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Abstract 

The cloud manufacturing system is a customer-oriented paradigm that benefits from centralized 

management of all available resources. This paper focuses on the integration of sub-task 

scheduling and logistics (ISSL) in the cloud manufacturing system with two main contributions: 

1) using a combined transportation system which provides the advantage of transporting more 

than one sub-task by a vehicle at the same time, and 2) tasks can have different structure types 

including sequential or parallel. To get the model closer to reality, two factors are considered: 1) 

different task arrival times; and 2) The setup time/cost. The proposed model aims to optimize 

task completion time, cost, and average quality service concurrently. To solve the proposed 

model, GAMS software is utilized for small/medium-sized samples while a genetic algorithm is 

developed for larger-size samples. Three comparative studies are conducted; the findings show 

that employing combined logistics significantly impacts the cost imposed on cloud systems while 

the real task arrival time to the cloud platform and setup time/cost have a notable effect on the 

task completion time and cost, respectively. Eventually, a sensitivity analysis is undertaken to 

gain insight into the impact of execution time, service cost, and user preferences on the final 

solution.  
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1. Introduction  

The cloud manufacturing platform is defined as a centralized management system for both 

integrating and sharing resources such as production services and logistic services. However, 

task or sub-task scheduling to assign them to provided services is one of the main challenges in 

this platform. Hence, enterprises are affording to employ approaches for optimal production in 

this competitive environment [1] which cloud manufacturing systems can provide them. It's 

worth noting that the cloud manufacturing platform combines logistics by decomposing tasks 

with different structures into smaller sub-tasks. 

In recent years, researchers in cloud manufacturing have increasingly focused on optimization 

problems. These problems can be divided into three categories: scheduling, project management, 

and service composition. The main challenge in service composition problems is how to discover 

and select the suitable service from candidate services and find the optimal service structure [2, 

3]. In the scheduling and project management problems unlike service composition, all services 

can be utilized in parallel. It should be noted that the main difference between scheduling and 

project management problems is that scheduling problems aim to find the optimal sequence of 

sub-tasks or tasks assigned to the given service, while in project management, it is not an issue 

[4]. 

In the cloud manufacturing platform, most of the submitted tasks have multi-functionality 

which cannot be performed by a single service. Therefore, in the first step, the received task on 

this platform decomposed into multiple sub-tasks in different structures. Despite this for 

simplicity, the models in the literature assume that all tasks follow merely one type of structure. 

In this regard, Akbaripour et al. [5] formulated four mixed integer programming models for four 

different types of task structures to allocate sub-tasks of a single task to services in a cloud 

manufacturing environment. Unlike Akbaripour et al. who considered different task structures, 

Kerdegari et al. [6] proposed a multi-objective mathematical model by considering different 

structures of services composition. Furthermore, Xiang et al. [7] presented a model for optimal 

selection from large-scale composed services by employing the two structures of sequential and 

parallel. Jin et al. [8] presented a service correlation mapping model by considering the two 
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stated basic composite modes. It is commonly assumed in the studies cited that all tasks possess 

identical structures, such as adhering to a parallel structure. However, in real situations, it is 

more likely that the received tasks have diverse structures in a period. 

The cloud manufacturing environment as a centralized management system expertly 

schedules decomposed sub-tasks to complete the overall task. This is achieved through the 

logistics aspects that guarantee the transportation of sub-tasks to various geographical locations. 

Despite numerous studies in this field, the application of an efficient transportation system is still 

one of the fundamental challenges in this platform. In this regard, Zhou et al. [9] addressed the 

3D printing service problem in this platform to minimize task completion time by involving 

logistics. There exist other studies that consider typical logistic aspects and mentioned objective 

functions in cloud manufacturing systems in their proposed model such as He et al. [10]. To 

balance the benefits of service demanders and service providers a double action mechanism 

based on game theory was proposed by Liu et al. [11] according to logistic factors. In other 

studies, Zhou et al. [12] like Tong and Zhu [13] described the collaborative optimization 

problem of logistics services and processing services in cloud manufacturing in the form of a 

mathematical model. In addition, Zhou et al. [14] applied the scheduling problem of 

collaborative logistic and processing services in cloud manufacturing to minimize the average 

delivery time. Delaram and Valilai [15] proposed a linear mixed integer programming model to 

address project management problems to optimize logistics and production costs. To reduce 

production and transportation costs, Wu et al. [16] integrated cross-supplier orders and third-

party logistic scheduling. Unlike other mentioned studies, the main contribution of this study is 

employing combined transportation in which a group of sub-tasks with the same origin and 

destination can be transported by one vehicle, simultaneously.  

Since the presented enterprises in the cloud manufacturing systems are located in different 

geographical locations, the transportation time and cost can have a significant effect on the task 

completion time and cost imposed on the cloud manufacturing as well as the sub-task 

scheduling. Accordingly, Chen [17] recommended the integration of scheduling and logistics in a 

unified model. In this regard, in order to improve the utilization rate of dynamic service 

resources, Yuan et al. [18] proposed the resource scheduling model to reduce time and cost and 

improve production efficiency by considering logistic aspects. Regarding scheduling problems, 
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Jafarnejad Ghomi et al. [19] and Jafarnejad Ghomi et al. [20] established two studies to present a 

multi-objective model by considering three criteria including service load balancing, 

transportation, and queuing theory, the only difference between these two studies is the solution 

methods.  

Two factors affecting scheduling performance in cloud manufacturing are setup time/cost and 

task arrival time. These factors are rarely used in scheduling problems in cloud manufacturing 

systems. The setup time/cost can be defined as the time/cost of preparing the given service to 

handle the sub-task. In this regard, Salmasnia and Kiapasha [21] considered these two factors 

besides logistics to get their proposed scheduling model closer to reality. Helo et al. [22] dealt 

with sheet metal manufacturing by introducing a cloud-based model with the aim of setup time. 

Li et al. [23] developed NSGAII and multiple AOC by involving three objectives of time, cost, 

and quality and also considered two criteria of logistics and setup. Wang et al. [24], Yang et al. 

[25], Zhang et al. [26], and Zhang et al. [27] are four other recent studies that considered setup 

time/cost in their proposed model. There are a few papers that take different task arrival times 

into account in their presented model which can be mentioned as Zhou et al. [28] provided a 

mathematical model based on dynamic data-driven simulation for randomly arriving tasks in the 

cloud manufacturing environment. Ahn and Hur [29] investigated the effect of cost, quality, 

tardiness, and reliability on customer satisfaction by establishing a mathematical model by 

considering the available time for each task. [30, 31], and [32] are other similar studies in which 

different task arrival times are one of the main features of their proposed model. As can be seen, 

only the project management problems and two of the scheduling problem literature addressed 

setup and task arrival time parameters in their modeling. 

