
Journal of Scientia Iranica; Transactions D manuscript No.
(will be inserted by the editor)

Cryptanalysis of full-round SFN Block Cipher
a Lightweight Block Cipher, Targeting IoT Systems

Sadegh Sadeghi⋆1, Majid Mahmoudzadeh Niknam2, Nasour Bagheri⋆⋆3, and
Mohammad Reza Aref1

1Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
2Department of Mathematics, Faculty of Mathematical Sciences and Computer, Kharazmi
University, Tehran, Iran.
3Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran,
Iran, Postal code: 16788-15811.

the date of receipt and acceptance should be inserted later

Abstract SFN is a lightweight block cipher designed

to be compact in hardware and efficient in software

for constrained environments such as the Internet of

Things (IoT) edge devices. Compared to the conven-

tional block ciphers that are either Feistel network-

based or Substitution-Permutation (SP), it has a differ-

ent structure and uses both the SP network structure

and Feistel network structure to encrypt. The SFN sup-

ports key lengths of 96 bits and its block length is 64

bits and includes 32 rounds. In this paper, we propose a

deterministic related-key distinguisher for 31 rounds of

the SFN. We are able to use the proposed related-key

distinguisher to attack the SFN in the known-plaintext

scenario with the time complexity of 260.58 encryptions.

The data/memory complexity of those attacks are neg-

ligible. In addition, we will extend it to a practical

chosen-plaintext-ciphertext key recovery attack on full

SFN with the complexity of 220. We also experimen-

tally verified this attack. Also, in the single key mode,

we present a meet-in-the-middle attack against the full

rounds for which the time complexity is 280 the SFN

calculations and the memory complexity is 220.32 bytes.

The data complexity of this attack is only two known

plaintexts and their corresponding ciphertext.

Keywords Lightweight block cipher · SFN · Related-
key differential cryptanalysis · Meet in the middle

attack.

*present address: Department of Mathematics, Institute for
Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-
66731, Iran and Research Center for Basic Sciences and Mod-
ern Technologies (RBST), Institute for Advanced Studies in
Basic Sciences (IASBS), Zanjan 45137-66731, Iran. E-mail:
s.sadeghi@iasbs.ac.ir
· **corresponding author, Tel/fax:+98-21-2297006, E-mail:
na.bagheri@gmail.com

1 Introduction

A lightweight cryptography (LWC) design could be a

cryptographic algorithm or protocol befitting for imple-

mentation in constrained environments including RFID

tags, contactless smart cards, sensors, and so on.

A lightweight block cipher could be proper for such

environments. It is worthy to note that block ciphers

play a significant role in the security of communica-

tions as cryptography algorithms. Hence, the security

analysis of block ciphers is of particular importance. To

this end, in this paper, we apply related key and meet in

the middle (MITM) attacks to analyze the lightweight

block cipher SFN [1].

The notion of related key attack functions is based

on the idea that the attacker has a prior awareness that

(or chooses) there exists a relation between a number of

keys and thus she can access the encryption functions

under such related keys.The earliest attacks of this kind

were developed independently by Biham [2] and Knud-

sen [3], and the concept of a related key attack was

delineated by [2].

The meet in the middle attack is one of the types

of known-plaintext attacks [4]. The attacker is able to

know some plaintext and their ciphertexts. Using MITM

attacks it may be possible to break ciphers, which have

two or more secret keys for multiple encryptions us-

ing the same algorithm. For example, the 3DES ci-

pher works in this way. The MITM attack is first pro-

posed to attack DES [5]. There are numerous studies

that pertain to MITM attacks on block ciphers, includ-

ing [6–10].

SFN was proposed by Li et.al [1]. It is a 64-bit

block cipher in which the round function uses both the

2 S. Sadeghi, M. M. Niknam, N. Bagheri, and M.R. Aref

SP network structure and Feistel network structure to

encrypt.

1.1 Our contribution.

In this paper, we present the first third party analysis

of SFN block cipher, to the best of our knowledge, and

our contributions are as follows:

• We introduce a deterministic related key differential

distinguisher against 31 rounds of SFN.

• We also employ the proposed distinguisher to ap-

ply a full round related key differential attack on

SFN to recover the main key (96 bits) in known-

plaintext mode with time complexity 260.58 and neg-

ligible data and memory complexity.

• We employ the proposed distinguisher to apply a

full round related key differential attack on SFN to

recover the main key (96 bits) with time complexity

220, data complexity 217.92 and negligible memory

complexityin chosen-plaintext-ciphertext mode. We

also experimentally verify this attack.

• In single key mode, we introduce a meet in the mid-

dle attack on SFN to recover all the 96 bits of the

main key with time complexity 280 and memory

complexity 220.32 and negligible data complexity.

1.2 Outline.

This article is organized as follows. In Section 2 we

present some notations and also a brief description of

SFN block cipher. The description of the related key

attack in the known-plaintext scenario is given in Sec-

tion 3. We present the related key attack in the chosen-

plaintext-ciphertext scenario in Section 4. Meet in the

middle attack of the cipher is described in Section 5.

Finally, the conclusion is presented in Section 6.

2 Preliminaries

In this section, we give some notations and a brief de-

scription of SFN block cipher which will be used in the

following parts.

2.1 Notations

• || : is the concatenation of two binary strings.

• X = (X0 · · ·X15) : represents a 64 bits string. X0 is

the lowest value of its nibbles and X15 is the highest

value one.

• ∆X : represents a non-zero difference of X.

• P i : represents the input of the (i+ 1)th round en-

cryption (i = 0, · · · 31).
• RK : represents the front(low-value) 64 bits of the

main keys.

• CK : represents the back(high-value) 32 bits of the

main keys for control signal keys.

• K = RK||CK : represents the 96-bit main key.

• Si = (Si
0 · · ·Si

15) : represents the input of the ith

round encryption of SFN (i = 1, · · · , 32). Si
0 is the

lowest value nibble of Si. It is also possible that Si

is represented by a 4× 4 matrix:

Si =


Si
0 Si

1 Si
2 Si

3

Si
4 Si

5 Si
6 Si

7

Si
8 Si

9 Si
10 Si

11

Si
12 Si

13 Si
14 Si

15

 .

• RKi = (RKi
0 · · ·RKi

15) : represents the (i + 1)th

round keys (i = 0, · · · , 31), RKi
0 is the lowest value

nibble of RKi and RKi∼j represents the ith to jth

round keys.

• ∆RKi : represents the difference of the (i + 1)th

round keys (i = 0, · · · , 31).
• CKi : represents the ith bit (i = 0, · · · , 31) of CK

and CKi∼j represents the ith to jth bit of CK.

• ∆CK : represents the difference of the control signal

keys and ∆CKi represents the difference of the ith

bit (i = 0, · · · , 31) of CK.

• RKin
F , RKout

F : represent the input and the output

states of the Feistel KeyExpansion structure of the

32nd round, respectively.

• RKin
S , RKout

S : represent the input and the output

states of the SP KeyExpansion structure of the 32nd

round, respectively.

• PF , PS : represent the input states of the Feistel

structure and SP structure of encryption in 32nd

round, respectively.

• 0n : represents a sequence of n bits as 0, where n is

a natural.

• Enc(P, I) : the encryption of P, I is a 32-bit string

and RK||I is as the main key.

• Dec(C, I) : the decryption of C, I is a 32-bit string

and RK||I is as the main key.

• Enc(S(r+1), RKr∼31), CKr∼31, r), (r = 0, · · · , 31) :

the partial encryption of S(r+1) , the encryption

would start from round (r + 1)th with round key

RKr and round control signal bit CKr.

• Dec(C,RK(r∼31), CK(r∼31), r), (r = 0, · · · , 31) : the
partial decryption of C, the decryption would end

after getting Sr+1.

• GF 4
2 : The finite field with 16 elements. In this field

sum is XOR.

Cryptanalysis of full-round SFN Block Cipher 3

• α(t) : represents the 32-bit string 0 · · · 010 · · · 0, the
only 1 is in the position of t, where t = 0, · · · , 31,
e.g. α(31) = 0311, α(5) = 051026.

2.2 Brief description of SFN

SFN, as a unique structure, consists of an SP network

and a Feistel network [1]. Its block and the key lengths

are 64 bits and 96 bits, respectively. The 96-bit main

key is divided into the 64-bit round key as RK0 ∈
{0, 1}64 and 32-bit control signal key as CK ∈ {0, 1}32.
The RK0 conducts AddRoundKey and KeyExpansion,

and the CK = CK0 ∥ CK1 ∥ · · · ∥ CK30 ∥ CK31 is

considered to be the control signal, and each bit of the

control signal carries out one and only one round op-

eration. In the case of a detailed signal key, when the

bit of the control signal is 0, SFN chooses SP network

structure to perform encryption or decryption, while

the Feistel network structure conducts KeyExpansion.

