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Abstract 

The conversion of centrifuge data into capillary pressure curves is crucial for rock capillary pressure 

measurement in various applications. This process involves converting measured fluid productions 

into local saturation values, and the accuracy and efficiency of this procedure are essential. This 

paper addresses the challenge of achieving accuracy without sacrificing computational efficiency by 

introducing a new method based on the Reproducing Kernel Hilbert Space (RKHS) technique. This 

approach enables the conversion of capillary pressure versus average saturation data into capillary 

pressure versus local (outlet) saturation. The RKHS method is applied to both drainage and 

imbibition centrifuge data, and its efficiency and accuracy are evaluated using both artificially 

generated and experimental datasets. The results obtained with the RKHS method are compared 

and validated against other existing methods. 
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1. Introduction 

Capillary pressure curves are extensively used in the petroleum industry, such as two and three-

phase fluid flow simulation in porous media, making decisions about enhanced oil recovery (EOR) 

management, determining rock wettability, and estimating pore size distribution [Error! Reference 

source not found.−‎7]. The equation for centrifuge capillary pressure represents a singular integral 

equation, and researchers have proposed various approximate solutions to this equation [‎8, ‎9]. 

Recently, Bursey et al. [‎10] even employed machine learning techniques for predicting centrifuge 

capillary pressure. 

In centrifuge experiments, average saturation S is measured against capillary pressure 1Pc at the 

inlet face of a rock sample during rotation at various angular velocities   (Figure 1). Hassler and 

Brunner [‎11] and Hermansen et al. [‎12] established the relationship between average saturation 

1( )S Pc  and local saturation ( )S Pc . Their assumptions include hydrostatic equilibrium in each 

phase and Dirichlet boundary condition of 0Pc   at the outflow. Capillary pressure can be 

measured at any distance ( r ) from the centrifuge axis for drainage experiments using the following 

equation: 

2 2 2

2

1
( ),

2
rPc r r    

(1.1) 

Where: 

 rPc  is the capillary pressure at radius r . 

  is the difference between the phase densities.  
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  is the rotation speed.  

 1r  and 2r  are the radii at the core faces having minimum and maximum distance from the 

center, respectively.  

Based on Eq. (1.1), capillary pressure at the face near the center is: 

2 2 2

1 2 1

1
( ).

2
Pc r r    

(1.2) 

Using Eqs. (1.1) and (1.2), we have: 
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(1.3) 

The proportion between S and its average is: 
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r
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S S r dr

r r


   
(1.4) 

Finally, the following equation can be derived after mathematical calculation: 
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1
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Pc r Pc r r Pc


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 
  

(1.5) 

 

or 
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1
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r Pc Pc BPc





  

 (1.6) 

where 
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 
 

(1.7) 

For imbibition experiments, similar equations are obtained exchanging 1r  for 2r , 

2

2

1

1 ,
r

B
r

 
  

 
 

(1.8) 

and 1Pc  for 2Pc , where 2Pc is the capillary pressure at radius 2r  [‎13, 13‎12]. Both drainage and 

imbibition experiments, capillary pressure ( ( )S Pc ) aim to obtain from centrifuge data (
1( )S Pc ) 

using Eq. (1.6). 

Various methods have been proposed to approximate the solution of Eq. (1.6). Hassler and Brunner 

(HB) assumed that the pressure field in the core is linear and the gravity has no influence on the 

pressure field [‎14]. These assumptions are valid for narrow and short samples inside a centrifuge 

with a long rotational axis. So, this method gives smaller saturations compared to the exact solution 

[‎15]. The Hoffman method [‎16], van Domselaar method [‎17], Rajan method [‎18], Forbes methods 

[‎19], and Nazari Moghaddam [‎20] address the solution of fundamental Eq. (1.6). It is revealed that all 

mentioned methods use a simplified version of Eq. (1.6). It is because the weakly singular Volterra 

integral Eq. (1.6) is known to be ill-conditioned [‎11, ‎12]. In other words, error in local saturation 

increases during inverting noisy average saturation data. In this regard, various interpretation 
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procedures were carried out [‎15, ‎21, ‎22]. However, for better accuracy, these methods need special 

experimental facilities. Forbes methods have simple implementation but are sensitive to pressure 

step size and give fluctuated results [‎19]. Except for the Forbes methods, other mentioned methods 

such as Nazari Moghaddam (NM) and Hassler and Brunner (HB) address the solution of only 

drainage experiments. Considering the numerous industrial applications of the centrifuge technique, 

a robust method that provides accurate results with less computational time is still demanded in 

both drainage and imbibition experiments.  

In this paper, reproducing kernel Hilbert space (RKHS) method is introduced for solving the 

fundamental centrifuge equation (Eq. (1.6)) to obtain local saturation from centrifuge data for both 

drainage and imbibition experiments. 