Due to the fact that tasks in cloud manufacturing systems are decomposed into various 

numbers of sub-tasks and each enterprise offers a variety of services, Liang et al. [33], in contrast 

to Assari et al. [34], taking into account both the different number of sub-tasks each submitted 

task as well as the various number of services provided by each enterprise, analyzed the service 

composition problem. However, many papers like [11] and [14] considered the identical number 

of sub-tasks and services for each task and enterprise respectively. Several other studies contain 

a different number of sub-tasks and services for each task and enterprise respectively such as 

[28], and [29]. 
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Although existing studies have proposed innovative task scheduling methods for cloud 

manufacturing systems, further investigation is necessary to address remaining shortcomings. To 

this end, this study proposes a model for the integration of sub-task scheduling and logistics 

called ISSL in cloud manufacturing. Unlike most of the studies that neglected or simplified 

transportation among different geographical locations, the proposed model suggests a combined 

logistics approach to transport multiple sub-tasks by a single vehicle at the same time in case the 

origin and destination of these sub-tasks are the same. Furthermore, the proposed problem covers 

the simultaneous scheduling of tasks with different task structures such as sequential, and 

parallel in the cloud environment. To get close the model to reality, two characteristics, which 

are seldom noticed in the scheduling problems in this environment, are taken into account as 

follows: 1) different task arrival times, and 2) setup time/cost when implementing different types 

of sub-tasks sequentially on a given service. Finally, the proposed model aims to optimize three 

conflicting objectives of task completion time, the cost imposed on the cloud system, and 

average service quality, concurrently. Table (1) is provided to give a general view of studies 

conducted on the optimization problems in cloud manufacturing systems. 

The rest of this paper is organized as follows: in Section 2, the details of the problem 

definition are stated. In Section 3, the mathematical model is formulated. The implementation of 

the genetic algorithm is described in Section 4. Section 5 reports the computational experiment 

results. And eventually, Section 6 covers the conclusion and recommendation for future work. 

Insert Table 1 here 

2. The problem definition 

The ISSL problem in the cloud manufacturing system can be defined as, how to assign a bunch 

of sub-tasks to the sequence positions of a provided service by considering combined logistics. 

As can be seen in Figure (1), users submit tasks at different times to the cloud manufacturing 

platform. Then, each of which is decomposed to at most U sub-tasks in sequence, or parallel 

structures. That is to say, the cloud manufacturing platform can concurrently schedule tasks with 

various structures. The set of the subtasks of a sequential task is denoted by SET while that of a 

parallel task is represented by PAT . Furthermore, the sub-tasks of task ; 1,...,kT k K are 

embedded into set kU generally. Also, set kH consists of the type of sub-tasks related to task k , 
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and its thu element is denoted by
k

uh . For example in the cutting process, as given in Table (2), the 

type of sub-tasks including blanking, notching, trimming, shaving, and punching are coded by 1, 

2, 3, 4, and 5, respectively. As can be seen, task 1 is decomposed into three sub-tasks as 

1 {1,2,3}T   with types of notching, blanking, and shaving, respectively, therefore, 1 {2,1,4},H 

1 1

1 22, 1,h h  and 
1

3 4.h   

In order to accomplish the received tasks, each sub-task is assigned to one of the candidate 

services according to binary matrix 
,

,

i k

s uV  in which element will be 1 if sub-task u of task k can 

be implemented by service s  of enterprise i  based on its technical requirements. In the cloud 

manufacturing system, there are I enterprises that are distributed in different geographical 

locations each of which provides several services as presented in set iS  . For more clarification, 

Table (3) gives information related to the services of each enterprise. For example, Enterprise 3 

provides services 1, 2, and 3 according to the fourth column of this Table. When identical sub-

tasks are sequentially assigned to ths  service requires an initial setup process. In contrast, 

executing two sub-tasks with different types consecutively by a given service needs a separate 

setup process which imposes an additional time/cost on the cloud system. Furthermore, it is 

worth mentioning that the transportation between enterprises is undertaken by third-party 

logistics services with enough vehicles denoted by ; 1,..., .jV j J  As depicted in Figure (2), 

there are some services in the cloud manufacturing platform that are provided by multiple 

enterprises as well as different types of logistic services. In the case that the origin and 

destination locations of several sub-tasks are the same, employing the combined logistics is 

allowed. It means that several sub-tasks are transported by a single vehicle from one enterprise to 

another one.  

The purpose of the ISSL problem is to optimize three indicators to meet the preferences of 

cloud platform users including the task completion time, the cost imposed on the cloud system, 

and the average quality process of the selected services. To this end, optimal values of the 

decision variables are related to the assignment of sub-tasks to services.  
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Insert Figure 1 here 

Insert Figure 2 here 

Insert Table 2 here 

Insert Table 3 here 

The notations of the following presented model are shown in Table (4). 

Insert Table 4 here 

3. Formulation of the mathematical model 

As mentioned in section 2, this study presents the ISSL problem which is formulated as a mixed 

integer programming (MIP) model as follows: 

The combined logistics indicators are such as unit distance ,i id  , logistics time jlt , and 

logistics cost jlc . In this regard, the logistics time and cost of
thj vehicle between two 

enterprises ,i and i  are respectively calculated as below: 

,

,

i i

j j i ilti lt d


   (1) 

,

,

i i

j j i ilco lc d


   (2) 

In the proposed model, three objective functions are considered, minimization of the task 

completion time (T ), and cost imposed on the cloud system (C ) as well as maximization of the 

average quality (Q ) of services. To this end, in function T , a min-max operator is primarily 

employed to minimize the maximum task completion times. Notably, the calculation of task 

completion time is different based on task structure. In the case of task k having a sequential 

structure, the task completion time is equal to the termination time of its last sub-task. Otherwise, 

the completion time of a task with a parallel structure equals the maximum termination time of 

its sub-tasks. The C  function refers to four kinds of cost factors: service cost, initial setup cost, 

setup cost, and logistic cost. Accordingly, the first factor depends on service unit cost
i

sc , and 

service unit
k

ua . The combined logistics cost is one of the main characteristics of the problem 

which encompasses the logistics cost of the
thj vehicle between two enterprises ,i and i 



8 
 

obtained in Equation (2). Function Q also determines the average quality of the selected 

services. 

max{ }k

k
Min T CT  (3) 

, ,

, ,

1 1 1 1

, , , ,

, ,

1 1 , 1 1 1

C

( )

k i k i

k i

K I K I
k i k k i k

u s u u s u

k u U i s S k u U i s S

K I I J
i k i k i i i i j

s u s u j

k u U i s S i i j
i i

Min suc Y isuc N

c a X lco Z


 
 

       

 

      


    

   

 

 
 (4) 

,

, ,

1 1k i

K I
i i k

s s u

k u U i s S

qp X

Max Q
NU


   

 
 

 



 

(5) 

Constraints(6)-(9) specify the value of main decision variable
,

, ,

i k

s uX  , where Constraint(6) 

expresses that only one service is selected to process sub-task u of task k , while Constraint (7) 

guarantees that at most one sub-task can be scheduled in position  of service s . Constraint (8) 

ensures the execution sequence of sub-tasks on service s . Constraint (9) confines the service 

selection by parameter
,

,

i k

s uV . 

