominantly affects SWRO desalination systems. Feed water salinity 

determines the osmotic pressure and pumps' workload. Thus, it affects the amount of energy 

consumption in SWRO plants. Based on prior studies, water with the highest quality can be 

produced using different internally staged designs (ISD) with the full flow to the second pass. 

The cost of producing water using a system with permeate splitting mechanisms is estimated 

to be 8% lower than when a system with a full two-pass configuration is used. In addition, 

also by integrating permeate bypass mechanisms, the costs of water production can be 

lowered by 6% [20]. Research by Altaee et al. [21] demonstrated that for desalinating 

seawater, systems that utilize forward osmosis (FO) and RO have a higher recovery rate than 

conventional RO systems. Studies showed that the recovery rate does not exceed 50% by 

using less saline feed water due to scaling issues. However, since the draw solution in FO 

systems gets highly concentrated, these issues do not affect such systems, indicating that the 

recovery rate in FO-RO units can be increased beyond 50%. For purifying feeds like 

seawater, which contain high levels of TDS, high hydraulic pressures must be applied, 

increasing the amount of energy desalination plants consume. In such scenarios, lower levels 

of energy consumption can be achieved by lowering the feed's osmotic pressure.  

In recent studies, researchers suggested several osmotic pressure reduction methods. 

Studies by Mustaqimah et al. [22], where ROSA was employed, demonstrated that applying 

higher feed water pressures yields permeate water containing more TDS. Based on results 

obtained using ROSA, it was found that the recovery rate and permeate TDS are higher in 

two-stage systems compared to single-stage ones. Joseph and Damodaran [23] dynamically 

simulated the SWRO process using LabVIEW to help understand the dynamics of processes 

involved in SWRO plants. Simplified functional-decomposition approach modelings were 

employed to perform RO desalination process simulations to understand the dynamics of the 
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processes. Comparing the results of dynamic simulations with transient ones and using 

operational data of real-world desalination plants, it was found that reasonably raising the 

feed's temperature reduces specific energy consumption (SEC) for various recovery rates 

within RO systems. According to investigations by Al-Obaidi et al. [24], parameters such as 

feed flow rate and pressure could be adjusted to lower the permeate in brackishwater RO 

(BWRO) plants. The costs of desalinating highly saline feeds using BWRO plants can be 

lowered using energy recovery devices (ERDs), as shown by Pearson et al. [25]. Through 

ROSA simulations, Oh et al. [26] validated that higher flow flux in RO plats increases 

permeate quality. However, doing so increases the overall energy consumption of RO plants. 

According to comprehensive pieces of information collected by Kim et al. [27] on factors 

affecting the energy consumption of SWRO plants, high SEC is the main issue of RO 

systems. Wilf et al. [28] demonstrated that upping the amount of high-rejection membranes 

and ERDs could be employed to cut the operational cost of RO systems. Fig. 1 shows the 

processes that are involved in an SWRO plant.  

 

Seawater desalination can be summarized in four steps: pumping seawater to the plant, 

pretreatment of water, desalination in the RO system, and post-treatment of permeate. 

Seawater gets pressurized and pumped into the pressure vessel (PV) of the RO unit 

containing several RO membranes. For increasing the recovery rate of RO units, up to 8 RO 

elements are often placed inside PVs [29-32]. Technically, PVs are tanks, vessels, and 

pipelines that receive, carry, or store fluids, and their internal pressure differs from the 

outside pressure. Unlike tanks, PVs are not limited to atmospheric pressure [33].  

As seawater moves through the PV, the desalination rate gradually decreases, leading to a 

steady increase in salinity, creating a highly saline solution at the PV outlet, causing scale 

formation on membranes located near membranes and consequently lowering the recovery 
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rate. As a result, antiscalants, chemical softening of feed water, and membrane treatment 

typically must be employed in RO plants [31, 32, 34-36]. Scale removal solutions are not 

always cost-effective. Thus, central feeding was proposed as a substitute for conventional 

anti-scaling measurements in SWRO units [37]. In central feeding, a central port distributes 

feedwater evenly on both sides of the PV. Central feeding in SWRO plants reduces the 

likelihood of scale formation on the last membrane elements, but this design demands higher 

feed flow rates. Another method for controlling scale formation and fouling is using 

membranes modified using nanomaterials that prevent fouling [38]. Simulation performed by 

Altaee [32] showed that as the desalination capacity and feed's silt density index (SDI) 

increase, using PVs with central feeding becomes more economical than using other designs. 