2. RKHS Method 

The theory of reproducing kernel, initially introduced by Zaremba [‎23], has been widely used to solve 

boundary value problems [‎24]. Aronszajn [‎25] further developed the theory, introducing Bergman 

kernel functions that have found applications in solving various problems. Cui and Lin [‎26], after 

summarizing RKHS theory, have solved different problems. Karatas Akgül [‎27] has proposed the 

RKHS method for nonlinear boundary-value problems. Foroutan et al. [‎28] used the RKHS method 

for computing solutions of nonlinear third-order ordinary differential equations under multipoint 

boundary conditions. Recently, the RKHS method has been used to address problems across 

different scientific domains [‎29−‎36]. 

Fundamentally, the centrifuge equation (Eq. (1.6)) can be rearranged as follows: 

 
1

1 1 1
0

( ) ( , ) ( ) , 0,
Pc

F Pc K Pc Pc S Pc dPc Pc   (2.1) 

where 

 2
1 1 1

1 2

2
( ) ( ) ,

r
F Pc S Pc Pc

r r
 
 

 (2.2) 

and 

 1

1

1
( , ) .K Pc Pc

Pc B Pc



 (2.3) 

Above equation can be rewritten as 

 
1

1 1 1
0

( ) ( , ) ( ) , 0 1,
Pc

f Pc K Pc Pc s Pc dPc Pc    (2.4) 

where 

 1 max 1

max

1
( ) ( ),f Pc F Pc Pc

Pc
  (2.5) 

and 

 1 max 1( ) ( ).s Pc S Pc Pc  (2.6) 
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maxPc is defined as the maximum capillary pressure data that centrifuge experiments are conducted. 

The space [0,1]mW  is defined as follows: 

  ( 1) ( ) 2[0,1] ( ) | ( ) [0,1], ( ) [0,1] ,m m mW s x s x AC s x L    (2.7) 

where [0,1]AC stands for an absolutely continuous real-valued function on [0,1] . The following 

concepts: 

 
1 1

( ) ( ) ( ) ( )

0
0

( , ) (0) (0) ( ) ( ) ,
m

i i m m

m

i

s q s q s x q x dx




    (2.8) 

and 

 ( , ) , , [0,1],m

mm
s s s s q W   (2.9) 

are the inner product and norm in [0,1]mW  respectively. [0,1]mW is a complete Hilbert space and 

contains a unique reproducing kernel function [‎37]. Therefore, [0,1]mW  is defined as a reproducing 

kernel Hilbert space. Let ( )m

xR y denote the reproducing kernel of [0,1]mW . For every 

[0,1]ms W and fixed [0,1]x  ,  m

xR y satisfies the following reproducing property: 

 ( ) ( ( ), ( )) .m

x ms x s y R y  (2.10) 

For more detail of  m

xR y  calculation see the Appendix.  1

xR y is as follow 

 
1

1 , ,
( )

1 , .
x

y y x
R y

x y x

 
 

 
 (2.11) 

For  
1
, [0,1]

n

j jj
x x


 , we define 

 
0

( ) ( ) ( , ) ( ) .
jx

j x j j xx R x K x t R t dt     (2.12) 

An orthonormal system of  
1

n

j j



is derived by applying the Gram–Schmidt orthogonalization 

process on  
1

n

j j



. In other words: 

 
1

( ) ( ),
j

j jk k

k

x x  


  (2.13) 

where , 1,2, , ,jk k j   are the Gram–Schmidt orthogonalization coefficients. The approximate 

solution of (2.4) can be written as: 

The approximate solution of Eq. (2.4) can then be written as: 

 
1 1

( ) ( ) ( ).
jn

n jk k j

j k

s x f x x 
 

  (2.14) 
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For detailed computational procedures and proof, readers are referred to Beyrami et al. [‎24] and the 

provided appendix. 

3. Results and Discussion 

Two sets of examples are used in this study. The first step (validation part) was an accuracy 

assessment on an artificially generated dataset. These examples have exact solutions reported in the 

literature and are used for error analysis and validation [‎19, ‎20]. Different numbers of data points 

are used to demonstrate the convergence of the approximate solution to the theoretical function as 

the data points increased. The results of the different values of B are used to consider the effect of 

B on the approximate solution of the RKHS method. The next two sets of experimental centrifuge 

data were used to consider the performance of the RKHS method. The next two sets of experimental 

centrifuge data that contains capillary pressure versus average saturation, were used to consider the 

performance of the RKHS method. These examples lack exact responses and error evaluation cannot 

be done for them. Therefore, these examples are presented as case studies for practical application. 

3.1. Validation 

In this section, the applicability of the proposed method is tested on artificially generated datasets 

for both drainage and imbibition experiments. Moreover, the accuracy is evaluated and compared 

with the methods from the literature for different numbers of experimental data points and the 

values of B . Forbes's second method is believed to be the most accurate and simple method [‎19]. 

Therefore, in the following figures, the RKHS method is compared with the Forbes method, and 

comparison results with other methods are presented in tables. For this purpose, the root mean 

square error (RMSE) and the relative error with the following definitions   

 

2

, ,1
( )

, ,
1

n

theoretical predictedtheoretical i predicted ii

theoretical

S SS S
RMSE RelativeError

n S




 



 (3.1) 

are reported in the tables and figures, respectively. Used functions are assumed to be the exact local 

capillary function or saturation function 1( )S Pc . Using Eq. (1.6), the centrifuge data that are 

average saturation, 
1( )S Pc , are artificially obtained. Predicted local saturation function , 1( )n BS Pc  

for different values of n and B are obtained by (2.14) as , 1 , 1 max( ) ( / )n B n BS Pc s Pc Pc . 