,

, ,

1

1 &
i

I
i k

s u k

i s S

X k u U
 

    (6) 

,

, ,

1

1 , &
k

K
i k

s u i

k u U

X i s S 
 

     (7) 

, ,

, 1, , ,

1 1

, &
k k

K K
i k i k

s u s u i

k u U k u U

X X i s S  

   

      (8) 

, ,

, , , , & &i k i k

s u s u i kX V i k s S u U


     (9) 

Constraint (10) ensures the necessity of setup time/cost just in case that 
k

uh and 
k

uh


 are 

different then the corresponding decision variable 
,

,

i k

s uY becomes 1. In this regard, Constraint 

(11) computes setup time 
k

uTsut of sub-task u of task k . Besides, Constraint (12) takes the initial 

setup time/cost into consideration under the condition of sub-task u of task k assigned to the 
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first position of service s of enterprise i . Accordingly, initial setup time
k

uIsut of sub-task u of 

task k is obtained by Constraint (13). 

, ,k ,

, 1, , ,u ,1 , , , & , , &i k i i k k k

s u s s u k u u iX X Y i k k u u U h h s S  
 

 
          (10) 

,

,

1

&
i

I
k k i k

u u s u k

i s S

Tsut sut Y k u U
 

      (11) 

, ,

, , , , & & & 1i k i k

s u s u i kX N i k s S u U         (12) 

,

,

1

&
i

I
k k i k

u u s u k

i s S

Isut isut N k u U
 

      (13) 

Service time
k

uSt  of sub-task u of task k is determined by Constraint (14), that is to say, this 

time is dependent on the chosen service. With respect to the use of the combined logistics in the 

presented problem and the importance of model linearization, an intermediate decision variable 

is defined as
, , ,

,

k i i j

u 


. Thus, Constraints (15)-(23) are embedded in the model due to the 

integration of scheduling and combined logistics exclusively for the tasks with sequential 

structure. Constraint (15) as a linearized form of a non-linearized constraint is defined as 

shipment   of the 
thj  vehicle transforms sub-task u of task k from enterprises i to i  in the 

condition of the locations of these enterprises are different. Constrain (16) indicates the 

interrelationship between decision variables
, , ,

,

k i i j

u 


and
, ,i i jZ 


. Constrain (17) ensures the 

sequence of shipment usage of vehicle j . Constrains (18) and (19) state that at most one 

shipment can transport between enterprises i and i  , as well as shipment  , can only shift from 

one enterprise to another one. Constrain (20) represents that sub-task u of task k cannot use 

more than one logistic service. 

, ,

, , ,

1

&
i

I
k i k i k

u s u s u k

i s S

St t X k u U
 

      (14) 

, ,k , , ,

, , , ,u ,

1 1

1 , , ( )

& , , , & , ,

J
i k i k i i j

s u s u

j

i

X X k u u SET u next sub task

i i s s S i i



  




 

 

  

 

       

      

  (15) 

, , , , ,

, , & , , , ,k i i j i i j

u Z i i i i k u SET j  
          (16) 
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, , , , , ,

,[ 1] ,[ ]

, 1 , 1

,
I I

k i i j k i i j

u u

i i k SET u SET i i k SET u SET
i i i i

M j   
 



      
  

         (17) 

, ,

, 1

1 ,
I

i i j

i i
i i

Z j 





   (18) 

, ,

1 1

1 , &
J

i i j

j

Z i i i i







 

     (19) 

, , ,

,

, 1 1 1

1 ,
I J

k i i j

u

i i j
i i

k u








  


   (20) 

Constraint (21) indicates that the departure time is greater than or equal to the maximum of 

the termination time of the sub-tasks which have the same departure and arrival points. 

Constraint (22) guarantees that the departure time of shipment   of the 
thj  vehicle from 

enterprise i is computed if and only if transportation from enterprises i to i  is required. 

Constraint (23) expresses that the departure time of shipment   of vehicle j  from enterprise i 

must exceed the departure time of its previous shipment plus the logistic time from enterprises i

to i  . 

, , , ,

,(1 ) , & , & & ,i j k k i i j

u udet TT M k u SET i i i i j  
            (21) 

, , ,

1

& & ,
I

i j i i j

i

det M Z i i i j  




      (22) 

, , , , , , ,

[ 1] 1(1 ) (1 ) , , ,

& & & ,

i j i i j i j i i i i j

jdet M Z det lti M Z i i i i

i i i i j

   



    

 
          

    
 (23) 

With regard to the Constrain (24) the termination time of sub-task u of task k equals the 

summation of start time
k

uStt , initial setup time
k

uIsut , total setup time
k

uTsut , and service time

k

uSt . With respect to Constraints (25) and (26), the start time of sub-task u of task k with 

sequential structure is greater than or equal to the sum of departure time
,det i j

 and logistic time

,i i

jlti

, as well as the termination time of its previous sub-task. Constraints (27)-(29) emerge in 

the proposed model for simultaneous scheduling of tasks with different structures as one of the 
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main contributions of this study. Constraint (27), regardless of the task structure that can be 

sequential or parallel, guarantees that the start time of sub-task u of task k  in position 1   of 

service s must be greater than or equal to the termination of sub-task u of task k in position   

of this service. Furthermore, Constraint (28) ensures that the start time of the first sub-tasks of 

tasks with sequential structure and sub-tasks of tasks with parallel structure is greater than or 

equal to the task arrival time.  

,k k k k k

u u u u u kTT Stt Isut Tsut St k u U       (24) 

, , , , ,

,(1 ) , , & , , ,

& ,

k i j i i k i i j

u j uStt det lti M k u u SET i i j

i i u next sub task

   


        

   
 (25) 

, , &k k

u uTT Stt k u u SET u next sub task
       (26) 

, ,

, , ,[ 1],(2 ) , , , ||

& , &

k k i k i k

u u s u s u

i

Stt TT M X X k k u u SET PAT

i s S

 



 

 
       

  
 (27) 

( , & ) || ,k k

uar Stt k u SET u first sub task k u PAT     
 

(28) 

As a consequence, the completion time of task k with sequential structure is greater than or 

equal to the termination time of its last sub-task, while that of with parallel structure is greater 

than or equal to the termination time of its sub-tasks as stated in Constraint (29). The next three 

Constraints (30)-(32) are about the cloud user preferences of task completion time, cost, and 

average quality of services. The defined variable TCT in Constraint (33) is the maximum task 

completion time which is replaced in objective function T as shown in Equation (34). 