Investigations by Kim et al. [39] showed that mixing the rejected brine of the last membranes 

with the feed water and returning it to the system improves the quality of permeate by 15%. 

Despite the abundance of research on RO systems and the recent surge of publications, there 

remain essential deficiencies in studies of how different PV designs influence crucial factors 

such as RO plants' efficiency and energy consumption. Thus, in this paper, how two different 

PVs, each containing a different number of membranes, affect the energy consumption and 

efficiency of different RO systems is evaluated. 

 

2. Materials and methods 

In this paper, SWRO and BWRO plants having desalination capacities equal to 700 m
3
⁄day 

and 300 m
3
⁄day, respectively, were assumed. Different hybrid and simple SWRO and BWRO 

systems, each having PVs with different numbers of membranes, were designed. Feeds used 

for BWRO systems were assumed to have a TDS ranging from 700 to 1450 ppm. SWRO 

systems were assumed to use feeds with a TDS ranging from 21500 to 42000 ppm. 
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Commercially available BW400ES and BW400R were used in BWRO systems, and 

SW400GR and SW400R membranes were used in SWRO systems. For hybrid and simple 

single-stage BWRO systems, 3-element and 4-element PVs were used. BW400R membranes 

were used in 3-element PVs, and BW400ES membranes were used in 4-element PVs. In 

hybrid and simple two-stage BWRO systems, 4-element, 2-element, and single-element PVs 

were used. In SWRO systems, 8-element and 7-element PVs were used. The model was 

validated under a frame of recommended guidelines.  PVs with 4 membranes were used to 

save money and energy. The membranes' specifications are provided along with flow rate, 

inlet flux, and produced water in Table 1.  

 

The number of required membranes was calculated using Equation 1, which is provided in 

the following: 

2

Produced water 1440 ( )

Inlet flux ( ) membrane surface area ( )

gpm
gpd

N
gfd ft




  

(1) 

 

BWRO and SWRO unit simulations were performed assuming a well water sample with an 

SDI<3 is about to be desalinated. According to design guidelines, in such operating 

conditions, the value of inlet flux must be 16 to 20 GFD and 8 to 12 GFD for BWRO and 

SWRO systems, respectively [40]. Specifications of the investigated designs of simple and 

hybrid two-stage RO units are given in Tables 2 and 3. 
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3. Results and discussion  

3.1. Effects of different designs of PVs on energy consumption in simple and hybrid 

designs of RO systems 

 

Fig. 2 shows that a rise in the amount of TDS in feed water increases the amount of 

consumed energy in simple and hybrid single-stage SWRO systems. From Fig. 2, it can be 

deduced that using feeds containing high amounts of TDS increases the osmotic pressure, 

ultimately increasing the pumps' workload and energy consumption [41-43]. Fig. 2 also 

shows that there is not much difference in the amount of consumed energy in simple and 

hybrid single-stage SWRO systems. 

 

Fig. 3 shows the energy consumption in simple and hybrid two-stage BWRO systems. Based 

on Fig. 3, highly saline feeds, due to having higher osmotic pressures, increase the workload 

of pumps and, as a result, the system's energy consumption [41, 42, 44, 45]. Fig. 3 also shows 

that among the investigated designs, the first design consumes less energy than the second 

design. Based on Fig. 3, the first design requires fewer PVs if the number of membranes does 

not change. Therefore, the first design is more economical than the second design. 

