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Abstract 

The amplitude-phase synthesis of an unequally spaced array is discussed in this study along with a new 

method that improves the amplitude dynamic range ratio with fewer elements. In this method, the Hankel 

matrix is established using the sampling points of a prescribed array factor. The array elements' locations 

are estimated using the eigenvalues of the Hankel matrix. The magnitude of the array currents is then 

calculated using the least-squares approach. By defining the reduction parameter, the amplitude dynamic 

range can be extremely reduced. Some theoretical and practical arrays are given to verify the performance 

of the proposed method. The obtained results are compared to those obtained by other methods, and 

simulation data. 
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1. Introduction 

Nowadays, antenna arrays have been widely employed for different targets, including electronic tracking, 

satellite communication systems, interference suppression, 5G cellular networks, directivity increase, and 

spatial multiplexing [1-4]. Typically, the assessment of the excitations that better satisfy the pattern 

synthesis requirements is an important challenge in array design problems [5-8]. To this end, several 

approaches have been introduced, considering the shape of the array, the character of the desired pattern, 

and the degrees of freedom that characterize the array excitations [9-11]. 

Synthesis of the radiation pattern of an array is done by changing both the amplitude and phase of the 

array elements. In array engineering, this problem is called amplitude-phase synthesis [12]. Nevertheless, 

in some applications like reflect-array antennas having either pencil or contoured beams, only the phase 

of the unit cells is the controllable parameter in the design procedure [13-14]. The magnitude of unit cells 

is predetermined by the other parameter in these applications. Additionally, changing the phase of the 

array elements is more practical and useful than changing their magnitudes. This procedure for pattern 

synthesis of an array is called phase-only synthesis. 

Most of the introduced methods for radiation pattern synthesis cannot control the amplitude dynamic 

range. In [15], a null steering approach was introduced by changing only the excitation phases of a part of 

the array of elements. In this work, the required phase excitations are employed in the objective function. 

Then, by using the quasi-Newton method, the mean square error between the desired and synthesized 

pattern is minimized. In [16], it is tried to obtain the required array patterns with controlled nulls. 
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In [17], a new technique is introduced to determine the array weights with minimum amplitude dynamic 

range ratio. The array designed using this method can generate a pencil beam pattern with zero phases. 

Also, using it, the phases of the excitation coefficients can be continuously controlled. In [18], the 

autocorrelation matching technique is introduced to synthesize of the power pattern of an equally-spaced 

array. In [19], a teaching learning-based method is proposed for the synthesis of reconfigurable uniformly 

excited linear arrays. In this work, the modified quantum particle swarm optimization and symbiotic 

organisms search algorithms are employed in the synthesis procedure. 

This article presents a new method for determining the amplitude and phase of the excitation coefficients 

of an unequally spaced array. In this work, it is tried to design a non-uniform array with a minimum 

amplitude dynamic range ratio. By establishing the Hankel matrix and calculating its eigenvalues, the 

location of the array elements is determined. The amplitude of excitation currents is calculated using the 

least square method. Then, by defining the reduction parameter, the amplitude dynamic range is reduced. 

Several practical arrays, including the sum and difference pattern, are investigated to confirm the 

effectiveness of the presented method. 

2. Mathematical Formulation 

Consider a linear, unequally-spaced array oriented along z-axis direction composed of N elements. Let In, 

dn and k be the weight and location of the nth element and the wave number defined by 2/ ( is 

wavelength), respectively. By defining u=cosθ, in which θ is the elevation angle, the array factor F(u) can 

be described as follows. 

 
1

exp
N

n nn
F I jkd u


  (1) 

Assuming L is the array length, the prescribed array factor can be reconstructed using 2M+1 samples with 

the uniform sampling step ∆≈1/(2L) over the interval -1≤u≤+1 [20]. 
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The samples of the prescribed pattern can be expressed in vector form V=[F(m/2L)]1×(2M+1); m=-

M,…,0,…,M. Two sample matrices G, L can be established using vector V as follows [20]. 
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Combining these matrices gives the Hankel matrix H using the following equation [9]. 
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 
1

T T


H G L L G  (5) 

To save the number of elements, the singular value decomposition (SVD) of the Hankel matrix H can be 

carried out as follows. 

TH USW  (6) 

in which U and W are the unitary matrices, and S is a diagonal matrix, including the singular values of H. 