Eventually, Constraint (35) indicates the admissible intervals of the presented decision variables. 

( , & ) || ,k k

uCT TT k u SET u last sub task k u PAT       (29) 

maxT T  (30) 

maxC C  (31) 

minQ Q  (32) 

kTCT CT k   (33) 

Min T TCT  (34) 
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 , , , , , , , ,

, , , , ,

,

, , , , 0,1 &

, , , , , ,det , 0

, , & & , ,

i i j k i i j i k i k i k

u s u s u s u

k k k k k k i j

u u u u u

i

s k

Z X Y N

CT Stt Tsut Isut St TT TCT

i i s S k u u U

  







 




   

 (35) 

Since there are contradictions between the objective functions corresponding to task 

completion time, cost, and average quality, the LP-metric method is considered to construct an 

objective function. Then the combined objective function (COF ) in the proposed model is as 

follows: 

* * *

1 2 3* * *

T T C C Q Q
COF w w w

T C Q

       
       

     
 (36) 

4. Genetic Algorithm (GA) implementation 

For three reasons, a customized version of the Genetic Algorithm (GA) is provided to solve 

the proposed model: 1) the good performance of the genetic algorithm for tackling a wide range 

of optimization problems with binary decision variables such as scheduling and assignment 

problems; 2) GA versatility in its proficiency to address problems with numerous decision 

variables, making it an ideal approach for solving sub-task scheduling problem in cloud 

manufacturing systems with multiple tasks, services, and constraints; 3) employing GA in 

several studies in the literature such as [16], [20], and [21]. Accordingly, the procedure of the 

proposed GA for specific changes in solution representation, crossover, and mutation operators 

are described in detail in the following sub-sections. 

4.1. Solution representation 

The chromosome encoding as intended in Figure (3) as an example is based on Constraints 

(6)-(9). In this Figure, the chromosome structure represents each service as a row and the non-

zero values of each row indicate the sub-tasks processed by each service. It is notable that the 

empty matrix cells indicate that these service positions have not been occupied by any sub-task. 

The services are derived from set ES  as given in Figure (4a) where the rows are defined as 

enterprises and the digits represent the services belonging to each enterprise. Likewise, sets

SETN and PATN in Figures (4b) and (4c) demonstrate the sub-tasks of tasks with sequential 

and parallel structures, respectively in which each element identifies the sub-tasks belonging to 

task k . Accordingly, a new chromosome is generated first by conducting a random selection of 
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services for desired sub-task ; 1,..,u u U from the concrete candidate services. Afterward, a 

random permutation approach is used to determine the sequence of sub-task assignments to 

service ; 1,...,s s S . So generally, the proposed chromosome is a S P matrix wherein S is the 

total number of given services and P is the maximum number of positions that are occupied by 

sub-tasks. Notably, the number of columns on assorted chromosomes is not essentially the same, 

as the number of allocated sub-tasks to each service is distinctive. 

Insert Figure 3 here 

Insert Figure 4 here 

Even though the mentioned constraints are satisfied, there are three challenges associated with 

generating a feasible chromosome: 1) failure to follow the sequence of sub-tasks of a task. For 

instance, in Figure (5), based on the sequence of sub-tasks in Figure (4b), sub-tasks 12 and 10 of 

task 4 must be replaced with each other; 2) Creating an infinite loop due to the inability to 

calculate the start time of sub-task u ; 3) Infinite loop caused by combined logistics. As an 

illustration of this possible fact, Figure (6) presents that based on the given Figure (4a)-(4b) and 

problem definition, a logistics service ships sub-tasks 2 and 9 of tasks 1 and 4, from enterprise 2 

to 3. However, this transportation must be delayed because the termination time of sub-task 2 

cannot be attained before the calculation of sub-tasks 1 and 11. As can be seen, there is no start 

time value for sub-task 11, the reason for this situation is that until transportation from enterprise 

2 to 3 is not carried out, the termination time of sub-task 10 and 11, respectively, cannot be 

obtained. Hence, to solve this issue, using an innovative approach to modifying the chromosome, 

the positions of those sub-tasks with unknown start times are changed to the sequence positions 

of their other candidate services randomly. In this case, there are two notable points: 1) in the 

case the positions of the chosen service are occupied, the sub-task must be preserved in its 

previous position; 2) in the end, all the sub-tasks must change their positions in the sequence of 

the service positions.  

Insert Figure 5 here 

Insert Figure 6 here 

4.2. Crossover 
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In this study, the employed innovated crossover operator is similar to the uniform crossover. 

In this operation, after choosing two parents through the Roulette Wheel method strategy, a 

binary matrix called mask is randomly generated as the same size as the parent with the largest 

number of columns. Then, the identified genes corresponding to elements of the mask by value 1 

from the first parent swap to the same services of offspring 1 in the sequence positions of 

service. The remaining sub-tasks in the second parent are copied in the first empty position of the 

same services of this parent in offspring 1. In the circumstances that the positions of the selected 

service are occupied, the sub-task is placed in the sequence positions of the same service that 

implements it in the first parent. Similarly, this procedure is applied for offspring 2 in which the 

place of the first and second parents are changed. Ultimately, the sub-tasks of task k with 

sequential structure in the generated offsprings are arranged in the service positions based on the

SETN . In this regard, Figure (7) depicts an example of this operator. 

Insert Figure 7 here 

4.3. Mutation 

The major role of the Mutation operator in GA is to exploit the solution space and preserve 

the population diversity over the next generations. In this study, the mutation operator is inspired 

by displacement mutation which is adapted to the solution representation. As illustrated in Figure 

(8), after selecting a parent randomly, the positions of the sub-tasks in each service are randomly 

changed. Eventually, the messed-up sequence of sub-tasks of SETN in services is improved to 

the correct form of it.  

Insert Figure 8 here 

5. Computational experiments 

In this section, three sets of numerical experiments are employed encompassing analyzing the 

proposed model and GA on small to large-sized samples, comparing the performance of the 

model by using numerous comparative models, and finally presenting sensitivity analysis on five 

key parameters. 

5.1. Numerical examples 
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Three sets of samples are randomly presented in small, medium, and large-sized to validate 

and evaluate the effectiveness of the developed GA. The model for three small and one medium-

sized samples is coded in CPLEX using GAMS 25.1.2 with a 7200 second time limit. 