 

 

Fig. 4 demonstrates that as the TDS of the feedwater increases, the energy consumption of 

simple and hybrid single-stage BWRO systems increases. Additionally, hybrid single-stage 

systems consume less energy than simple ones due to the placement of membranes with the 

highest removal percentage upstream of the PV and membranes with the highest flux 

percentage (FP) downstream of the PV [41, 42]. Fig. 4 shows that simple two-stage 

configurations consume less energy than hybrid two-stage configurations. 
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3.2. Effects of different designs of PVs on efficiency in simple and hybrid designs of RO 

systems 

 

Fig. 5 demonstrates that highly concentrated saline feeds diminish the effectiveness of simple 

and hybrid single-stage SWRO units [41, 42, 46]. Based on Fig. 5, it is clear that the 

performance of single-stage hybrid SWRO systems is negligibly affected by the TDS of the 

feed. The efficiency of simple single-stage designs in SWRO systems is higher than in 

BWRO systems. The general deduction is that simple single-stage configuration of SWRO 

systems is more efficient than hybrid single-stage ones. Therefore, if the number of 

membranes used does not change, using a simple single-stage design not only increases the 

system's efficiency but also reduces the number of PVs required, lowering the construction 

costs of the SWRO plant. 

 

Fig. 6 demonstrates that in specific ranges, the TDS of feed does not majorly impact the 

efficiency of simple and hybrid two-stage BWRO units. Simple two-stage designs' efficiency 

is higher than hybrid two-stage ones. Consequently, simple two-stage designs are more 

economical regarding construction and operating costs in similar conditions than their hybrid 

two-stage counterparts. 

 

Fig. 7 displays how the feed's TDS affects the efficiency of both simple and hybrid 

configurations of single-stage BWRO plants. It is evident that, in specific ranges, increasing 

the TDS of the feedwater does not impact the efficiency of RO systems. Furthermore, simple 

single-stage configurations seem more efficient than hybrid single-stage ones.  
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The efficiency of different RO systems investigated in this study is summarized in Table 4. 

The highest efficiency is seen in two-stage hybrid BWRO systems. The least efficient 

systems were single-stage hybrid SWRO units. 

 

4. Conclusion 

RO technology is an emerging method of water treatment. The effects of different designs of 

PVs on the efficiency and energy consumption in simple and hybrid designs of RO units were 

investigated in this paper. Simulation of simple and hybrid single-stage systems for seawater 

desalination showed that there was not much difference between the amount of consumed 

energy in such designs of SWRO systems. The results showed that in simple and hybrid two-

stage and single-stage BWRO plants, energy consumption in the first design was much less 

than in the second design. For seawater desalination, the first design of the simple single-

stage system has higher efficiency than the second design. However, the first design of the 

hybrid single-stage system is no more efficient than the second design. For brackish water 

desalination, simulations showed that the RO system designs with a lower number of PVs 

and more membranes have higher efficiency and lower energy consumption than designs 

with a high number of PVs and a lower number of membranes. Furthermore, for seawater 

desalination, simple single-stage designs with fewer PVs and more membranes have higher 

efficiency than designs with a high number of PVs and a lower number of membranes.  
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Table 1. 

Type 
Inlet flux 

(gfd) 

Produced water 

(gpm) 

Membrane surface area 

(ft
2
) 

Required number 

of membranes 

SWRO 8.26 128.5 400 56 

BWRO 16.51 55  400 12 

 

Table 2. 

Type of design Design 1 Design 2 No. membranes No. PVs 

Hybrid single-

stage  
* --- 12 3 

Hybrid single-

stage  
--- * 12 4 

Simple single-

stage 
* --- 12 3 

Simple single-

stage 
--- * 12 4 

Hybrid two-

stage 
* --- 12 3 

Hybrid two-

stage 
--- * 12 8 

Simple two-

stage 
* --- 12 3 

simple two-

stage 
--- * 12 8 

 

Table 3. 

Type of design Design 1 Design 2 No. membranes No. PVs 

Hybrid single-stage * --- 56 7 

Hybrid single-stage  --- * 56 7 

Simple single-stage * --- 56 7 
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Table 4. 

Type of design Minimum recovery ratio  Maximum recover ratio 

Hybrid single-stage (BWRO) 25 28 

Simple single-stage (BWRO) 24 25 

Hybrid two-stage (BWRO) 128 158 

Simple two-stage (BWRO)  64 76 

Simple single-stage (SWRO) 4 5 

Hybrid single-stage (SWRO) 3 4 

 

 

 