However, if the bit of the signal is 1, SFN selects Feistel

network structure to carry out encryption or decryption

and the SP network structure pursues KeyExpansion [1]

(see Fig. 1).

The details of the SFN round function is given in

Fig. 1. The 4-bit S-boxes S1, and S2 of SFN are defined

as S1 = {C,A,D,3,E,B,F,7,8,9,1,5,0, 2,4,6} and

S2 = {B,F,3,2,A,C,9,1,6,7,8,0, E,5,D,4}, respec-
tively. Both of the MixRows and MixColumns layer ap-

ply a matrix M4×4 which its 16 elements are in GF 4
2

(its characteristic polynomial is x4 + x+ 1 = 0):

M =


1 2 6 4

2 1 4 6

6 4 1 2

4 6 2 1

 .

In SFN the input of every rounds is represented as a 4×
4 matrix say Si, i ∈ {0, 1, · · · , 31}, so the MixColumns

and MixRows layer of ith round can be represented by

MSi and SiM respectively. For more details of SFN

structure we refer the readers to [1].

3 Related Key with known-plaintext Attack

In this section, we will discuss the security of the SFN

against the related key differential cryptanalysis in the

known-plaintext scenario.

3.1 First key recovery Attack

Consider the two secret related key inputs to be K0 =

(RK0 ∥ CK) and K0 = (RK0 ∥ CK), where ∆CK =

CK ⊕ CK = α(31) and hence ∆K0 = K0 ⊕ K0 =

064 ∥ α(31) = 095 ∥ 1. Hence given C and C, respec-

tively produced by (P 0,K0) and (P 0,K0), the output

differentials after 31-round encryption are ∆P 31 = 064

and ∆K31 = (∆RK31 ∥ ∆CK0 · · ·∆CK31) = (064 ∥
α(31) = 095 ∥ 1) with a probability of 1, which is a dis-

tinguisher for 31st rounds of the SFN. Since ∆CK31 =

1, refer to Fig. 2, the adversary would not be able to

determine the difference of ciphertexts (differential out-

put). However, she gets a distinguisher for 31st rounds

of the SFN, and she is able to do key recovery on the

32nd round of the cipher. The procedure of the key re-

covery of this round is given in Algorithm 1.

To determine the attack complexity, is dominated

by 264 guesses for RK32
F , the last round key, and re-

lated partial decryption which costs 3 rounds of SFN.

We should also exhaustively search the 32 bits of CK

that are not involved in the first attack to find the cor-

rect key. Therefore, the total time complexity of the

first attack is (264 × 3) 1
32 + 232 ≃ 260.58 32-round SFN

encryptions.

Algorithm 1: The first key recovery attack

on the SFN
•RK31 ← algorithm 1
for each choice of RKout

F (264 choices) do
1) Decrypt one round Feistel Key Expansion to
calculate the value of RKin

F . Next, drive
RKin

S , encrypt one round SP KeyExpansion
and calculate RKout

S ;
2) One round decryption of (C,RKout

F) and

(C,RKout
S) are assigned to PS and PF ;

3) if PS ⊕ PF = 064 then
RK31 ← RKout

F

else
(a).One round decryption of (C,RKout

F) and
(C,RKout

S) are assigned to PS and PF ;
(b). if PS ⊕ PF = 064 then

RK31 ← RKout
F

4 Related-key with chosen-plaintext-ciphertext

Attack

In this section we present a new attack to recover the

main key in chosen-plaintext-ciphertext scenario with

time complexity 220 and data complexity 217.92. Let us

assume the adversary can choose an arbitrary cipher-

text C and request from an oracle, say O-RK, the corre-

sponding plaintext with the key RK||CK or RK||CK,

where CK ⊕ CK is a fixed 32 bits difference which its

hamming weight is one. We denote the answers of O-RK

with the key RK||CK by Dec(C,CK) and with the key

RK||CK by Dec(C,CK). Also, she or he can choose

4 S. Sadeghi, M. M. Niknam, N. Bagheri, and M.R. Aref

an arbitrary plaintext P and request from the oracle O-

RK the corresponding ciphertext with the keyRK||CK

or RK||CK that we denote them by Enc(P,CK) and

Enc(P,CK), respectively. In the attack, we will find

the bit of CK31 first and then we recover the 64 bits

of RK31 and after that, we look for CK30 and RK30,

then we find CK29 and RK29 and so on. Finally we get

CK0 and RK0. Remember K = RK ∥ CK = RK0 ∥
CK0 ∥ · · · ∥ CK31, so the key K has been recovered.

Suppose P is an arbitrary plaintext and the ad-

versary is given Enc(P,CK) and Enc(P,CK) where

CK ⊕ CK = 0x00000001. In our method, we denote

Enc(P,CK) by C0 and C1, when the bit of CK31 is 0

or 1, respectively. It is obvious that there are so many

relations between C0 and C1, and for using of them, we

look at C0 as a new plaintext, RK31 as a new main key,

C1 as a new corresponding ciphertext and at whole of

them as a new scheme which we call it Γ32, following

Fig. 3. We found a multi-outputs differential charac-

teristic for this new scheme (see Fig. 4). By using this

differential characteristic and some other similar char-

acteristics, we found CK31 first, RK31, other control

signal bits, and round keys then. For more details refer

to subsection 4.2.

4.1 The structure of Γ32

As we explained before, we denoted the new scheme

by Γ32 that C0 is its plaintext, RK31 is its main key

and C1 is its ciphertext. Two 64 bits subkeys K0 and

K1 are made from its main key RK31 (Fig. 3). K0 and

K1 are made with Feistel and SP network structure,

respectively. They are the first and last round key at

Γ32. The new scheme uses RK31 for second round key

after K0, and half of it (i.e. the 32 lowest value bits)

before K1 as third round key. We found a differential

trail with the probability 2−22 for Γ32. There was an

interesting situation at this trail: the 8 lowest nibbles

of the output of the trail were zero. It led us to choose

a multi-output differential characteristic instead of a

single-output for our purpose : we allowed the 8 high-

est nibbles of the output to be every differences. The

value of the probability of this multi-output difference

characteristic was 2−6 which was very greater than 2−22

(Fig. 4). On the other hand, because of being zero the

values of the 8 lowest nibble of the output differences of

the characteristic, we decided to consider the structure

of MixColumns and MixRows layer to find an algebraic

reason for it. After considering these two linear parts of

Γ32, we found an interesting fact: there existed a lot of

similar multi-output characteristics for Γ32, which the

probabilities of them were at most 2−6 and at least 2−9.

We explain these differential characteristics in more de-

tail in the following.

The differential characteristics for the Γ32

As we explained before, we found a multi-output trail

of Γ32 which its probability was 2−6 (see Fig. 4). As

you can see in it, the differences before MixRows and

after MixColumns are S2 = (000030009000B000) and

S4 = (FD49EF2D00000000), respectively. We define

a 4 × 4 matrix M and denote the ith differential state

with a 4× 4 matrix Si, so in the trail of Fig. 4:

S2 =


0 0 0 0

3 0 0 0

9 0 0 0

B 0 0 0

 , S4 =


F D 4 9

E F 2 D

0 0 0 0

0 0 0 0

 ,M =


1 2 6 4

2 1 4 6

6 4 1 2

4 6 2 1


It is easily seen the 8 high-value nibbles of S4 are

zero. The MixRows and MixColumns layer at ith round

are a multiplication of the above matrix M to the state

matrix, from the right and left side respectively, so:

S3 = S2M ⇒ S4 = MS3 ⇒ S4 = MS2M.

After this observation we suppose instead of 3, 9, B in

the first column of S2 we put x, y, z and find them such

that all of the elements of the third and fourth row of

S4 to be zero, i.e, :


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0

0 0 0 0

 = M ·


0 0 0 0
x 0 0 0
y 0 0 0

z 0 0 0

 ·M = M ·


0 0 0 0
x 2x 6x 4x
y 2y 6y 4y

z 2z 6z 4z

 (1)

=


2x+6y+4z 2(2x+6y+4z) 6(2x+6y+4z) 4(2x+6y+4z)

x+4y+6z 2(x+4y+6z) 6(x+4y+6z) 4(x+4y+6z)

4x+y+2z 2(4x+y+2z) 6(4x+y+2z) 4(4x+y+2z)

6x+2y+z 2(6x+2y+z) 6(6x+2y+z) 4(6x+2y+z)


where the sign “∗” can be every difference. These equa-

tions are equivalent with two below equations in GF 4
2 :

4x+y+2z=0,6x+2y+z=0 ⇔ y=7x, z=8x,x ∈ GF 4
2 . (2)

So there exist 15 nonzero solution for triple (x,y,z)

when x varies from 1 to F. As it is seen the three nonzero

input differences x, y and z at S2 in the characteristic

of Fig. 4 are in the fourth column of the Table 1. In

fact, there are a lot of other similar characteristics that

their differences S2 in them are like (0000x000y000z000)

and the nonzero differences x, y and z can be chosen

from every column of the Table 1. On the other hand in

a characteristic of this kind, if S0 = (i000j0000000k000)

then the differential nibbles i, j and k are corresponded

to y, z and x (Fig. 5), i.e. they must be such that they

Cryptanalysis of full-round SFN Block Cipher 5

can become y, z and x after passing the S1-box, by pos-

itive probabilities. So if in a characteristic of this kind

S2 is fixed then S0 can varies.