Furthermore, a genetic algorithm is presented to implement the model in larger-sized samples 

with MATLAB R2018b which is run in a computer with a Core i7, 2.40 GHz CPU of 8 GB 

RAM. The solved samples by GAMS are also implemented by the proposed GA to confirm the 

validation of it. The set GA fine-tuned parameters are given in Table (5) while the obtained 

results by CPLEX and GA methods for nine random samples are represented in Table (6). The 

outcomes show that the GAMS software can only solve four first samples within the mentioned 

time limitation while it cannot find a feasible solution for the rest of the samples during the same 

time. Moreover, the results of GA demonstrate that the solutions of the three small and one 

medium-sized samples are as same as the outputs of GAMS. Accordingly, Table (6) indicates 

that the proposed GA has also obtained the appropriate solution for larger-scale samples in a 

reasonable time. Meanwhile, Figure (9) reveals an unsurprisingly wide variation between the 

computational times of these two mentioned methods. As can be seen, the computational time of 

GA is significantly lower than in comparison with the computational time of the exact method 

for medium and large-sized samples. 

Insert Table 5 here 

Insert Table 6 here 

Insert Figure 9 here 

5.2. Comparative evaluation of logistics aspects 

A comparison of logistics aspects is carried out to check the effect of considering combined 

logistics on scheduling criteria. Along this sub-section, three studies are conducted including the 

first study) Sample 3 as a general case is called the benchmark which consists of all the model 

characteristics in particular combined logistics; second study) This study takes simple logistics 

into account; and the third study) It is assumed that the logistics time/cost is negligible. In 

Appendix A, the parameter values of sample 3 are presented in detail.  

The results in Table (7) depict the corresponding objective function values of each study in 

terms of task completion time, cost, average quality, and combined objective function (COF ). 



16 
 

The reported values of the mentioned objective functions for the first study are 31.924, 214.368, 

12.417, and 0.0717, respectively. In the case of simple logistics being applied instead of 

combined logistics, the cost function and as a result of that COF are changed to 251.048, and 

0.0605 in order. Figure (10) is presented to clarify the obtained results. In this figure, as is clear 

from the solutions presented as decision variables, in combined logistics two sub-tasks are 

transported by a vehicle which significantly saves cost, while in simple logistics each sub-task is 

shipped separately by a car. In order to carry several sub-tasks by one vehicle in combined 

logistics, all the sub-tasks must be completed in the origin enterprise. Therefore, in this example, 

the vehicle selection and other time terms are such that the task completion times of the two 

studies are the same. That is to say, their service time, setup time, initial setup time, and logistics 

time are equal. Consequently, as can be seen in Table (7), by placing the decision variable of the 

second study in the benchmark, the cost will increment 11.88%. In case the logistics time/cost is 

omitted in the model, the cost, average quality, and COF  values respectively become 169.137, 

12.833, and 0.0605, whereas, the completion time remains constant. Because the decision 

variable has changed in such a way that the task completion time remains unchanged. Further on, 

the outcomes show 22.79%, 1.13%, and 92.46% improvement in the task completion time, cost, 

and COF with the placement of the decision variable of the third study in the first study. It is 

worth mentioning since the logistics cost in this example is insignificant compared to logistics 

time, the logistics cost does not have a great impact on the cost function. In general, as illustrated 

in Figure (11), ignoring logistics aspects has more adverse effects on the scheduling than 

considering simple logistics. Indeed, the impact of logistics, especially combined logistics, on 

scheduling in the cloud manufacturing environment is undeniable. 

Insert Table 7 here 

Insert Figure 10 here 

Insert Figure 11 here 

5.3. Evaluation of task arrival time and setup parameters on the scheduling process 

This sub-section is dedicated to an extensive analysis of other proposed model characteristics 

such as task arrival time and setup parameters. With respect to these two features, three cases are 

defined to demonstrate the effectiveness of the proposed model. Three cases are as follows: 
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The first case) this case as a general one is a benchmark to compare the attained outcomes of 

other cases. 

The second case) it is assumed that all the tasks are available at the beginning of the time 

horizon.  

The third case) setup time/cost is excluded in this case, to investigate the effectiveness of this 

characteristic on scheduling results.  

Similar to the previous sub-section, sample 3 is given to use for comparing the mentioned 

cases. Table (8) reports the experiment results of the second case. The results of the objective 

functions in terms of task completion time, cost, average quality, and COF in the second case 

are 17.598, 254.086, 12.000, and 0.1392, respectively. These consequences depict that despite 

the sharp task completion time value improvement, the rest of the criteria deteriorated. It is 

obvious that achieving tasks in zero time leads to the earlier implementation of them and 

eventually lowers the value of the task completion time. Also, due to the changing of the subtask 

assignment to the services, the cost function increases while the average quality function 

decreases. Placing the decision variable of the second case in the model known as benchmark 

shows that all three objective functions are improved by about 29.47%, 16.06%, and 3.35%, 

respectively. It is necessary to mention that regarding findings compared to the second case the 

improvement of COF is significantly well over 100%.  As expected, these tangible 

improvements are because of the less dispersion of the sub-tasks on the services which leads to 

the better values of objective functions in the proposed model. Actually, the outcomes confirm 

that the consideration of the different task arrival times effectively leads cloud managers to make 

correct decisions in scheduling.  

Insert Table 8 here 

For further peruse of the proposed model, the more challenging comparison is assessed by 

removing setup parameters from the main model. In this regard, the objective function values of 

the model undergo the eliminating setup time/cost are presented in Table (9). According to this 

Table, the values of task completion time, cost, average quality, and COF  of the third case are 

26.127, 181.298, 12.000, and 0.0407, respectively. As can be seen, better results have been 

obtained by elimination of the setup time and cost corresponding to objective functions. 
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However, by placing the decision variable of this case in the benchmark model the objective 

function values of the task completion time, cost, average quality, and COF considerably 

increase about 74.94%, 17.45%, 3.35%, and 444.49%. The results indicate that in the third case, 

the sub-tasks regardless of their types are allocated to services which is not the case in practice, 

and mislead the cloud operators. 

Insert Table 9 here 

5.4. Sensitivity Analysis on Key Parameters 

Parameters have a great impact on the performance and the application results of the scheduling 

process. Hence, in this sub-section, a sensitivity analysis is conducted to justify the robustness of 

the proposed model by using key parameters such as
,

, max max, , ,i k i

s u st c T C , and minQ .  To this end, the 

variations in
,

,

i k

s ut  and 
i

sc for sample 3 are increased by {0%, 5%, 10%, 20%, 40%, and 50%}. 

Likewise, the user preferences of max max,T C , and minQ  are incremented by {100, 50, 30, and 15}, 

{1000, 250, 200, and 100}, and {10, 11, 12.6, and 13}, respectively. 

The results obtained for objective functions for different values of 
,

,

i k

s ut  and 
i

sc can be seen in 

Table (10) and Figure (12). As the execution time of sub-tasks increments, the task completion 

time increases while the two other objective functions remain unchanged as illustrated in Figure 

(12a). The main reason for this is that the increase in the execution time of the tasks in an equal 

proportion does not lead to a change in the allocation of subtasks to the services, and as a result, 

the cost and average quality remain unchanged. However, an increment in the unit cost 

parameters with a fixed ratio leads to an increase in the cost function which is approximately 

commensurate with 
i

sc  growth. As can be seen in Figure (12b), in two cases 10% and 50% 

increase in unit costs, the average quality function fluctuates which with respect to the different 

selections of candidate services for implementing sub-tasks is reasonable.   

