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Keywords  Abstract 

The problem of dynamic deformation of a thin plate lying on an elastic base and discretely supported by 
a system of stiffening ribs under the action of an arbitrarily directed moving load is approximated. The 
load is considered as an infinite uniformly distributed normal force, the front of which moves with a 
constant velocity at an arbitrary angle to the longitudinal axis of the plate. The elasticity of the foundation 
is considered within the Winkler hypothesis, and the discreteness of the fin arrangement is specified using 
generalized functions. There are two variants of solving the problem: quasi-static and dynamic. In the first 
one, the curved surface of the plate depends only on its longitudinal coordinates, while in the second one, 
it also depends on time. When using the dynamic solution, in addition to the deformed state of the ribbed 
plate, the frequencies of its natural oscillations, which are the most important dynamic characteristics of 
the structure, are also determined as an incidental result. Examples are considered. The results of the work 
can be used to predict the stress-strain state of thin-walled structures, including those with functional 
coatings. 
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1. Introduction 
The problem under consideration arises during the operation of 
aerospace systems flying at ultrahigh speeds. In this case, a 
pressure wave arises moving along their skin, causing a number 
of extremely unfavorable effects. They are associated with 
dynamic deformation of structural elements made in the form of 
thin plates or shells discretely reinforced with stiffeners 
(stringers), as well as with a possible loss of their stability. All 
this can lead to the destruction of the aircraft. As a result of the 
foregoing, studies on the subject under consideration have not 
only specific technical applications, but are also relevant in the 
design of new generation aircraft systems. 

In the proposed work, the pressure wave is treated as a 
moving load, and the heat-shielding coating is considered as an 
elastic foundation. The moving load causes significant inertial 
forces, which can cause buckling of structural cladding 
elements. To avoid it, the plates are additionally reinforced by a 
system of discretely located stringers, which increase the 
“rigidity” of the structure. This is also partially facilitated by the  

 
 
presence of a heat-shielding coating. All these factors determine 
the scientific novelty of the work. 

In the scientific literature, the problems of the action of 
moving loads on beams have been studied in sufficient detail. 
In [1], the action of a moving load on smooth plates without 
stringers was studied, and in [2] a similar problem was 
solved, but simpler. The monograph [3] solves in different 
formulations and variants of the problem of the action of a 
moving load on one-dimensional elements such as beams or 
rods. In the proposed article, for the first time, an attempt was 
made to consider the dynamic state of locally reinforced 
plates with a heat-shielding coating applied to them [3]. Such 
structural elements are widely used in space technology, and 
problems with their thermal insulation led to unpredictable 
consequences, an example of which is the disaster with the 
Space Shuttle Columbia, which killed six astronauts. The 
papers [4,5] analyzed the possibility of dynamic stability of 
elastic systems. Articles related to the study of the stress-strain 
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state under the action of a moving load are [6-8]. The novelty of 
the proposed work is in the fact that for the first time it considers 
the problem of dynamic stability of a ribbed plate under the 
action of a moving load, the front of which is arbitrarily 
directed relative to its axis (Figure 1). In the works of other 
authors [9-11], only smooth (without stringers) plates were 
considered in the case of load movement along their axes. A 
change in the direction of the front of movement of forces 
leads to a change in critical speeds, which is also studied in 
[12,13]. Works [14,15] summarize the previous studies. 

In the proposed paper, we consider the same problem of 
moving load on a ribbed plate, but in a more general 
formulation, when the pressure wave front is arbitrarily 
directed towards its longitudinal axis (Figure 1), and the 
plate is supported on an elastic base imitating a heat-
shielding covering. In two variants the critical load velocities 
are determined, and in the dynamic solution the spectrum of 
natural frequencies of oscillations is also found. Both options 
for solving the problem ultimately led to the same results for 
critical velocities, but the quasi-static approach is preferable, 
because it is less labor intensive. On the other hand, in the 
dynamic version of the solution, as a by-product, the 
spectrum of natural oscillation frequencies of the structure is 
additionally determined, which makes it possible to avoid its 
falling into resonant operating modes. 