If S2 = (000030009000B000) and S0 = (i000j0000000k000),

then by considering the DDT of S1-box, the differential

nibbles i, j and k can vary while i ∈ {2, 3, 5, 8, 9, B,C}, j ∈
{4, 7, 8, 9, B,D, F} and k ∈ {4, 6, 7, 8, 9, D, F}. The reason
is : e.g. i must be a difference that has a positive prob-

ability for going to 9 after passing S1-box. So by using

ninth column of the DDT of S1-box (Table (2)) i has to

be in the set {2, 3, 5, 8, 9, B,C}.
The almost same situation exists for j or k. With a sim-

ilar way if in a characteristic of this kind the values of

i, j or k at S0 are fixed then the values of x, y and z

at S2 can vary. Suppose S0 = (3000700000004000) and

S2 = (0000x000y000z000) then the nonzero difference x,

y or z must be one of differences which the differences

4, 3 or 7 can go to them after passing the S1-box with

positive probability respectively. So from the DDT of

S1-box x ∈ {1, 2, 3, 4, 5, 8, B}, y ∈ {4, 6, 7, 8, 9, D, F} and

z ∈ {3, 5, 6, B,D,E}. But by considering these three sets

and the Table 1, we conclude there exist only three cases

for x, y and z, i.e. (x,y, z) ∈ {(3, 9, B), (4, F, 6), (5, 8, E)}.
The other values for x, y and z can not occur, e.g. x

does not be 1: if x = 1 then by Table 1, the differences

y and z must be 7 and 8 respectively(the value of the

second and third row of the first column of Table 1),

but in the set of values for z, there is not the value 8,

so it is not possible that x = 1.

It may be possible that there exists only one solution for

S2 when the S0 is fixed, e.g. if S0 = (2000B00000006000)

then there is only one case for x, y and z, i.e. (x,y, z) =

(3, 9, B), therefore S2 must be (000030009000B000). In

this case the probability of the characteristic is equal

to the multiplication of three probabilities PrS1(2 →
9)×PrS1(B → B)×PrS1(6 → 3) = 4

16
× 4

16
× 4

16
= 2−6. By

these method we collected some characteristics of this

kind and their probabilities, they can be seen in Table 3.

On the other hand, if in the equality 1 we change all

the elements of the column 1 and elements of columns

2, 3 or 4 of the middle matrix with each other, then two

equations 2 stay the same without any changes. We ex-

plain the reasons for the case of column 2, the two other

columns are the same. For column 2 the relations 1 is

changed as follows:


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0

0 0 0 0

 = M ·


0 0 0 0

0 x 0 0

0 y 0 0

0 z 0 0

 ·M = M ·


0 0 0 0

2x x 4x 6x

2y y 4y 6y

2z z 4z 6z

 (3)

=


2(2x+6y+4z) 2x+6y+4z 4(2x+6y+4z) 6(2x+6y+4z)

2(x+4y+6z) x+4y+6z 4(x+4y+6z) 6(x+4y+6z)

2(4x+y+2z) 4x+y+2z 4(4x+y+2z) 6(4x+y+2z)

2(6x+2y+z) 6x+2y+z 4(6x+2y+z) 6(6x+2y+z)


As it can be seen in equality 3, these equality show

the two previous equations 2 are still valid. With these

properties it is straightforward that one can conclude

in a multi-outputs trail of this kind, it is possible to ro-

tate the input difference nibbles of S0 by 1, 2 or 3 nibbles

from the low-value nibbles to the high-value ones (see

Table 4). At this table, the numbers in the fourth col-

umn show the number of nibbles for the rotation at the

input of characteristics. It should be noted we consid-

ered the most left bit as the LSB.

Remark 1 We built a Mixed Integer Linear Programming

(MILP) [11, 12] model for Γ32 and by using it, we looked

for a characteristic from C1 to C0 such that its input dif-

ferential to be S0 = (2000B00000006000) and at its output

differential the 8 low-value nibbles to be zero. After that

we found that there is not any such characteristic from C1

to C0 whit positive probability. By using this property we

find the control signal bits of CK, for more details refer to

section 4.2.

4.2 Second key recovery procedure

In this section, we show that by decryption different ci-

phertext and encrypting the results again under related

keys, the 96 bits of the main secret key can be extracted

with the time complexity of 220 and data complexity

217.92. In the attack the adversary has access to an or-

acle, say O-RL, and for an arbitrary plaintext P or for

an arbitrary ciphertext C she or he can receive from the

oracle:

1. the ciphertext Enc(P,Ck).

2. the ciphertext Enc(P,Ck), while the hamming

weight of Ck ⊕ Ck is 1.

3. the plaintext Dec(C,Ck).

4. the plaintext Dec(C,Ck), while the hamming

weight of Ck ⊕ Ck is 1.

To the best of our knowledge this kind of attack, in

related key mode, which applies chosen-plaintext and

ciphertext simultaneously is introduced for the first time

, so we call it “chosen-plaintext-ciphertext” related key

attack. algorithm 2 is for recovering the main key of

the SFN and it has some steps as follows:

• recovering the control signal bit CK31 by algorithm

3.

• recovering the round key K0 by running four times

algorithm 4 and one time algorithm 5.

6 S. Sadeghi, M. M. Niknam, N. Bagheri, and M.R. Aref

Algorithm 2: Recovering the main key of the

SFN
• The 96 bits of main key ← Algorithm 2
1) CK31 ← Algorithm 3
2)for j ∈ {0, 1, 2, 3} do

((K0)j , (K0)4+j , (K0)12+j)←
algorithm 4 (j, CK31)

3) ((K0)8, (K0)9, (K0)10, (K0)11)← Algorithm 5
((K0)l, l ∈ (GF 4

2 − {8, 9, 10, 11})
4) RK31 ← K0 ▷ By using the K0 and with the
Feistel structure in backward direction at Γ32 get
the RK31.

5) for l ∈ {30, · · · , 0} do
a) CKl ← Algorithm6 (l, CKi, RKi(l + 1 ≤ i ≤
31));

b) RKl ← RKl+1; ▷ By using the RKl+1

and with the Feistel structure or the SP
structure in backward direction get the RKl

when CKl = 0 or 1.
6) Return RK0 ∥ CK0 ∥ · · · ∥ CK31 as the secret
key of the SFN cipher.

Algorithm 3: Recovering the control signal

bit CK31

• CK31 ← algorithm 3
1) n = 900,
S0 = (2000B00000006000),
CK31 = 1;

2) CK = CK ⊕ α(31);
3) for i ∈ {1, 2, · · · , n} do

a) C(i)
$←− {0, 1}64;

b) C′(i) = C(i)⊕ S0;

c) C(i) = Enc
(
Dec(C(i), CK), CK

)
;

d) C′(i) = Enc
(
Dec(C′(i), CK), CK

)
;

e) ∆(i) = C(i)⊕ C′(i);
f) if 8 low-value nibbles of ∆(i) are zero then

put CK31 = 0,
i = n;

return CK31.

• recovering the control signal bit CKl and after that

the round key RKl, by running algorithm 7, 31

times for l ∈ {30, · · · , 0} respectively.

Then it returns the K = RK0 ∥ CK0 ∥ · · · ∥ CK31 as the

main key of the SFN cipher. An overview of the second

key recovery attack on SFN as schematically is shown

in Fig. 6.