Insert Table 10 here 

Insert Figure 12 here 
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Table (11) and Figure (13) show the impact of three user preference factors consisting of 

max max,T C , and minQ  on the task completion time, cost, and average quality. It can be deduced 

from Figure (13a) that by reducing maxT  from 100 to 50, the optimal decision variable vector 

remains in the feasible region. As a result, the optimal values of objective functions remain the 

same as in the previous problem. However, decreasing the parameter maxT  to 30 leads to the exit 

of the optimal point of the previous problem from the feasible region. Consequently, a new 

optimal decision variable vector is obtained, and corresponding to it, the values of the objective 

functions change. As expected, the value of the task completion time function becomes less than 

30, so its value has reduced from 31.924 to 28.535. Under this condition, it is reasonable that the 

cost increases and the average quality decreases. Likewise, as can be seen in Figure (13b), when 

maxC changes from 1000 to 250, the cost function value remains 214.368, because the optimal 

decision variable vector remains in the shrunk feasible region. On the other hand, when 

max 200C  , the feasible region affects the optimal decision variable values due to the exit of the 

previous optimal decision variable vector from the feasible region. So, the optimal value of the 

cost function reduces while the two other objective functions deteriorate because of the 

shrinkage of the feasible region. Figure (13c) and the tabulation results of min 10Q   and 

min 11Q   demonstrate that there is no change in the values of the objective functions because 

the optimal decision variable vector remains in the feasible region. Whereas, the completion 

time, cost, and average quality become 35.946, 221.703, and 12.833, when minQ  increases to 

12.6. Furthermore, it is notable that by quantifying maxT , maxC , and minQ  with values of 15, 100, 

and 13, respectively, the search space will be infeasible. 

Insert Table 11 here 

Insert Figure 13 here 

6. Managerial insights 

This section provides managerial recommendations based on acquired results to improve the 

efficiency and performance of real industrial systems as below: 
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1) Cloud managers are advised to optimize costs by utilizing combined logistics when there 

is a significant distance among enterprises in the cloud system and high transportation 

costs. This involves transferring multiple sub-tasks simultaneously, even if it leads to a 

delay in the transfer process of some sub-tasks.  

2) Varying the execution time of sub-tasks with a fixed ratio does not lead to any changes in 

the assignment of sub-tasks to services. However, an increase in the execution cost of 

sub-tasks with the fixed ratio changes the scheduling decision variable.  

3) In case the cost and time of service setup for performing a different type of sub-task is 

significant, this aspect should be taken into consideration by assigning the same type of 

sub-tasks to a service as far as possible.  

4) Submitting tasks with different arrival times into the system in a planning period has a 

significant effect on the sub-task assignment to the services and the completion time of 

the tasks. 

7. Conclusion and recommendation for future works 

This paper developed an integrated multi-objective mix integer programming model of sub-task 

scheduling and logistics. This model aimed to minimize the task completion time and cost 

imposed on the cloud manufacturing system as well as maximize the average quality of selected 

services. By departing from the literature, two practical concepts of the combined logistics and 

scheduling of tasks with sequential and parallel structures in a given problem were taken into 

account in the modeling. Moreover, two complementary concepts were taken into consideration: 

1) tasks are available at diverse arrival times, and 2) the setup of services is a costly and time-

consuming procedure. The LP-metric method was utilized to combine the three mentioned 

conflict objective functions into a single one. Afterward, GAMS software was used to solve the 

small and one medium-sized samples and since this exact method is not tractable for larger-sized 

ones, the authors developed and validated a genetic algorithm to solve such problems.  

In order to investigate the proposed model characteristics and effectiveness of the developed 

GA, two sets of studies were carried out: 1) Two comparative studies were conducted to 

demonstrate the effectiveness of the combined logistics. To this end, the proposed model was 

compared with two similar models, one without considering logistics service and the other with 

simple logistics. The tabulated results confirmed the undeniable impact of the combined logistics 
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on the scheduling process. 2) Three models were compared to assess the importance of taking the 

different task arrival times and setup parameters into account. The obtained results showed the 

inevitable effects of these two features to prevent misleading the cloud manager. After that, a 

series of sensitivity analyses were conducted to evaluate the robustness of the proposed model. 

The computational results of increasing the execution time and the unit cost illustrated that the 

task completion time and cost functions at least increment as much as the growth of the 

mentioned parameters, respectively, while, the rest of the objective functions remained almost 

constant. In addition, the user preferences were also examined to determine their effectiveness on 

the scheduling process. The outcomes revealed that each of these parameters plays an important 

role in improving the corresponding objective function. Hence, in general, the findings 

demonstrated the applicability and efficacy of the proposed model for solving the ISSL problem. 

Two directions for extending the suggested model as future research are: (1) taking both 

different task arrival times and service availability, and (2) taking equity among customers into 

consideration. 
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Appendix: 

The parameter values of sample 3 including service information, geographical distances between 

enterprises, information of tasks with sequential and parallel structures, and other parameters of 

this sample are presented in Tables A (12) to (15).  

Insert Table A.12 here 

Insert Table A.13 here 

Insert Table A.14 here 

Insert Table A.15 here 
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Figure 1- Scheduling process framework in cloud manufacturing 
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Figure 2- The Logistics diagram of the ISSLS problem 

 

                 Figure 3- chromosome encoding 
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Figure 4- a) set of services belongs to enterprises; b) set of sub-tasks belongs to tasks with sequential structures; c) 

set of sub-tasks belongs to tasks with parallel structures 

 

             Figure 5- Example of failure to follow the sequence of sub-tasks of a task 

 

Figure 6- Example of Infinite loop caused by combined logistics 
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Figure 7- The example of the crossover operation 

 

Figure 8- A typical case of Mutation operation 
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Figure 9- Computational time of GAMS and GA 

 

Figure 10- shipment for three comparative studies of the logistics aspect 
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Figure 11- Improvement percentage of the proposed model 

  

(a) (b) 

Figure 12- a) the results of increasing the execution time of the service; b) the results of increasing the execution cost of the service 
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(a) (b) 

 

(c) 

Figure 13- a) the results of decreasing time preferences; b) the results of decreasing the cost preferences; c) he results of increasing the 

quality preferences; 
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Table 1- Contribution of optimized-based studies in cloud manufacturing system 

Field Author(s) 
Number of sub-tasks  

Number of services 

of each enterprise 
 

Composition 

Structure Setup 

time/cost 

Task 

availability 

Logistics time/cost 

identical different  identical different  sequential parallel combined simple 

S
ch

ed
u
li

n
g
 

Zhou et al. (2020)                 

Vahedi-Nouri et al. (2020)               

Li et al., (2019)                 

Yuan et al., (2021)                

Wu et al. (2022)                 

Zhou et al. (2018b)                  

Salmasnia and Kiapasha(2023)                   

Jafarnejad Ghomi et al. 