The number of principal singular values of H equals the number of array elements. For many practical 

arrays, the number of nonzero singular values is less than the number of array elements. So, by regarding 

the Q number of the principal singular values, which corresponds to a new array with fewer elements, a 

low-rank approximation of H is achieved as follows [20]. 

T

Q QH US W  (7) 

where HQ is the low rank version of H. It is worthy to note that there is not a clear relationship between 

the primary numbers of array elements N and the reduced numbers of array elements Q. For each case 

study, after specifying the singular values of matrix H, only non-principle or non-zero singular values are 

remained and the other ones are withdrawn. It is shown in [21] that the fractional Fourier series of the 

prescribed pattern (Fr) can be expressed using the distinct eigenvalues n of the low-rank matrix HQ, in 

which cns are constant coefficients. 
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  (8) 

By comparing equations (1) and equation (8), it is found that the locations of the elements of the new 

array (dn) can be calculated using the phase of normalized eigenvalues n as follows. 
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where L and αn are the array length and the phase of normalized eigenvalues (in radian), respectively. 

After determining the array element’s locations dn, the weight of the elements In can be determined using 

the Least Square Method (LSM). To this end, the following system of equations is established. 
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in which P≈5L/λ is the total number of the samples and is determined using the Nyquist theorem [5]. The 

second purpose of this paper is to reduce the amplitude dynamic range (ADR) defined by. 
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To this end, the absolute values of weights Ins are modified to the new real weights wns so that the ADR 

of the new array is less than the primary array. The value of weights is determined using the following 

equation. 

 min ,    1,...,n n nw I I n Q       (15) 

in which 0<η<1 is the parameter that is used to reduce the ADR. In this case, the array factor is rewritten 

as follows. 

   
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  (16) 

in which φn is the phase of the nth excitation coefficient. By defining kdnu=ψn, cos(φn-ψn)=Cn and sin(φn-

ψn)=Sn the array factor is rewritten as. 
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The radiated power of the array can be calculated as follows. 
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After some algebraic manipulations, the array factor is reduced as. 
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Since Sn
2+Cn

2=1, the above equation is simplified to. 
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Substituting equation (21) into equation (20) leads to equation (22). 
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It should be noted that in the above equation, φns are only unknown. The target is to minimize the 

following expression. 

2
min

n d F F  (23) 
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in which Fd is the vector that includes the samples of the desired pattern and ||.|| is the norm-2 operator. 

The problem's solution is not easily determined. To this end, the introduced technique in [19] is 

employed. In each iteration, equation (23) is used to compute the mean square error. 

3. Results and Discussion 

In this section, several arrays are studied and the results are compared to validate the performance of the 

proposed method. 

3.1. Sum Pattern 

In the first example, amplitude-phase synthesis of an equi-ripple pattern with SLL=-25 dB, and array 

length L=10λ is considered. Figure (1) shows the obtained results using the proposed and the conventional 

Dolph-Tschebyscheff method [22]. Although a small deviation of about 2.5 dB is seen in the first two 

side lobes, the accuracy of the obtained results in other regions is good. Also, the magnitude and phase of 

the obtained currents for both methods are plotted in Figure (2). The proposed method not only reduces 

the number of elements in the designed array when compared to the conventional method, but it also 

reduces the amplitude dynamic range of the designed array by about 21% when compared to the Dolph-

Tschebyscheff technique. It is worthy of mentioning that the phases of Ins in the Dolph-Tschebyscheff 

method are zero. 

3.2. Difference Pattern 

In the second example, amplitude-phase synthesis of a difference pattern with the first side lobe about -25 

dB, and array length L=12λ is considered. Figures (3) and (4) show the obtained results and amplitude and 

phase of the array currents using the proposed and the conventional Bayliss method [22]. It is seen that 

the designed array using the proposed method has eight elements lower than the Bayliss array, and the 

desired and synthesized pattern are matched very well. The amplitude dynamic range of the proposed 

array is about 55% lower than the Bayliss array. 

3.3. Flat-Top Pattern 

In the third example, amplitude-phase synthesis of a flat-top pattern with non-zero values over the interval 

|u|≤0.35 and array length L=13λ is considered. The desired pattern and synthesized pattern using the 

proposed and Fourier methods [22] are plotted in Figure (5). It is seen that the accuracy of the proposed 

method with Q=19 is better than the Fourier method with N=26. The amplitude and phase of the obtained 

currents for both methods are depicted in Figure (6) and Figure (7), respectively. The results show that the 

amplitude dynamic range of the designed array is about 78% less than the Fourier method. 