2. Theoretical basis 
The solution of the problem is based on two approaches: 
quasi-static and dynamic. In both of them, the problem is 
reduced to a partial differential plate bending equation solved 
by the Bubnov method. In the quasi-static version of the 
solution, the problem is ultimately reduced to a system of 
linear algebraic equations and the critical velocity is 
determined from the condition that its determinant is zero. In 
the dynamic variant of solution, the problem is reduced to a 
system of differential equations, but already in usual 
derivatives, solved by numerical methods. Besides, in order 
to determine the critical mode of force movements, here we 
additionally employ the dynamic criterion of stability 
whereby the critical loads are determined under the condition 
of equality to zero of the plate natural frequencies of 
oscillations. The elasticity of the base (heat shield) is 
considered within the framework of the Winkler hypothesis, 
and the discreteness of the supporting ribs is specified using 
generalized Dirac functions. The formulas for the lower 
critical velocities are obtained in closed form in the one-
manifold approximation. 

3. Methodology 
We consider a thin elastic rectangular plate lying on an 
elastic base with stiffness coefficient b and discretely 
supported by a system of elastic stiffening ribs (stringers), 
which are conventionally shown as solid lines in Figure 1. 
We assume that the neutral lines of these ribs lie in the 
median surface of the plate. Therefore, they can be 
considered as one-dimensional elastic inclusions. The plate 
is referred to the Cartesian coordinate system 0xyz. An 
infinite uniformly distributed inertial load of intensity q  

 
 
Figure 1. Discretely supported plate with elastic ribs. 
 
moving with constant velocity V at an arbitrary angle alpha 
to the x-axis of the plate as a linear force acting at the front 
of its motion. It is conventionally represented in Figure 1. 

The velocity vector V is decomposed into components 
𝑉𝑉𝑋𝑋 = 𝑉𝑉 cos𝛼𝛼 and 𝑉𝑉𝑌𝑌 = 𝑉𝑉 sin𝛼𝛼 in the direction of the x- and 
y-axes, respectively. Then the distance travelled by the load 
element in the direction of these axes in time t will be 𝑥𝑥 =
𝑉𝑉𝑋𝑋𝑡𝑡 and 𝑦𝑦 = 𝑉𝑉𝑌𝑌𝑡𝑡. Neglecting the weight of the plate, the load 
on the plate consists of the gravitational and inertial 
components of the moving forces, in the following form [5]: 

 

𝑞𝑞 −
𝑞𝑞
𝑔𝑔

(
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

+ 2𝑉𝑉𝑋𝑋
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 2𝑉𝑉𝑌𝑌
𝜕𝜕2𝑤𝑤
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+ 𝑉𝑉𝑋𝑋2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2
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𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

), 

 

 
 
 

(1) 

where g is the gravity acceleration. 
The components in this formula containing mixed 

derivatives correspond to Coriolis forces and are neglected 
in practical applications. Solving the problem in the contact 
statement, we mentally separate the stiffening ribs (stringers) 
from the plate and replace their influence distributed along 
the interaction lines of bodies 𝑦𝑦 = 𝑦𝑦𝑖𝑖 , (𝑦𝑦𝑖𝑖 = 1,2, . . . ,𝐶𝐶) in the 
median surface of the plate by the normal interaction 
reactions 𝑝𝑝𝑖𝑖(𝑥𝑥) directed along the z-axis. Since the stiffness 
of the plate in the tangential x and y directions is much 
greater than in the normal to its surface direction, the 
tangential contact reactions are further neglected. The 
problem then reduces to a partial differential bending 
equation of the plate [4] with discontinuous coefficients at an 
unknown deflection w, which is taking the following form: 