(2019a) 
                

Jafarnejad Ghomi et al. 

(2019b) 
                

P
ro

je
ct

 M
an

ag
em

en
t 

Helo et al. (2019)               

Tong and Zhu (2022a)                 

Tong and Zhu (2022b)                

Zhang et al. (2023)                 

Yang et al. (2020)                   

Zhou et al. (2019)                  

Zhou et al. (2021)                

Zhang et al. (2021)                  

Ahn and Hur (2021)                 

Liu et al. (2018)                  

Wang et al. (2022)                 

Zhou et al. (2018a)                

Liu et al. (2019)                  

He et al. (2019)                 

Delaram and Valilai (2018)                 

Akbaripour et al. (2018)                

S
er

v
ic

e 

C
o
m

p
o
si

ti
o
n
 Assari et al. (2018)              

Liang et al. (2021)                 

Kerdegari et al. (2018)                

Keramatnezhad et al. (2020)             

Fazeli et al. (2019)                
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Xiang et al. (2016)               

Jin et al. (2017)               

Scheduling This study                    
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Table 2- The tasks structures and sub-task types 

Tasks 
 Sequential ( SET )  Type ( kH ) 

 1u   2u   3u   4u    
1

kh  
2

kh  
3

kh  
4

kh  

1T           2 1 4  

4T            1 4 2 4 

  Parallel ( PAT )  Type ( kH ) 

  1u   2u   3u   4u    
1

kh  
2

kh  
3

kh  
4

kh  

2T          3 5   

3T           3 5 2  

5T           5 3 1  

 

Table 3- services of each enterprise 

s  1S  2S  3S  … IS  

1          

2          

3         

…
      

S        

 

Table 4- the symbols and notations 

Symbols Description 

Indices  

, ,i i i   Indices of enterprises , , 1,2,...,i i i I   ` 

,s s  Indices of service of each enterprise , is s S  

,k k  Indices of tasks , 1,2,...,k k K   

,u u  Indices of the order of sub-tasks of each task , ku u U  

j  index of the vehicles 1,2,...,j J  

  index of the shipments of each vehicle 1,2,...,   

,   Indices of positions of each service , 1,2,...    

Sets  

kU  Set of the order of sub-tasks of task k  

kH  Set of sub-task types of task k  

iS  Set of services of enterprise i  

SET  Set of the tasks with sequential structures 

PAT  Set of the tasks with parallel structure 

Parameters  

kT  Task k  
k

uh  The type of 
thu sub-task from 

thk task 

iE  Enterprise i  
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,i id   The geographical distance between two enterprises ,i i  

,

,

i k

s uV  1 if 
ths service of enterprise i is able to perform the 

thu sub-task of the task k , otherwise 0 

M  A very large positive number 

sN  Total number of sub-tasks 

Tw  Time preference weight 

Cw  Cost preference weight 

Qw  Quality preference weight 

maxC  The maximum acceptable total cost imposed on the cloud system 

maxT  Maximum acceptable task completion time 

minQ  Minimum acceptable total quality 

Time parameters  

kar  The arrival time of 
thk task to the cloud manufacturing platform 

,

,

i k

s ut  The execution time of the 
thu sub-task of task k by 

ths service of enterprise i  
k

usut  Setup time for implementing the 
thu sub-task of task k  

k

uisut  Initial setup time for implementing the 
thu sub-task of task k  

jlt  Logistics time of 
thj vehicle of the distance unit 

,i i

jlti
  Logistics time of 

thj vehicle, when two sequential sub-tasks are executed in two different enterprises ,i i  

Cost parameters  

k

ua  The service unit for executing the 
thu sub-task of task k  

i

sc  The unit cost of the 
ths service of enterprise i  

k

usuc  Setup cost imposed on the system for implementing the 
thu sub-task of task k  

k

uisuc  Initial setup cost imposed on the system for implementing the 
thu sub-task of task k  

jlc  Logistics cost of 
thj vehicle of the distance unit 

,i i

jlco
  Logistics cost of 

thj vehicle, when two sequential sub-tasks are executed in two different enterprises ,i i  

Quality parameters  

i

sqp  Processing quality of 
ths service of enterprise i  

Decision variables  

binary  

,

, ,

i k

s uX 
 1 if 

thu sub-task of the 
thk task is executed in the position  of the 

ths service of enterprise i . Otherwise, 0 

,

,

i k

s uY  1 if for implementing the 
thu sub-task of task k on the 

ths service of enterprise i a setup process is required. 

Otherwise, 0 
,

,

i k

s uN  1 if the 
ths service of enterprise i executes a sub-task in its first position. Otherwise, 0 

, , ,

,

k i i j

u    
1 if two sequential sub-tasks of the 

thk task are transformed between two different enterprises ,i i by the 
th

shipment of vehicle j . Otherwise, 0   
, ,i i jZ

  1 if a transformation occurs between two different enterprises ,i i by the 
th shipment of vehicle j . Otherwise, 0   

Continuous  

kCT  Completion time of task k  
k

uSt  Service time of the 
thu sub-task of task k  

k

uStt  The start time of the 
thu sub-task of task k  

k

uTT  Termination time of the 
thu sub-task of task k  

,i jdet  The departure time of the 
th shipment of vehicle j from enterprise i  
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k

uTsut  Total setup time of the 
thu sub-task of task k  

k

uIsut  Total initial setup time of the 
thu sub-task of task k  

 

Table 5- GA set parameters 

             Parameters 

Sample size 

Population 

size 

Maximum 

Iteration 

Crossover 

percentage 

Mutation 

percentage 

Small 60 40 0.5 0.5 

Medium 200 100 0.9 0.1 

Large 200 100 0.9 0.1 

 

Table 6- The results of numerical examples 

Sample 

size 

Sample 

number 

No. of tasks 

with 

sequential 

structure 

No. of tasks 

with parallel 

structure 

No. of 

sub-tasks 

No. of 

enterprises 

No. of 

services 

GAMS  GA 

Best 

solution 

Computational 

time (min) 

 
Best 

solution 

Computational 

time (min) 

small 1 1 1 6 2 5 0.0439 0.812  0.0439 9.346 

2 1 2 8 3 5 0.0673 1.515  0.0673 9.481 

3 2 2 12 3 7 0.0717 85.468  0.0717 52.116 

medium 4 2 3 15 4 9 0.1353 6220.562  0.1353 596.135 

5 4 4 22 5 14 - -  0.1057 440.528 

6 4 5 25 6 16 - -  0.1072 623.192 

large 7 6 4 30 7 20 - -  0.1438 1131.560 

8 6 5 35 8 24 - -  0.0659 999.218 

9 6 6 40 9 27 - -  0.07061 1453.598 

 