Extracting the CK31 (algorithm 3)

Suppose S0 is the input difference of characteristic No.1

in Table 3. For i = 1, · · · , n where n is a natural number

greater than 64, choose a random ciphertext C(i) and

put C′(i) = C(i)⊕ S0 and quarry from the oracle O-RK

to produce Dec(C(i), CK) and Dec(C′(i), CK), and then

we quarry for C(i) = Enc
(
Dec(C(i), CK),CK ⊕ α(31)

)
and C′(i) = Enc

(
Dec(C′, CK), CK ⊕ α(31)

)
and define

∆(i) = C(i) ⊕ C′(i). The probability of characteristic

No. 1 is 2−6, so we expected that the values of the 8

low-value nibbles of ∆(i) to be zero (suitable case) in at

least n/64 ≥ 1 times out of these n cases. If for one i the

∆(i) satisfies the condition, then conclude CK31 = 0, the

reason for this conclusion is the remark 1, and otherwise

conclude CK31 = 1. For n = 900 the probability of the

case in which CK31 = 0 and there is not any suitable

case for i, so the algorithm returns an incorrect value for

CK31, is equal to (1−2−6)900 ≃ 7×10−7. It is obvious by

choosing larger n, we can make the previous probability

smaller and smaller. Therefore we expect the algorithm

to return the correct value for CK31 when we choose

a value sufficiently large for n. We examined it for ten

million random cases when we had chosen n = 900 : the

algorithm returned the correct value in all cases, so we

choose this value for n in the algorithm.

Extracting three nibbles of the RK31

(algorithms 4 and 6)

We want to explain the algorithm 4 and a little about

the algorithm 6 which is called by it, here. Suppose

K0 = ((K0)0 · · · (K0)15) and j ∈ {0, 1, 2, 3}. Inputs of

the algorithm 4 are a value j and the signal bit CK31

and its output is nibbles (K0)j , (K0)j+4, (K0)j+12. In “3”

we define a0 = j, a1 = j + 4, a2 = j + 12: the indexes

of nibbles of K0 which we want to recover them, and

b0 = 8, b1 = 12, b2 = 4: which the nibble with index ai− j

in the differential S0 after swapping and passing from

S1-box goes to the nibble with index bi in the differential

S2 (Fig. 5). Also we introduce for r ∈ {0, 1, 2}, the sets

Jr which we want to choose the values of (K0)ar from

their elements. At the first in “1” we put Jr = GF 4
2

and step by step they are updated (in “4.(b)*(2)”) and

become smaller until all of them have only one ele-

ment. Then if the conditions are satisfied in “(c)”, we

choose and return the unique element of Jr as the nibble

(K0)ar in “(c)*”. We introduce and initialize three 16

elements vectors CTR0, CTR1, CTR2 in “1”. The algo-

rithm 6 updates three vectors CTR0, CTR1, CTR2 and

the algorithm 4 calls it several times (in “4.(a)”). For

k ∈ {0, 1, · · · , 15} the element CTRr[k] counts how many

times the value k satisfies the conditions for (K0)ar : in

“3.(g)” at the algorithm 6 when k satisfies the condi-

tions, the value of CTRr[k] is added one unit.

Also we define three sets MSr such that the set MSr has

all k which the value of CTRr[k] is the maximum value

between all 16 elements of vector CTRr (in “4.(b)*(1)”).

These three sets are initialized to ϕ at the first (in

“1.”), and they are applied for updating the sets Jr:

for r ∈ {0, 1, 2} we update the sets Jr by intersecting

them by MSr (in “4.(b)*(2)”).

Cryptanalysis of full-round SFN Block Cipher 7

For m = 1 after updating the sets Jr, if each one of them

have one element, the algorithm return their unique el-

ement as the nibbles (K0)ar in “4.(c)*” , if not it tries

m = 2. After that if some of the sets Jr have more than

one elements, the program adds one unit to Rep and re-

peats the previous steps again. If for all values of m and

Rep the algorithm can not find the three nibbles of K0,

then it print: “The three nibbles of K0 can not be found

with these values of parameters: the number of m or the

value of Rep, or both of them should be increased” and

then return the value of flag. In our experiments with

m ∈ {1, 2} the maximum value for Rep was 12 and by

notice the maximum value of Rep in the algorithm, i.e.

30, this case will not occur in real experiments.

Algorithm 4: Recovering three nibbles of K0

in Γ32

• (K0)j , (K0)(4+j), (K0)(12+j) ←
algorithm 4 (j, CK31)

1) J0 = J1 = J2 = GF 4
2 ,

CTR0[16] = CTR1[16] = CTR2[16] =
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
MS0 = MS1 = MS2 = ϕ,
flag = 0, n = 30;

2) if CK31 = 0 then
CK′ = CK;

else
CK′ = CK ⊕ α(31);

3) a0 = j, a1 = 4 + j, a2 = 12 + j,
b0 = 8, b1 = 12, b2 = 4;

4) for Rep ∈ {1, 2, · · · , n} do
for m ∈ {1, 2} do

a) (CTRr, r ∈ {0, 1, 2})← Algorithm 6
(m, j, CK′, CTRr, Jr, r ∈ {0, 1, 2});

b) for r ∈ {0, 1, 2} do
* if |Jr| > 1 then

1) put MSr equal to the set of all k
which the value of CTRr[k] is equal
to the maximum value of all values
of 16 elements of CTRr;

2) Jr = Jr ∩MSr;

c) if |J0| = |J1| = |J2| = 1 then
flag = 1, m = 2, n = 30;
* return the value of flag and for
r ∈ {0, 1, 2} the unique element of Jr as
the nibble (K0)ar

.
5) if flag = 0 then

print: “The three nibbles of K0 can not be found
with these values of parameters: the value of m,
Rep, or both of them have to be increased”,
and then return the value of the flag.

Extracting the bits of CKl (algorithms 7)

In algorithm 7 we denote a ciphertext which encrypted

l rounds at the SFN by C(l), so the plaintext is equal

to C(0) and the complete ciphertext which encrypted 32

Algorithm 5: Recovering four nibbles of

RK31, exhaustive search

• (K0)l(l ∈ {8, 9, 10, 11})←
algorithm 5(CK31, (K0)l(l ∈ (GF 4

2−{8, 9, 10, 11}))
1) C0

$←− {0, 1}64;
2) if CK31 = 0 then

CK′ = CK;
else

CK′ = CK ⊕ α(31);
3) CK′ = CK′ ⊕ α(31);

4) C1 = Enc
(
Dec(C0, CK′), CK′

)
;

5) for i ∈ {0, · · · , 216 − 1} do
a) K′

0 = ((K0)0 ∥ · · · ∥ (K0)7 ∥ i ∥ (K0)12 ∥ · · · ∥
(K0)15);

b) Find RK31; ▷ By the Feistel structure in
backward direction at Γ32 cipher and using the
value of K′

0 find RK31;
c) Find C′

1; ▷ At Γ32 cipher, for plaintext C0

and main key RK31 find the corresponding
ciphertext: C′

1;
d) if C′

1 = C1 then
Return the value of i as
(K0)8 ∥ · · · ∥ (K0)11.

Algorithm 6: Updating three sets CTRr for

r ∈ {0, 1, 2}
• CTRr(r ∈ {0, 1, 2})←
algorithm 6 (m, j, CK′, CTRr, Jr(r ∈ {0, 1, 2}))

1) n = 900,
CK′ = CK′ ⊕ α(31);

2) a0 = j , a1 = 4 + j , a2 = 12 + j,
b0 = 8 , b1 = 12 , b2 = 4;

3) for i ∈ {1, · · · , n} do
a) Initialize S0, S2; ▷ put them equal to the
inputs differential of characteristic number m
with j nibbles rotation of table 4.

b) C0(i)
$←− {0, 1}64;

c) C′
0(i) = C0(i)⊕ S0;

d) C1(i) = Enc
(
Dec(C0(i), CK′), CK′

)
;

e) C′
1(i) = Enc

(
Dec(C′

0(i), CK′), CK′
)
;

f) ∆(i) = C1(i)⊕ C′
1(i);

g) if 8 low-value nibbles of ∆(i) are zero then
for r ∈ {0, 1, 2} do

if : |Jr| > 1 then
for k ∈ {0, 1, · · · , 15} do

if S1((C0(i))ar
⊕ k)⊕

S1((C′
0(i))ar

⊕ k) = (S2)br

then
* add CTRr[k] one unit;

return CTR0, CTR1 and CTR2.

rounds is equal to C(32), that usually we denote it by C.