𝐷𝐷𝛻𝛻2𝛻𝛻2𝑤𝑤 + 𝑏𝑏𝑏𝑏 = 𝑞𝑞 

                  −
𝑞𝑞
𝑔𝑔
�
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

+ 𝑉𝑉𝑋𝑋2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑉𝑉𝑌𝑌2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

�   

                   −�𝑝𝑝𝑖𝑖𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑖𝑖),
𝐶𝐶

𝑖𝑖

 

 
 
 
 
 
(2) 

where b is the stiffness coefficient of elastic foundation, C is 
number of stiffeners, and the Dirac delta functions  
𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑖𝑖) define the stringer location coordinates along the 
y-axis. Each of the stringers considered as an elastic bending 
beam is referred to a rectangular coordinate system 0xz 
(Figure 1). Their balance equations in projection onto the z-
axis are: 
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𝐸𝐸𝐽𝐽𝑖𝑖
𝑑𝑑4𝑈𝑈𝑖𝑖
𝑑𝑑𝑥𝑥4

= 𝑝𝑝𝑖𝑖 ,           𝑖𝑖 =  1,2, … ,𝐶𝐶, (3) 

where EJi and Ui are bending stiffness and stringer deflection 
respectively. The other designations are traditional for this 
paper. The mass of the stringer itself, as well as the inertia of 
its movement, by analogy with the plate, are neglected. At 
each of the contact lines the of equality of deflections of both 
bodies 𝑤𝑤(𝑥𝑥, 𝑦𝑦𝑖𝑖) = 𝑈𝑈𝑖𝑖 , (𝑖𝑖 =  1,2, …𝐶𝐶) is fulfilled, but we 
consider that the deformed states caused by the contact 
reactions of neighboring stringers do not interfere with each 
other. Then by substituting the contact reaction 𝑝𝑝𝑖𝑖  from Eq. 
(3) into the bending of the plate Eq. (2), we obtain the solving 
equation of the problem: 

𝐷𝐷𝛻𝛻2𝛻𝛻2𝑤𝑤 + 𝑏𝑏𝑏𝑏 +
𝑞𝑞
𝑔𝑔
�
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

+ 𝑉𝑉𝑋𝑋2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑉𝑉𝑌𝑌2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

� 

                  +�𝐸𝐸𝐸𝐸
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑖𝑖)
𝐶𝐶

𝑖𝑖

= 𝑞𝑞. 

 
 
 
 
(4) 

The Eq. (4) is a partial derivative equation with 
discontinuous coefficients with unknown deflections w in the 
direction of the y-axis, which is due to the presence of Dirac 
delta functions in the last term of its left-hand side defining 
the coordinates of stringer arrangement. The problem will be 
solved in both quasi-static and dynamic formulations. Since 
Eq. (4) contains discontinuous coefficients, its exact solution 
cannot be obtained. Therefore, we will use Bubnov's method, 
which has its own peculiarities in both variants of the 
problem formulation. 

4. Results and discussion 
4.1. Quasistatic solution 

We consider that the shape of the curved surface of the plate 
depends only on its longitudinal coordinates x and y and does 
not depend on the time t. As a consequence, Eq. (4) takes a 
simpler form: 

𝐷𝐷𝛻𝛻2𝛻𝛻2𝑤𝑤 + 𝑏𝑏𝑏𝑏 +
𝑞𝑞
𝑔𝑔
𝑉𝑉2 �cos2 𝛼𝛼

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ sin2 𝛼𝛼
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

� 

                  +�𝐸𝐸𝐸𝐸
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑖𝑖)
𝐶𝐶

𝑖𝑖

= 𝑞𝑞. 
(5) 

To solve the problem, Bubnov method is used (in some 
sources, Bubnov-Galerkin method), but in different versions 
of its use. This method is well known and widely used in 
solving problems of mechanics. 

Its essence is reduced to minimizing the residual of the 
solution of differential Eq. (2) using the approximation of 
unknowns in the form of Eq. (6). This approach can be 
interpreted either as a variational problem or as a method of 
reducing a differential equation to a system of linear 
algebraic equations, the order of which is determined by the 
number of terms of the series of unknown deflections 
preserved in the expansion. 