Table 7- The comparison results of studies with different types of logistics aspects 

   Simple logistics  Without logistics  

 
Benchmark 

sample 

 
Second 

study 

Expected results 

based on the 

second study 

Improvement 

percentage 

 
Third  

study 

Expected 

results based on 

the third study 

Improvement 

percentage 

Task Completion 

Time(min)  
31.924 

 
31.924 31.924 0% 

 
31.924 39.202 22.79% 

Cost ($) 214.368  251.048 239.849 11.88%  169.137 216.797 1.13% 

Average quality 12.417  12.417 12.417 0%  12.833 12.833 -3.35% 

COF  0.0717  0.0605 0.1105 54.11%  0.0605 0.1380 92.46% 
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Table 8- The comparison results of the first case and the second case 

 Task completion 

time (min) 
Cost ($) Average quality COF  

Benchmark case 31.924 214.368 12.417 0.0717 

Second case 17.598 254.086 12.000 0.1392 

Expected results based on the second case 41.333 248.800 12.000 0.2350 

Improvement percentage 29.47% 16.06% 3.35% 227.75% 

 

Table 9- The comparison results of the first case and the third case 

 Task completion 

time (min) 
Cost ($) Average quality COF  

Benchmark case 31.924 214.368 12.417 0.0717 

Third case 26.127 181.298 12.000 0.0407 

Expected results based on the third case 55.850 251.780 12.000 0.3904 

Improvement percentage 74.94% 17.45% 3.35% 444.49% 

 

Table 10- The results of increasing ,

,

i k

s ut and i

sc  

parameter Objective function 0% 5% 10% 20% 40% 50% 

,

,

i k

s ut  Task completion time (min) 31.924 32.069 32.216 32.509 33.097 33.390 

Cost ($) 214.368 214.368 214.368 214.368 214.368 214.368 

Average quality 12.417 12.417 12.417 12.417 12.417 12.417 
i

sc  Task completion time (min) 31.924 31.924 31.924 31.924 31.924 31.924 

Cost ($) 214.368 217.291 226.904 245.688 277.013 297.904 

Average quality 12.417 12.417 12.500 12.417 12.417 12.833 

 

Table 11– The results of variation in maxT , maxC , and minQ  

Parameters Value 

Task 

Completion 

Time (min) 

Cost ($) 
Average 

Quality 

maxT  100 31.924 214.368 12.417 

 50 31.924 214.368 12.417 

 30 28.535 256.048 11.167 

 15 infeasible infeasible infeasible 

maxC  1000 31.924 214.368 12.417 

 250 31.924 214.368 12.417 

 200 38.060 198.397 11.667 

 100 infeasible infeasible infeasible 

minQ  10 31.924 214.368 12.417 

 11 31.924 214.368 12.417 

 12.6 35.946 221.703 12.833 
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 13 infeasible infeasible infeasible 

 

Table A-12– service information of sample 3 

Enterprises services 
service unit 

cost ($) 

Processing 

Quality 

1E  𝑠 = 1 8.831 6.000 

𝑠 = 2 10.457 7.000 

2E  𝑠 = 1 6.965 18.000 

𝑠 = 2 7.073 9.000 

3E  𝑠 = 1 4.625 11.000 

𝑠 = 2 6.941 16.000 

𝑠 = 3 7.799 7.000 

 

Table A.13 – Geographical distances between enterprises (m) of sample 3 

Enterprises 1E  2E  3E  

1E  0 1.087 1.169 

2E  1.162 0 1.498 

3E  1.189 2.399 0 

 

Table A.14- Task information of sample 3 

Task 

structure 
Task 

Arrival 

time 
Sub-task 

Setup 

time (m) 

Setup 

cost ($) 

Initial 

setup 

time (m) 

Initial 

setup 

cost ($) 

Candidate 

service 

Service 

time(h) 

Quantity of 

unit service for 

each Sub-task 

Sequential 
1T  9.408 1

1h  5.102 3.000 6.031 1.769 
1 { 1}S s   0.465 1.000 

1 { 2}S s   1.489 1.000 

3 { 1}S s   1.212 1.000 
1

2h  9.492 20.000 2.806 2.353 
2 { 1}S s   1.289 2.000 

2 { 2}S s   1.153 2.000 
1

3h  5.364 5.000 4.169 4.908 
1 { 2}S s   0.413 1.000 

3 { 3}S s   0.725 1.000 

4T  10.508 4

1h  1.565 4.000 4.088 7.259 
2 { 1}S s   0.450 1.000 

2 { 2}S s   0.673 1.000 
4

2h  1.066 5.000 3.997 8.612 
1 { 2}S s   0.689 3.000 

3 { 3}S s   0.256 3.000 
4

3h  5.414 13.000 3.148 6.514 
1 { 1}S s   1.498 3.000 

1 { 2}S s   0.414 3.000 

3 { 1}S s   0.289 3.000 
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4

4h  6.719 15.000 8.587 9.784 
1 { 2}S s   0.438 1.000 

3 { 3}S s   0.875 1.000 

Parallel 
2T  24.171 2

1h  11.044 14.000 3.208 2.682 
1 { 1}S s   0.626 3.000 

3 { 1}S s   1.195 3.000 

3 { 2}S s   1.188 3.000 
2

2h  2.315 16.000 2.219 7.234 
1 { 1}S s   0.615 3.000 

3 { 2}S s   0.473 3.000 

3T  24.853 3

1h  9.090 19.000 8.491 7.867 
1 { 1}S s   0.530 2.000 

3 { 1}S s   0.605 2.000 

3 { 2}S s   0.293 2.000 
3

2h  1.610 5.000 4.381 2.393 
1 { 1}S s   0.687 2.000 

3 { 2}S s   0.981 2.000 
3

3h  7.339 6.000 2.077 4.504 
1 { 1}S s   1.320 1.000 

1 { 2}S s   0.794 1.000 

3 { 1}S s   0.378 1.000 

 

Table A.15 – Rest of parameter values of sample 3 

Parameters Value Unit Type 

,i ilt    UI*[3, 6] min Integer 

,i ilc    U*[12, 20] $ Decimal 

,

,

i k

s uV  UI[0, 1]  Integer 

maxT  100  Integer 

maxC  1000  Integer 

minQ  10  Integer 

M  100000  Integer 

Tw   0.3  Decimal 

Cw   0.3  Decimal 

Qw   0.4  Decimal 

It represents the generation of a random number from a discrete 

uniform distribution in the interval from a to b. 
UI[a, b]* 

It represents the generation of a random number from a continuous 

uniform distribution in the interval from a to b. 
U[a, b]* 
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