Suppose l is a fixed value in the set {0, 1, · · · , 30} and

given the values of CKj , RKj for every j = l+1, · · · , 31.
For recovering CKl the same as algorithm 3, suppose S0

is the input differential of characteristic No.1 in Table 3:

S0 is initialized at “1.”. In “2.” define CK = CK ⊕ α(l)

and in “3.(a)” for i = 1, · · · , n, where n = 900, choose

a random 64 bits string C(l+1)(i) and at “3.(b)” put

8 S. Sadeghi, M. M. Niknam, N. Bagheri, and M.R. Aref

Algorithm 7: Recovering the control signal

bit CKl for a l in the set {0, · · · , 30}
• CKl ← Algorithm 7
(l, CKi, RKi(l + 1 ≤ i ≤ 31))

1) n = 900,
S0 = (2000B00000006000),
CKl = 1;

2) CK = CK ⊕ α(l);
3) for i ∈ {1, 2, · · · , n} do

a) C(l+1)(i)
$←− {0, 1}64;

b) C′
(l+1)(i) = C(l+1)(i)⊕ S0;

c) C(i) =
Enc(C(l+1)(i), RK(l+1)∼31, CK(l+1)∼31, l+1),
C′(i) =

Enc(C′
(l+1)(i), RK(l+1)∼31, CK(l+1)∼31, l+1);

d) C(i) = Enc
(
Dec(C(i), CK), CK

)
;

e) C′(i) = Enc
(
Dec(C′(i), CK), CK

)
;

f) C(l+1)(i) =

Dec(C(i), RK(l+1)∼31, CK(l+1)∼31, l + 1),

C′
(l+1)(i) =

Dec(C′(i), RK(l+1)∼31, CK(l+1)∼31, l + 1);

g) ∆(l+1)(i) = C(l+1)(i)⊕ C′
(l+1)(i);

h) if 8 low-value nibbles of ∆(l+1)(i) are zero

then
CK(l) = 0 i = n;

4) Return CK(l) as the signal bit CKl.

C′
(l+1)(i) = C(l+1)(i)⊕S0. Consider both of C(l+1)(i) and

C′
(l+1)(i) as ciphertexts which encrypted l + 1 rounds

with the signal string CK. In “3.(c)” by using the con-

trol signal bits CKi and round keys RKi for i ≥ l+1, en-

crypt C(l+1)(i) and C′
(l+1)(i) for 31− l rounds encryption

more, to reach the complete ciphertexts C(32)(i) = C(i)

and C′
(32)(i) = C′(i). In “3.(d),3.(e)” request from the

oracle O-RK to give the Dec(C(i), CK), Dec(C′(i), CK)

and Enc
(
Dec(C(i), CK), CK

)
, Enc

(
Dec(C′(i), CK), CK

)
which we denote them by C(i), C′(i) respectively. In

“3.(f)” by using the control signal bits CKi and round

keys RKi for i ≥ l + 1, decrypt C(i), C′(i) for 31 − l

rounds, to reach two l+1 encrypted ciphertexts C(l+1)(i)

and C′
(l+1)(i). In “3.(g)” define ∆(l+1)(i) and in “3.(h)”

if 8 low-value nibbles of ∆(l+1)(i) are zero, then put

CK(l) = 0 and return it as the signal bit CKl, and oth-

erwise go to next i. If there is not any i which for it the

condition at “3.(h)” satisfies, then return CK(l) which

is initialized at “1.” to 1, as the signal bit CKl. For

the probability of correctness of obtained CKl refer to

remark 1 and Extracting the CK31 at 4.2.

Extracting the main key (algorithm 2)

For recovering the main key of the SFN cipher, one

can apply the algorithm 2. First in “1.” by calling the

algorithm 3 recover the signal bit CK31. Then in “2.”

assume the number j, as the number for nibbles rotation

at the input of the characteristics of Table 3, and by

calling 4 times the algorithm 4, recover the nibbles with

indexes {0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15} and after that in

“3.” by calling the algorithm 5, by exhaustive search,

recover the nibbles with indexes {8, 9, 10, 11} of the key

K0 at the new scheme Γ32. By knowing the value of

K0 and with notice to the structure of the new scheme

Γ32, in “4.” with Feistel structure in backward direction,

get the value of round key RK31. Then at “5.” for l ∈
{30, · · · , 0}, in 31 steps and at each step, by calling the

algorithm 7 and recovering the signal bit CKl, with

Feistel or SP structure in backward direction (if CKl is

equal to 0 or 1 respectively), recover the round key RKl.

Finally in “6.” return the value RK0 ∥ CK0 ∥ · · · ∥ CK31

as the secret key of the SFN block cipher.

Complexity of the second recovery attack

Suppose we consider the maximum time of encryption

or decryption for a 64 bits plaintext or ciphertext, as a

unit of time. Hear we want to compute an upper bound

of the computational time complexity in the term of this

unit for the second key recovery attack or related key

with chosen-plaintext-ciphertext attack for recovering

the 96 bits main key of the SFN block cipher. For this

purpose we should compute the time for running the

algorithm 2. First we compute the time complexity

for the algorithms 3, 4, 5, 7 and then we compute the

time complexity of the algorithm 2 which calls these

algorithm inside itself. In each case we also compute the

data complexity.

1. The time for running the algorithm 3 is dominated
by the rows “3.(c)” and “3.(d)”. At each row there

are one decryption and one encryption, so the time

complexity of this algorithm is upper bonded to 2×
2×n = 2× 2× 900 = 3600 ≤ 211.82. At this algorithm

in “3.(a)” a ciphertext is chosen randomly and it is

repeated almost 900 times, so its data complexity is

upper bounded to 900× 1 = 29.82 ciphertexts.

2. First we compute the time complexity of the algo-

rithm 6 which is called inside of the algorithm 4.

The run-time of the algorithm 6 is dominated by

the rows “3.(d)” and “3.(e)”, and at each row there

are one encryption and one decryption. These two

row are done 900 times, so its run-time as same as

the algorithm 3, is upper bounded to 211.82. The

data complexity of the algorithm 6 is similar to the

algorithm 3 and is upper bounded to 29.82.

The run-time at the algorithm 4 is dominated by

the row “4.(a)”. This row is done at most 2n =

2 × 30 = 60 times, therefore its run-time is upper

bounded to 60× 211.82 ≤ 217.73. The data complexity

Cryptanalysis of full-round SFN Block Cipher 9

of the algorithm 4 is related to calling the algorithm

6, and this algorithm is called at most 2 × 30 = 60,

by considering the data complexity of the algorithm

6, we can conclude the data complexity of the algo-

rithm 4 is upper bounded to 60× 29.82 ≤ 215.73.

3. The run-time of the algorithm 5 is related to rows

“4.”, “5.(b)” and “5.(c)”. At “4.” there are one de-

cryption and one encryption. The run-time for each

row of two rows “5.(b)” and “5.(c)” is less than 1
32

of

the run-time for one round of the SFN cipher, so the

total run-time for the algorithm 5 can be computed

as follows: 2 + 216 × (2× 1
32
) ≤ 212.01. The data com-

plexity of the algorithm 5 is one ciphertext which

is chosen randomly at “1.”.

4. The rows “3.(c)”,“3.(d)”,“3.(e)” and “3.(f)” are the

main role at the run-time of the algorithm 7. The

run-times of rows “3.(c)” or “3.(f)” are less than one

encryption or decryption respectively which both

are less than one unit. The run-time of rows “3.(d)”

or “3.(e)” are 2 units. These 4 rows are done at most

900 times, so the time complexity of the algorithm

7 is upper bounded to 900×(1+2+2+1) ≤ 900×6 ≤
212.40. The data complexity of the algorithm 7 is

dominated by “3.(a)”. This row is done 900 times

at most, so the data complexity of this algorithm is

equal to 900× 1 = 900 ≤ 29.82.

5. The run-time of the algorithm 2 is related to two

sources:first, calling other algorithms at row “1.”

one time (algorithm 2), at row “2.” 4 times (algo-

rithm 4), at row “3.” one time (algorithm 5), at row

“5.(a)” 31 times (algorithm 6) which the run-time

of all these algorithms have been computed before,

and second the computing rounds key at “4.” one

time,“5.(b)” 31 times, which their run-time are less

than one round decryption or 1
32

unit of time. There-

fore the total time complexity of the algorithm 2

is upper bounded to 211.82 + 4× 217.73 + 212.01 + 31×
212.40 + 1

32
+ 31 × 1

32
≤ 220. The data complexity of

the algorithm 2 by noticing the data complexities

of other algorithm which it calls them is as follows:

29.82 + 4× 215.73 + 1 + 31× 29.82 ≤ 217.92.

4.3 Experimental results:

By noticing the small time complexity of the second

key recovery attack on the SFN block cipher, i.e. 220,

a practical experiment was possible. So we decided to

make a program to check it experimentally. The algo-

rithms 3, 4, 5 and 7 are the main role at the algorithm

2. The algorithm 7 is almost similar to the algorithm 3

and the algorithm 5 is an exhaustive search, so we made

a program by C++ language 1 for checking experimen-

tally the algorithms 3 and 4: first program for recover-

ing the signal bit CK31 and the second one for recover-

ing the nibbles {0, 1, · · · , 7, 12, 13, 14, 15} of the round key

K0 at new scheme Γ32. Our program can find both of

CK31 and nibbles (K0)k for k ∈ {0, 1, · · · , 7, 12, 13, 14, 15}
separately and it is based on the algorithms 3, 6 and 4.