To solve it by the Bubnov method, we present the 
deflection of the plate in the form of an expansion in the 
given coordinate functions 𝜙𝜙𝑚𝑚𝑚𝑚(𝑥𝑥. 𝑦𝑦). 

𝑤𝑤 = ��𝑤𝑤𝑚𝑚𝑚𝑚𝜙𝜙𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)
𝐿𝐿

𝑛𝑛

𝐾𝐾

𝑚𝑚

, 
 

(6) 

where 𝑤𝑤𝑚𝑚𝑚𝑚 are the unknown coefficients, 𝜙𝜙𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) are the 
orthogonal forms of natural vibrations of a smooth plate 
expressed in trigonometric functions. Applying the Bubnov 
method procedure to Eq. (5), we reduce it to a coupled 
system of 𝐾𝐾 × 𝐿𝐿 linear algebraic equations with respect to 
the coefficients in decompositions Eq. (6). In matrix form, it 
has the following form: 

[𝐾𝐾 − 𝑉𝑉2𝑀𝑀]𝑊𝑊 = 𝐹𝐹, 

𝐾𝐾 = [𝑘𝑘𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 ], 𝑀𝑀 = [𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘 ], 𝑊𝑊 = {𝑤𝑤𝑘𝑘𝑘𝑘}, 𝐹𝐹 = {𝑓𝑓𝑘𝑘𝑘𝑘}. 

(7) 

(8) 

The dimensionality of the stiffness matrices K, masses M and 
vectors W, F is determined by the number of row terms 
stored in Eq. (6). The elements of matrices K, M and vector 
F are: 

𝑘𝑘𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 = 𝛻𝛻2𝛻𝛻2𝜙𝜙𝑚𝑚𝑚𝑚 ⋅ 𝜙𝜙𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑 + 𝐷𝐷� 𝑏𝑏�𝜙𝜙𝑚𝑚𝑚𝑚𝜙𝜙𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑
𝑆𝑆𝑆𝑆

 

         +�𝐸𝐸𝐽𝐽𝑖𝑖 � 𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑖𝑖)
𝜕𝜕4𝜙𝜙𝑚𝑚𝑚𝑚
𝜕𝜕𝑥𝑥4

𝜙𝜙𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑,
𝑆𝑆

𝐶𝐶

𝑖𝑖=1

 

 

 

 

(9) 

K matrix is blocking diagonal, due to the existence of a 
discontinuity in its coefficients only along the y-axis. The 
formula for the mass ratio 𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘  contains a modulus notation 
because the minus sign, which is obtained by differentiating 
trigonometric functions 𝜙𝜙𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦), is already considered in 
Eq. (7). The system of Eq. (7) is solved by linear algebra 
methods for a given speed V. 

To clarify the qualitative features of the behavior of 
the plate under the action of the moving load, we consider 
a model example in single term approximation for a plate 
with a single stringer located along the x-axis at y=0 
(C=1). Then the amplitude deflection value based on the 
solution of Eq. (7) will be: 

𝑤𝑤1 =
𝑓𝑓1

𝑘𝑘11 − 𝑉𝑉2𝑚𝑚11
. 

 

(10) 

The coefficients included in this formula are calculated from Eq. 
(9) at 𝜙𝜙𝑚𝑚𝑚𝑚 = 𝜙𝜙𝑘𝑘𝑘𝑘 = 𝜙𝜙. The second term in the denominator of 
this formula, which takes into account the massiveness and 
velocity of the load, enters with a minus sign. Consequently, 
with increasing mass or velocity, plate deflections will increase 
rapidly. For some values of these quantities, the denominator 
Eq. (10) is zero. This indicates that even at low shear load 
intensities an unrestricted increase in plate deflection due to 
centrifugal forces is possible and this phenomenon can be 
interpreted as a loss of plate stability. The speed at which the 
denominator turns to zero can be called critical, which obtained 
by Eq. (11) is shown in Box Ⅰ.  
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𝑉𝑉𝐾𝐾𝐾𝐾2 = 𝑘𝑘11
𝑚𝑚11