Table 1 shows some of the main parameters of the obtained results, such as the total number of array 

elements Q, amplitude dynamic range ADR, reduction percent of dynamic range η0, mean square error 

(MSE), and the required running time (t). The proposed method is implemented in MATLAB and it is run 

using a computer with CPU core i7 & 16G RAM. It can be seen that the proposed method can be used to 

design an unequally-spaced array with the minimum number of elements, minimum dynamic range, and 

lower mean square error. 

4. Practical Array Example 

To assess the performance of the proposed method in real applications, the previously designed array with 

equi-ripple array factor is simulated using the full-wave simulator, HFSS software. The simulated array is 

made of a half-wavelength dipole antenna, arranged along the x-axis. 
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Fig. 8 shows the simulation results of the mutual coupling between two adjacent elements. It is seen that 

the minimum and maximum coupling between the elements are about -20.9 dB and -19.4 dB, 

respectively. 

The total radiation pattern of the implemented dipole array with Q=13 elements at standard planes of φ=0 

and φ=π/2 are depicted in Figure (9) and Figure (10), respectively. The total radiation pattern includes 

both element and array factors. For an array-oriented along the x-axis, the value of the array factor in 

φ=π/2 is constant. So, the total radiation pattern in this plane is approximately the same as the element 

pattern. 

In Figure (9), a deviation is seen in the broadside direction, and over a small range of elevation angles. 

This is because we only focused on optimizing the array factor in the theory section. Thus, the proposed 

array model has not considered mutual coupling between elements that cause a significant difference in 

the element radiation patterns. Hence, in real radiation problems, the mutual coupling reduces the 

accuracy of the proposed method. However, the proposed method can be used for the primary design of a 

practical array with acceptable accuracy. It is clear that for the real array, an optimization process should 

be applied using the full-wave simulator. 

5. Conclusion 

A new approach was proposed for amplitude and phase synthesis of the radiation pattern of an unequally-

spaced antenna array. The main purpose of this work is to improve the amplitude dynamic range ratio 

with the reduced number of elements. In this paper, using the sample points of the desired pattern and 

establishing the Hankel matrix, first, the location of the array elements are evaluated, and then, by the 

least square method the excitation currents are determined. By defining the reduction parameter, the 

amplitude dynamic range is reduced and the phase of the array weights are calculated. Some practical 

arrays are studied to verify the performance of the proposed method. 
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Figure Captions 

Figure (1): The synthesis results of sum pattern with SLL=25dB and ADR=2.12. 

Figure (2): Magnitude of the sum pattern with SLL=25dB and ADR=2.12. 

Figure (3): The synthesis results of the difference pattern with ADR=3.13. 

Figure (4): Magnitude and phase of the currents of difference pattern with ADR=3.13. 

Figure (5): The synthesis results of the flat-top pattern with ADR=41.16. 

Figure (6): Magnitude of the currents of flat-top pattern with ADR=41.16. 

Figure (7): Phase of the currents of flat-top pattern with ADR=41.16. 

Figure (8): The simulation results of the mutual coupling in the implemented dipole array in HFSS. 

Figure (9): The total radiation pattern of the implemented dipole array in HFSS at φ=0. 

Figure (10): The total radiation pattern of the implemented dipole array in HFSS at φ=π/2. 

Tables Captions 

TABLE 1: Comparison of the obtained results 

Figures 
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Figure (1) 

 

Figure (2) 
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Figure (3) 

 

Figure (4) 
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Figure (5) 

 

Figure (6) 
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Figure (7) 

 

Figure (8) 
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Figure (9) 

 

Figure (10) 

   ADR η0 (%) MSE t (s) 

Example I 
Proposed Method Q=13 2.12 

21 1.8e-4 10.27 
Dolph-Tschebyscheff N=20 2.69 

Example II 
Proposed Method Q=16 3.13 

55 ≈ 0 10.24 
Bayliss Method N=24 7.04 

Example III 
Proposed Method Q=19 41.16 

78 6.9e-3 10.62 
Fourier Method N=26 187.6 
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