It has been checked 10 billion times for recovering the

signal bit CK31 and the nibbles {(K0)0, (K0)4, (K0)12},
{(K0)1, (K0)5, (K0)13}, {(K0)2, (K0)6, (K0)14}, and than

{(K0)3, (K0)7, (K0)15}, and it always returned the cor-

rect values for them. The program ran on a laptop with

below specifications in less than one second:

Intel(R) Core(TM) i7-6500U CPU, @ 2.50GHz 2.59 GHz,

RAM 8.00 GB (7.87 GB usable), 64-bit operating system,

x64-based processor.

The algorithm works as follows: first, the signal bit

CK31 and the 64 bits round key RK31 are chosen ran-

domly. By the value of RK31, the keys K0, and K1

of Γ32 are made, and their value could be used only

by oracle O-RK. The algorithm recovers the signal bit

CK31 first, and after that the value of three nibbles

(K0)j , (K0)j+4, (K0)j+12 where j ∈ {0, 1, 2, 3} is fixed . In

the algorithm the number “Rep”, as in the algorithm

4, is used for repetition, also at each repetition when

the algorithm wants to choose a random ciphertext, for

more randomness, “Rep” is used as a coefficient of the

number which is generated by “rand” function of C++.

The other notations are the same as ones at the algo-

rithms 3 and 4.

The result related to recovering three nibbles (K0)0,

(K0)4, (K0)12 for 4 random cases one to four are shown

at Table 5. The first column shows the number of char-

acteristic at Table 3. The second column to seventh

one show the sets J0,MS0, J1,MS1 and J2,MS2 respec-

tively. The penultimate column shows the number of

random ciphertexts used for recovering the nibbles, and

the numbers of pairs with specified input/output differ-

entials between them. The blue color are the recovered

nibbles of K0 at last row, while they are red at the K0

in first row and other places in every recovering. In each

row, for r ∈ {0, 1, 2} the set Jr is equal to intersection

of the set MSr at the same row with the set Jr at the

previous row. When the number of elements in the set

Jr becomes 1, then its element is (K0)ar which ar is 0,

4 or 12.

At this experiment for recovering the three nibbles

(K0)0, (K0)4, (K0)12, the number of random ciphertexts

that were used: in case one was equal to 3(2×900) = 5400

(Rep=3), in case two to four was equal to 2×900 = 1800

1 Related codes are available at
https://github.com/MajidMNiknam/SFN-cipher/commit/

8688ecaaed83e49633d942176c40c22154b879ac

https://github.com/MajidMNiknam/SFN-cipher/commit/8688ecaaed83e49633d942176c40c22154b879ac
https://github.com/MajidMNiknam/SFN-cipher/commit/8688ecaaed83e49633d942176c40c22154b879ac

10 S. Sadeghi, M. M. Niknam, N. Bagheri, and M.R. Aref

(Rep=1). Also for 10 billion repetitions for recovering

these nibbles, the average and its maximum number of

random ciphertexts that were used were equal to 2314.76

and 19800 in case one, 2173.90 and 12600 in case two,

2174.50 and 14400 in case three, 4045.47 and 21600 in

case four, respectively. So the experimental data com-

plexity of this algorithm on average was 211.98 and its

maximum was 214.4, while the theoretical data complex-

ity for this algorithm has been computed before 215.73.

5 Meet in the middle attack

In MITM attack, the cipher is divided into two parts

and the main idea is that the subkeys of key bits in

both parts of the cipher can be guessed independently.

In 2010, Bogdanov et al., introduced a new variant of

MITM attack (3-subset MITM attack) on block ciphers

[6]. Instead of considering two subsets of key bits, they

considered three subsets as A1 that shows the key bits

used only in the first part, A2 that shows the key bits

used only in the second part, and A0 that shows the

key bits used in two parts of the cipher.

Following the SFN’s description, given the 96-bit

main key K = RK∥CK, the fraction RK ∈ {0, 1}64 is

used to generate the round keys, and CK ∈ {0, 1}32 is

used as the control signal to determine whether in each

round key-expansion/round-function the Feistel struc-

ture is used or the SP one. Notice that each bit of the

control signal is used in one and only one round of the

SFN, hence, this block cipher will be an appropriate

candidate for the 3-subset MITM attack. Therefore, in-

spired by [6], suppose A1 = CK0∼15, A2 = CK16∼31, and
A0 = RK, are the three subsets of key bits used in

SFN structures. The procedure of the key recovery of

the SFN in the 3-subset meet in the middle attack is

given in algorithm 8. Now, if the adversary guesses

are correct then the internal values should match, i.e.,

P 16 = P ′16. These happen for the correct guess of keys

with the probability of 1 while for the wrong guess of

keys the matching probability would be 2−|P16|. There-

fore, with a probability of about 2−|P16| this match

would result in a false positive, but overall the number

of key candidates is reduced to about 2|K| × 2−|P16| =

296−64 = 232 after applying algorithm 8. Thus, the num-

ber of key candidates is small enough that it has no ef-

fect on attack complexity. However, by considering an-

other known plaintext/ciphertext (P ′, C′) the number of

key candidates can be reduced to about 232×2−64 = 2−32

and thus the target key will be obtained.

Following the previous discussion, considering the

cost of the decryption round the same as the cost of the

encryption round, the time complexity of the provided

attack would be equal to

2|A0|(
1

2
(2|A1| + 2|A2|))︸ ︷︷ ︸

algorithm 8

+ ((2|K|−|P16|) + (2|K|−|P16| × 2|C
′|) + · · ·)︸ ︷︷ ︸

key testing

=264(
1

2
(216 + 216)) + 232 + 2−32 ≃ 280,

calls to the SFN. Therefore, in total, we need only two

known plaintext/ciphertext pairs (one for applying al-

gorithm 8 and one for the key testing step). The mem-

ory complexity of the attack is dominated by matching

step in algorithm 8 which is at most 216×(80+80) bits,

220.32 bytes.

Algorithm 8: The 3-subset MITM attack of

the SFN
•K ← algorithm 8(A0, A1, A2)
for a known plaintext/ciphertext pair do

for each 264 choice of key bits in A0 do
for each 216 choice of key bits in A1 do

Encrypt 16 rounds SFN to calculate the
value of P 16;

for each 216 choice of A2 do
Decrypt 16 rounds SFN to calculate the
value of P ′16;

Execute matching between the values of P 16

and P ′16 on 64 bits;
if P 16 = P ′16 then

Return the related key as correct round
key.

else
Abort the related key.

6 Conclusion

This paper investigates the security level on the SFN

against the related key attack. The encryption of the

SFN involves an SP network structure and a Feistel

network structure. The SFN fixes a 64-bit block with a

96-bit key. We have proposed an attack, in the known-

plaintext scenario, taking advantage of the related key

distinguisher. With this attack, we have shown that

FSN provides at most 260.58 encryptions security. We

also proposed a chosen-plaintext-ciphertext related key

attack on the SFN with the complexity of 220. In ad-

dition, in the single key mode, we presented a meet in

the middle attack for which the time complexity was

280 and the memory complexity was 220.32 bytes. The

attack complexity should be compared with the com-

plexity of exhaustive key search which is 296.

Cryptanalysis of full-round SFN Block Cipher 11

Acknowledgments

Nasour Bagheri was supported by Shahid Rajaee Teacher

Training University under grant number 4968.

References

1. Li, L., Liu, B., and Zhou, Y. et al, “SFN: A new
lightweight block cipher,” Microprocessors and Microsys-
tems, vol. 60, pp. 138–150, 2018.

2. Biham, E. “New types of cryptanalytic attacks using re-
lated keys,” Journal of Cryptology, vol. 7, no. 4, pp. 229–
246, 1994.

3. Knudsen, L. R. “Cryptanalysis of LOKI 91,” in Interna-
tional Workshop on the Theory and Application of Cryp-
tographic Techniques, pp. 196–208, Springer, 1992.

4. Diffie, W., and Hellman, M. “Exhaustive cryptanalysis
of the nbs data encryption standard,” IEEE Computer
Society Press, vol. 10, no. 6, pp. 74–84, 1977.

5. Diffie, W. and Hellman, M. E. “Special feature exhaus-
tive cryptanalysis of the nbs data encryption standard,”
Computer, vol. 10, no. 6, pp. 74–84, 1977.

6. Bogdanov, A., and Rechberger, C., “A 3-subset meet-in-
the-middle attack: cryptanalysis of the lightweight block
cipher ktantan,” in International Workshop on Selected
Areas in Cryptography, pp. 229–240, Springer, 2010.

7. Ahmadi, S., and Aref, M. R. “Generalized meet in the
middle cryptanalysis of block ciphers with an automated
search algorithm,” IEEE Access, vol. 8, pp. 2284–2301,
2019.

8. Dong, X., Wei, Y., and Gao, W. et al, “New meet-in-
the-middle attacks on fox block cipher,” The Computer
Journal, 2022.