 =
𝐷𝐷 ∫ 𝛻𝛻2𝛻𝛻2𝜙𝜙⋅𝜙𝜙𝜙𝜙𝜙𝜙+𝑏𝑏 ∫ 𝜙𝜙2𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

𝑞𝑞
𝑔𝑔�sin

2 𝛼𝛼 ∫ 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜙𝜙𝜙𝜙𝜙𝜙+co𝑠𝑠2 𝛼𝛼 ∫ 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜙𝜙𝜙𝜙𝜙𝜙𝑆𝑆𝑆𝑆 �
+

𝐸𝐸𝐸𝐸 ∫ 𝜕𝜕4𝜙𝜙
𝜕𝜕𝑥𝑥4

𝛿𝛿(𝑦𝑦−0)𝜙𝜙𝜙𝜙𝜙𝜙𝑆𝑆
𝑞𝑞
𝑔𝑔�sin

2 𝛼𝛼 ∫ 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜙𝜙𝜙𝜙𝜙𝜙+cos2 𝛼𝛼 ∫ 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜙𝜙𝜙𝜙𝜙𝜙𝑆𝑆𝑆𝑆 �
 .                                                                               (11) 

Box Ⅰ. 

If b=EJ=α=0 in the resulting expression, Eq. (11) is the 
same as the expression for the critical load velocity on a 
smooth plate [5]. 

When solving the problem in high approximations from the 
system of Eq. (7) by equating its determinant Eq. (12) to 
zero, the whole spectrum of critical velocities can be 
determined. However, only the minimum speed is of 
practical importance. 

𝑑𝑑𝑑𝑑𝑑𝑑[𝐾𝐾 − 𝑉𝑉2𝑀𝑀] = 0. (12) 

4.2. Dynamic solution 
In this case, the deflection of the plate depends not only on 
the spatial coordinates x and y, but also on the time t. 
According to the Bubnov method, we consider the deflection 
of the plate in the form of a decomposition of the given 
functions. 

𝑤𝑤 =⋅��𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡)𝜙𝜙𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)
𝐿𝐿

𝑛𝑛

,
𝐾𝐾

𝑚𝑚

 
 
(13) 

where 𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡) are the unknown functions of time, 𝜙𝜙𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) 
are the orthogonal forms of natural vibrations of a smooth 
plate expressed in trigonometric functions. Substituting 
expansion Eq. (13) into Eq. (2) and applying the Bubnov 
method procedure on spatial coordinates to it, we arrive at a 
system of second order differential equations of motion of 
the plate with respect to functions 𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡). In matrix form, it 
has the following form: 
𝑀𝑀𝑊̈𝑊 + 𝐾𝐾𝐾𝐾 = 𝐹𝐹. (14) 

𝐾𝐾 = [𝑘𝑘𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 ], 𝑀𝑀 = [𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘 ], 𝑊𝑊 = {𝑤𝑤𝑘𝑘𝑘𝑘(𝑡𝑡)}, 

 
  𝐹𝐹 = {𝑓𝑓𝑘𝑘𝑘𝑘}. 
 

(15) 

𝑓𝑓𝑘𝑘𝑘𝑘 coefficients are calculated according to Eq. (9). In Eq. 
(14) and below, the points above the desired functions denote 
their time derivatives. The system (14) is integrated 
numerically under given initial conditions. By analogy with 
the quasi-static approach, we also consider the solution of 
this problem in the monomial approximation. Then the 
solving equation of the problem is: 

𝑤̈𝑤1 + 𝜔𝜔2𝑤𝑤1 =
𝑓𝑓11
𝑚𝑚11

. (16) 

Solution of Eq. (16) is: 

𝑤𝑤1 = 𝐴𝐴 sin𝜔𝜔 𝑡𝑡 + 𝐵𝐵 cos𝜔𝜔 𝑡𝑡 + 𝑤𝑤∗, (17) 

A and B are the integration constants determined from the 
initial conditions, 𝑤𝑤∗ is the partial solution depending on the 
specific form of the right-hand side Eq. (16), ω is the 
frequency of oscillation. According to the dynamic stability 
criterion, the critical state of the system is realized when the 
frequency of the natural oscillations 𝜔𝜔 = �𝑘𝑘11/𝑚𝑚11 is zero. 
From this ratio, which reduces to the condition  𝑘𝑘11 = 0, the 
critical speed can be determined: 

 
Figure 2. Dimensionless critical speed as a function of the angle 
of inclination in the moving load front. 
 
𝑉𝑉𝐾𝐾𝐾𝐾2 = 
𝐷𝐷∫ 𝛻𝛻2𝛻𝛻2𝜙𝜙 ⋅ 𝜙𝜙𝜙𝜙𝜙𝜙 + 𝑏𝑏 ∫ 𝜙𝜙2𝑑𝑑𝑑𝑑 + 𝐸𝐸𝐸𝐸 ∫ 𝜕𝜕4𝜙𝜙

𝜕𝜕𝑥𝑥4 𝛿𝛿(𝑦𝑦 − 0)𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆

𝑞𝑞
𝑔𝑔 �sin2 𝛼𝛼 ∫ 𝜕𝜕2𝜙𝜙

𝜕𝜕𝑥𝑥2 𝜙𝜙𝜙𝜙𝜙𝜙 + cos2 𝛼𝛼 ∫ 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2 𝜙𝜙𝜙𝜙𝜙𝜙𝑆𝑆𝑆𝑆 �

. (18) 

Eq. (18) is exactly the same as the expression for the critical 
velocity obtained earlier in the quasi-static version of the 
problem. 

We consider a plate with length a and width 2d, supported 
by a single stringer positioned at its central point along the 
x-axis (Figure 1). All edges of the plate are freely supported. 
Since the lowest (main) critical load is mainly realized under 
the simplest form of stability loss, we solve the problem in 
the monomial approximation. With the boundary conditions 
considered, we select the approximating function in 
expansions Eq. (6) or Eq. (13) as 𝜙𝜙 = sin(𝜋𝜋𝜋𝜋/𝑎𝑎) cos(𝜋𝜋𝜋𝜋/
2𝑑𝑑). The design is characterized by the following 
dimensionless parameters: 

𝑎𝑎/𝑑𝑑 = 4, ℎ/𝑎𝑎 = 0.01, 
𝐽𝐽∗ = 𝐽𝐽/𝑎𝑎4  = 5, 𝑏𝑏∗ = 𝑏𝑏ℎ/𝐸𝐸, 
𝑞𝑞∗ = 𝑞𝑞/𝐸𝐸 = 10. 

 
 
(19) 

 
Figure 2 shows the relations between the dimensionless 
square of the critical velocity 𝑉𝑉𝐾𝐾𝐾𝐾 = 𝑉𝑉𝐾𝐾𝐾𝐾2∗ = 𝑉𝑉𝐾𝐾𝐾𝐾2 /𝑔𝑔ℎ and the 
angle of inclination of the moving load front to the x-axis of 
the plate. Angle 𝛼𝛼 = 0 corresponds to the movement of the 
load along the x-axis and angle 𝛼𝛼 = 𝜋𝜋/2 corresponds to the 
movement of the load along the y-axis. The lower curve 
corresponds to a smooth plate and the upper curve to a ribbed 
plate. The presence of a stringer "stiffens" the plate and, as a 
consequence, the critical speed of the load is increased. 