9. Ahmadi, S, Ahmadian, Z., and Mohajeri, J., et al, “Low-
data complexity biclique cryptanalysis of block ciphers
with application to piccolo and hight,” IEEE Trans-
actions on Information Forensics and Security, vol. 9,
no. 10, pp. 1641–1652, 2014.

10. Liu, F., Sarkar, S., and Wang, G., et al, “Algebraic
meet-in-the-middle attack on lowmc.” Cryptology ePrint
Archive, Paper 2022/019, 2022. https://eprint.iacr.

org/2022/019.
11. Mouha, N., Wang, Q. and Gu, D., et al, “Differential

and linear cryptanalysis using mixed-integer linear pro-
gramming,” in International Conference on Information
Security and Cryptology, pp. 57–76, Springer, 2011.

12. Sun, S., Hu, L., andWang, M., et al, “Towards finding the
best characteristics of some bit-oriented block ciphers and
automatic enumeration of (related-key) differential and
linear characteristics with predefined properties,” Cryp-
tology ePrint Archive, Report, vol. 747, p. 2014, 2014.

Biographies

Sadegh Sadeghi received his Ph.D. in mathematical

cryptography from Kharazmi University in 2019. His

Ph.D. dissertation focused on automated cryptanaly-

sis of lightweight symmetric. He was a postdoctoral re-

searcher in the Electrical Engineering Department at

the Sharif University of Technology, Tehran. He is cur-

rently an associate professor at the department of math-

ematics, Institute for Advanced Studies in Basic Sci-

ences (IASBS) and Research Center for Basic Sciences

and Modern Technologies (RBST), Institute for Ad-

vanced Studies in Basic Sciences (IASBS), Zanja, Iran.

His main research interests are cryptanalysis and the

security of protocols

Majid Mahmoudzadeh Niknam is a free researcher

in cryptography and a mathematics teacher. He re-

ceived his BSc degree in applied mathematics from the

Sharif University of Technology, MSc degree in pure

math from Tarbiat Modares University, and a Ph.D. de-

gree from Kharazmi University in applied mathematics

(cryptography). His research interests are linear attack,

differential attack, and key recovery in lightweight block

ciphers and Authenticated Encryption with Associated

Data (AEAD).

N. Bagheri received the M.S. and Ph.D. degrees in

electrical engineering from the Iran University of Sci-

ence and Technology (IUST), Tehran, Iran, in 2002 and

2010, respectively. He is currently a Full Professor in

the Electrical Engineering Department, at Shahid Ra-

jaee Teacher Training University, Tehran, and the head

of CPS2 laboratory there. He is also a part-time Re-

searcher with the Institute for Research in Fundamen-

tal Sciences. He is the author of more than 100 articles

on information security and cryptology. His research

interests include cryptology, more precisely, designing

and analysis of symmetric schemes, such as lightweight

ciphers, e.g., block ciphers, hash functions, authenti-

cated encryption schemes, cryptographic protocols for

constrained environments, such as RFID tags and IoT

edge devices, and hardware security, e.g., the security of

symmetric schemes against side-channel attacks, such

as fault injection and power analysis.

M.R. Aref received his BSc degree in 1975 from the

University of Tehran, Iran, and MSc and Ph.D. degrees

in 1976 and 1980, respectively, from Stanford Univer-

sity, Stanford, CA, USA, all in Electrical Engineering.

He returned to Iran in 1980 and since then, he has been

actively engaged in academic activities. He was a for-

mer Faculty member of Isfahan University of Technol-

ogy from 1982 to 1995. He has been working as a Pro-

fessor of Electrical Engineering at Sharif University of

Technology, Tehran since 1995 and has published more

than 230 technical papers in communication and infor-

mation theory and cryptography in international jour-

nals and conference proceedings. His current research

interests include areas of communication theory, infor-

mation theory, and cryptography.

https://eprint.iacr.org/2022/019
https://eprint.iacr.org/2022/019

12 S. Sadeghi, M. M. Niknam, N. Bagheri, and M.R. Aref

Figure and Table Captions

List of Figures

1 Encryption procedure of SFN cipher [1]. 13

2 A Distinguisher on full SFN, where 0 means 064 . 13

3 The new scheme Γ32 from C0 to C1 for the SFN cipher, where the C0 and C1 are the ciphertext

when CK31 is 0 or 1, respectively. At Γ32 two 64 bits subkeys K0 and K1 are made from the round

key RK31 with Feistel and SP network, respectively. 14

4 A multi-output characteristic (because the stars can vary) for the new scheme Γ32 from C0 to C1.

The values of differences of input nibbles 0, 4 and 12 can vary simultaneously. In fact the nibble0,

nibble4 and nibble12 of input differences must choose from a proper set. It is while its 8 low-value

output nibbles differences do not vary and stay zero. Also, the positions of 16 input nibbles can

rotate to the right (from LSB to MSB) by 1, 2 or 3 nibbles, e.g. there exist a similar characteristics

with input difference 0x0060000000B00020 and the same previous output. 15

5 The first three state of a similar multi-outputs differential characteristic to the trail of Fig. 4 for Γ32. 15

6 Framework of the second key recovery attack of SFN cipher. 16

List of Tables

1 The fifteen solution for x, y and z. Every column is a solution. The blue column is the values for

the characteristic of Fig.4. 12

2 Differential Distribution Table (DDT) of the S1-box. 14

3 Some multi-output characteristics for Γ32, where PS and PT respectively denote the probability of

a single trail and the sum of the probabilities of all trails as a total probability. 15

4 It is possible to rotate the input differences S0 at the multi-output characteristics for Γ32 by 1, 2

or 3 nibbles from the low-value nibbles to the high-value ones. At first column, numbers 10 to 13,

· · · , 50 to 53 show the characteristic number 1, · · · , 5 of Table 3 and their rotations with 1, 2 or 3

nibbles at their inputs respectively. 16

5 The experimental results for recovering CK31, and three nibbles with indexes 0, 4 and 12 of K0 at

Γ32 for 4 random keys: one to four. The blue color are the recovered nibbles of K0 at last row in

every case, while they are red at the K0 in first row and other places. 17

Table 1: The fifteen solution for x, y and z. Every column is a solution. The blue column is the values for the
characteristic of Fig.4.

x 1 2 3 4 5 6 7 8 9 A B C D E F

y 7 E 9 F 8 1 6 D A 3 4 2 5 C B

z 8 3 B 6 E 5 D C 4 F 7 A 2 9 1

Cryptanalysis of full-round SFN Block Cipher 13

A
d

d
R

o
u

n
d

K
ey

S
 -

b
o

x
la

ye
r

2

P
 la

ye
r

M
ix

X
o

rs

S
 -

b
o

x
la

ye
r

2

A
d

d
C

o
n

st
a

n
ts

=
C

O
N

S
 -

b
o

x
la

ye
r

1

P
 la

ye
r

M
ix

X
o

rs

S
 -

b
o

x
la

ye
r

1

Pre and post 32 bits swapping

AddRoundKey

S -box layer1

MixColumns

MixRows

S -box layer1

AddConstants=CON

S -box layer2

MixColumns

MixRows

S -box layer2

Pre and post 32 bits swapping

64-bit
Pre 32-bit

Plaintext/Primary Key

Signal = 1

i = 32? i = 32?

64-bit

NoYes

Pre and post 32 bits swapping

AddRoundKey

Ciphertext

Yes NoNo Yes

64-bit64-bit64-bit

Pre 32-bit Last 32-bit

Pre 32-bit Last 32-bitPre 32-bit

Pre 32-bit

Last 32-bit

Last 32-bit

Fig. 1: Encryption procedure of SFN cipher [1].

Plaintext / Primary Key

31-round Encryption

0=
0

P∆ =(0||0,…,1))CK)∆|| 0K∆(=(0||0,…,1))CK)∆|| 0K∆(

0=
31

P∆ =(0||1))) 31CK∆|| 31
K∆(=(0||1))) 31CK∆|| 31
K∆(

Feistel
KeyExp

SP
Enc/Dec

64-bit

in
FRK SP

64-bit

1= 31CK No

SP
KeyExp

Feistel
Enc/Dec

64-bit

in
SRK FP

64-bit

Yes

out
For RK out

SRK

Ciphertext

Pre and post 32-bit swapping

ــ

ــ ــ

ــ

Fig. 2: A Distinguisher on full SFN, where 0 means 064 .