For a smooth plate with aspect ratio 𝑎𝑎/2𝑑𝑑 = 2, the 
critical loads in the different directions are not very different 
from each other, which agrees with the results given in the 
monograph [3]. When the forces move along the x-axis the 
critical velocities are much higher than in any other direction, 
due to the presence of a sufficiently strong stringer on this 
axis. So, for example, for a smooth plate without ribs with an 
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inclination angle of the shock wave front of 0 degrees 
(movement along the x-axis), the dimensionless critical 
velocities in the proposed solution and in the solution from 
[2] give values of 15 and 120, respectively. For an inclination 
angle of 𝜋𝜋

2
 (movement along the y-axis), the same speeds are 

50 and 43. The given figures indicate good agreement 
between the results for a smooth plate. There are simply no 
solutions to problems for ribbed structures, so there is 
nothing to compare with. There are a significant number of 
papers on this topic. 

 

5. Conclusions 
In this paper the problem of dynamic deformation and 
stability of a thin discrete stringer system of a plate lying on 
an imitating a heat-shielding coating elastic base is 
approximately solved in two variants. The main focus is on 
determining the main (lowest) critical load speed. For it, 
formulas are obtained in closed form in a one-term 
approximation. And in both versions of the problem these 
formulas coincide. This indicates that the solution is correct. 
Using the dynamic solution, expressions for the fundamental 
(lowest) natural frequency of the plate are also obtained in 
closed form. Numerical simulation results show that the 
presence of a stringer "stiffens" the plate and as a 
consequence leads to an increase in critical performance. The 
effect of the load direction on the critical velocity has been 
investigated. When forces move in the direction of the long 
side of the plate, the critical velocity is higher than along the 
short side of the plate. As follows from the above numerical 
experiments, the use of ribbed plates leads to higher results 
of critical loads compared to smooth ones (without 
stringers). The latter makes it possible in practice to avoid 
the loss of stability of the aircraft skin at operational flight 
speeds. From the point of view of practical applications, we 
should strive to ensure that the critical speeds of the moving 
load significantly exceed the operational speeds of the 
aircraft. Therefore, the variant of pressure wave motion 
along the long side of the plate is preferable to all other 
directions of its motion. The advantage of the proposed 
approach in application to practical engineering calculations 
is that the most dangerous lower (basic) critical loads 
(velocities) can be easily determined in a single-term 
approximation. The same applies to natural oscillation 
frequencies, which, as a side effect, are found when solving 
a problem in a dynamic formulation. 

It is difficult to compare the results obtained in this work 
with the data of other authors, since there are definitely no 
theoretical studies of the problem in the case of an arbitrary 
front of the direction of the shock wave for a plate discretely 
supported by stringers and also bearing a heat-shielding 
coating. The same situation is about the comparison with the 
results of the experiment, which, if they exist, are most likely 
of a closed nature. 

The results obtained can be used to predict the behavior 
of thin-walled structures, including those with functional 
coatings, under conditions of interaction with high-speed 
flows, when factors such as the direction of the front of 
aerodynamic loads, the formation of flow discontinuity 

surfaces, unsteady heating caused by both convective heat 
transfer, and the heat of chemical reactions (oxidation, 
catalysis). The advantages of the work, in addition to 
determining the main critical speeds of motion, are also the 
determination of natural oscillation frequencies, the 
knowledge of which makes it possible to avoid getting the 
aircraft into near-resonance flight modes that threaten 
unpredictable consequences. Thus, the work and its results 
are practical. 

 
Nomenclature 

V Velocity vector 
g Gravity acceleration 

b Stiffness coefficient of elastic foundation 
C Number of stiffeners 
𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑖𝑖) Dirac delta functions 
EJi Bending stiffness 
Ui Stringer deflection respectively 
𝑤𝑤𝑚𝑚𝑚𝑚 Unknown coefficients 
𝜙𝜙𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) Orthogonal forms of natural vibrations of 

a smooth plate expressed in trigonometric 
functions 

K matrix Block diagonal 
A and B Integration constants determined from the 

initial conditions 
𝑤𝑤∗ Partial solution 
ω The frequency of oscillation 
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