14 S. Sadeghi, M. M. Niknam, N. Bagheri, and M.R. Aref

Pre and post 32 bits swapping

AddRoundKey

S -box layer1

MixColumns

MixRows

Pre and post 32 bits swapping

S -box layer1

AddRoundKey

C0

64-bit

AddConstants=CON

S -box layer1

P layer

MixXors

S -box layer1

S1

S2

S3

S4

S5

AddRoundKey

S -box layer2

P layer

MixXors

S -box layer2

Pre and post 32 bits swapping

AddRoundKey

C1

AddConstants=CON

S -box layer2

MixColumns

MixRows

S -box layer2

Pre and post 32 bits swapping

The RK round-key of SFN cipher

64-bit

64-bit 64-bit

64-bit

64-bit

Pre 32-bit

64-bit
Pre 32-bit Last 32-bit Pre 32-bit Last 32-bit

Last 32-bitPre 32-bit

64-bit
Last 32-bitPre 32-bit

64-bit

31

K1

K0

Fig. 3: The new scheme Γ32 from C0 to C1 for the SFN cipher, where the C0 and C1 are the ciphertext when CK31

is 0 or 1, respectively. At Γ32 two 64 bits subkeys K0 and K1 are made from the round key RK31 with Feistel and
SP network, respectively.

Table 2: Differential Distribution Table (DDT) of the S1-box.

x/y 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0
2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0
3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2
4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0
5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0
6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2
7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0
8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0
A 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4
B 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2
C 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0
D 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0
E 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2
F 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4

Cryptanalysis of full-round SFN Block Cipher 15

0000 6000 2000 B000

2000 B000 0000 6000

Swapping

 K , AddRoundKey, K

0000 36AC 9132 B5FA

MixRows

FD49 EF2D 0000 0000

MixColumns

**** **** 0000 0000

0000 0000 **** ****

Swappingpre 32 bits , AddRoundKey, 64 bits

0000 0000

0000 0000

0000 0000

P layer

0000 0000

MixXors

0000 0000

S -box

 **** **** 0000 0000

Swapping

0000 0000 **** ****

0000 3000 9000 B000

lsb msb

Swapping

0000 0000 **** ****
lsb msb

32-bit 32-bit

(last)
32-bit

64-bit

Output differences
of C1

Iutput differences
of C0

2

S -box2

S -box1

S -box1

01

Fig. 4: A multi-output characteristic (because the stars can vary) for the new scheme Γ32 from C0 to C1. The values
of differences of input nibbles 0, 4 and 12 can vary simultaneously. In fact the nibble0, nibble4 and nibble12 of input
differences must choose from a proper set. It is while its 8 low-value output nibbles differences do not vary and stay
zero. Also, the positions of 16 input nibbles can rotate to the right (from LSB to MSB) by 1, 2 or 3 nibbles, e.g. there
exist a similar characteristics with input difference 0x0060000000B00020 and the same previous output.

0000 k000 i000 j000

i000 j000 0000 k000

Input differences

Swapping

0000 x000 y000 z000

lsb

msb

S -box1

K0

Fig. 5: The first three state of a similar multi-outputs differential characteristic to the trail of Fig. 4 for Γ32.

Table 3: Some multi-output characteristics for Γ32, where PS and PT respectively denote the probability of a single
trail and the sum of the probabilities of all trails as a total probability.

No. S0 S2 #S2 PS PT

1 (2000B00000006000) (000030009000B000) 1 2−6 2−6

2 (3000400000007000) (000030009000B000) 1 2−9 2−9

3 (3000400000004000)
(000030009000B000)

2
2−9

2−8

(0000100070008000) 2−9

4 (2000B00000004000)
(000030009000B000)

2
2−9

2−8

(000040007000B000) 2−9

5 (3000700000004000)
(000030009000B000)

3
2−9

2−7.41(00004000F0006000) 2−9

(000050008000E000) 2−9

16 S. Sadeghi, M. M. Niknam, N. Bagheri, and M.R. Aref

Algorithm 3

Algorithm 6

Algorithm 4
Four times

Algorithm 5

Algorithm 7

Algorithm 2

CK
31

K

CK

K=RK||CK

12 nibbles of K0

4 nibbles of K

= 30,…,0l

l

output

0output

output

output

output

0

Fig. 6: Framework of the second key recovery attack of SFN cipher.

Table 4: It is possible to rotate the input differences S0 at the multi-output characteristics for Γ32 by 1, 2 or 3
nibbles from the low-value nibbles to the high-value ones. At first column, numbers 10 to 13, · · · , 50 to 53 show the
characteristic number 1, · · · , 5 of Table 3 and their rotations with 1, 2 or 3 nibbles at their inputs respectively.

No. S0 S2 # nibbles PS PT

10 (2000B00000006000) (000030009000B000) 0 2−6 2−6

11 (02000B0000000600) (0000030009000B00) 1 2−6 2−6

12 (002000B000000060) (00000030009000B0) 2 2−6 2−6

13 (0002000B00000006) (000000030009000B) 3 2−6 2−6

20 (3000400000007000) (000030009000B000) 0 2−9 2−9

21 (0300040000000700) (0000030009000B00) 1 2−9 2−9

22 (0030004000000070) (00000030009000B0) 2 2−9 2−9

23 (0003000400000007) (000000030009000B) 3 2−9 2−9

· · · · · · · · · · · · · · · · · ·

50 (3000700000004000)
(000030009000B000)

0
2−9

2−7.4150(00004000F0006000) 2−9

(000050008000E000) 2−9

51 (0300070000000400)
(0000030009000B00)

1
2−9

2−7.4150(000004000F000600) 2−9

(0000050008000E00) 2−9

52 (0030007000000040)
(00000030009000B0)

2
2−9

2−7.4150(0000004000F00060) 2−9

(00000050008000E0) 2−9

53 (0003000700000004)
(000000030009000B)

3
2−9

2−7.4150(00000004000F0006) 2−9

(000000050008000E) 2−9

Cryptanalysis of full-round SFN Block Cipher 17

Table 5: The experimental results for recovering CK31, and three nibbles with indexes 0, 4 and 12 of K0 at Γ32 for
4 random keys: one to four. The blue color are the recovered nibbles of K0 at last row in every case, while they are
red at the K0 in first row and other places.

One CK31 = 1 K0 = 0x18be 6784 a484 ef55 RK31 = 0x0029 4823 18be 6784

No. of ch. J0 = GF 4
2 MS0 J1 = GF 4

2 MS1 J2 = GF 4
2 MS2 # pair Rep

1 {5, 7, c, e} {5, 7, c, e} {4, 6, d, f} {4, 6, d, f} {8, a, c, e} {8, a, c, e} 900, (18)
1

2 {5, 7, c, e} GF 4
2 {4, 6, d, f} GF 4

2 {8, a, c, e} GF 4
2 900, (0)

1 {5, 7, c, e} {5, 7, c, e} {4, 6, d, f} {4, 6, d, f} {8, a, c, e} {8, a, c, e} 900, (16)
2

2 {5, 7, c, e} GF 4
2 {4, 6, d, f} GF 4

2 {8, a, c, e} GF 4
2 900, (0)

1 {5, 7, c, e} {5, 7, c, e} {4, 6, d, f} {4, 6, d, f} {8, a, c, e} {8, a, c, e} 900, (13)
3

2 {5} {5, 6} {4} {0, 4} {e} {9, e} 900, (5)

Two CK31 = 0 K0 = 0x42da 718d dcc0 40b9 RK31 = 0x02a4 3024 42da 718d

No. J0 = GF 4
2 MS0 J1 = GF 4

2 MS1 J2 = GF 4
2 MS2 # pair Rep

1 {0, 2, 9, b} {0, 2, 9, b} {0, 2, 9, b} {0, 2, 9, b} {8, a, c, e} {8, a, c, e} 900, (15)
1

2 {9} {9, a} {0} {0, 4} {a} {a, d} 900, (2)

Three CK31 = 1 K0 = 0x284c 4948 c30c 6a77 RK31 = 0x43c7 76fa 284c 4948

No. J0 = GF 4
2 MS0 J1 = GF 4

2 MS1 J2 = GF 4
2 MS2 # pair Rep

1 {5, 7, c, e} {5, 7, c, e} {5, 7, c, e} {5, 7, c, e} {8, a, c, e} {8, a, c, e} 900, (14)
1

2 {7} {4, 7} {c} {8, c} {c} {b, c} 900, (2)

Four CK31 = 0 K0 = 0x67d4 0097 6ea0 d1d5 RK31 = 0x1db3 707f 67d4 0097

No. J0 = GF 4
2 MS0 J1 = GF 4

2 MS1 J2 = GF 4
2 MS2 # pair Rep

1 {5, 7, c, e} {5, 7, c, e} {0, 2, 9, b} {0, 2, 9, b} {0, 2, 4, 6} {0, 2, 4, 6} 900, (11)
1

2 {5} {5, 6} {0} {0, 4} {4} {3, 4} 900, (2)

	Introduction
	Preliminaries
	Related Key with known-plaintext Attack
	Related-key with chosen-plaintext-ciphertext Attack
	Meet in the middle attack
	Conclusion