Example D1: The following function is used for drainage experiments as the exact theoretical local 

saturation by Forbes [‎19] and Nazari Moghaddam [‎20]: 

 

1, 0 2,

( ) 1.5
0.25, 2.

Pc

S Pc
Pc

Pc

 


 
 



 (3.2) 

Example D2: The following function is used for drainage experiments as the exact theoretical local 

saturation by Nazari Moghaddam [‎20]: 

 

1, 0 0.25,

( ) 0.5
, 0.25.

Pc

S Pc
Pc

Pc

 


 




 (3.3) 



6 
 

Example D3: The following function is used for drainage experiments as the exact theoretical local 

saturation by Forbes [‎19]: 

 ( ) 0.1 0.9 ( 1.66 0.083).S Pc Exp Pc     (3.4) 

Figures 2, 3, and 4 illustrate the solution and the relative error of the RKHS method for 0.75B   

and the varying numbers of data points for the drainage experiment. The derived solution converges 

to the precise answer as the number of data points grows. Figures 5a, 6a, and 7a show the 

comparison result of RKHS and the Forbes method with the precise theoretical ( )S Pc  for 0.75B   

and 10n   data points for the drainage experiment. Figures 5b, 6b, and 7b indicate the 

interpretation of ( )BS Pc  and 
1( )BS Pc  for n=50 data points and B=0.1, 0.5, 0.8, 0.95, and 1 for the 

drainage experiment. As a result, the RKHS method has good accuracy for different values of B. Table 

1 also presents the superior results of the RKHS method for drainage experiments versus the Hassler 

and Brunner (HB) solution [‎14] and the Nazari Moghaddam (NM) solution [‎20]. The RMSE values for 

drainage examples D1, D2, and D3 stand at 4.19E-3, 0.031, and 0.031, respectively, marking them as 

the lowest values among the compared methods.  As shown, the RKHS method is more accurate 

than the other methods. 

Example I1: The following function is used for imbibition experiments as the exact theoretical local 

saturation by Forbes [‎19]: 

 
0.1, 0 0.001,

( )
0.1 0.1 ( 1000 ), 0.001.

Pc
S Pc

Log Pc Pc

  
 

  
 (3.5) 

Example I2: The following function is used for imbibition experiments as the exact theoretical local 

saturation by Forbes [‎19]: 

 ( ) 0.85 1.5 / ( 2).S Pc Pc    (3.6) 

Figures 8 and 9 illustrate the solution and the absolute error of the RKHS method for 4.0B    and 

the different numbers of data points for the imbibition experiment. As the number of data points 

rises, the resultant solution converges to reliable response. Figures 10a and 11a demonstrate the 

comparative result of RKHS and Forbes methods with exact theoretical ( )S Pc  for 4.0B    and 

10n   data points for the imbibition experiment. Figures 10b and 11b indicate interpretation of 

( )BS Pc  and 
1( )BS Pc  for n=50 data points and B=-0.1, -1, -4, -20, and -100 for imbibition 

experiment. Therefore, the RKHS method has good accuracy for different values of B. Table 2 also 

presents the RMSE superior results of the RKHS method for imbibition experiments versus the 

Forbes method solution [‎19]. As shown, for imbibition examples I1 and I2, the RMSE values are 

9.41E-3 and 7.29E-3, both of which are lower than the error associated with the Forbes method. 

3.2. Case Study 

In this section, two sets of experimental centrifuge data for drainage and imbibition experiments are 

used to compare the RKHS method with the Forbes method [‎19]. Figures 12a and 12b illustrate the 

following fitted curve: 

 ( ) .
b

e

a Pc c
S Pc

d Pc f





 (3.7) 
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with experimental centrifuge data S , based on RKHS and Forbes methods for each case study. RKHS 

and Forbes methods are compared using interpolated S  data. The results of this comparison 

showed the robustness and accuracy of the RKHS method across different cases. 

Example D4: A set of experimental centrifuge data S  for drainage experiment is used to compare 

the RKHS method with the Forbes method [‎19]. The rock sample properties are in Table 3.  

Example I3: A set of experimental centrifuge data S  for the imbibition experiment is used to 

compare the RKHS method with the Forbes method [‎19]. Table 4 contains the rock sample 

properties. 

4. Conclusions 

In this paper, the solution of the fundamental centrifuge equation is derived using the RKHS method. 

The proposed method provides an accurate and efficient solution for calculating capillary pressure 

from centrifuge data. The accuracy of the RKHS method is validated and compared with other 

methods using both artificially generated and experimental data. The method demonstrated its 

versatility and computational efficiency across a range of B  values, offering a promising solution for 

analyzing experimental results in both drainage and imbibition studies. The results obtained with the 

RKHS method exhibited significantly higher precision compared to the other methods. 

Appendix 

This section includes computational details based on the RKHS theory. The provided appendix 

presents the nomenclature and mathematical procedures used in the calculations. Suppose that 
yR  

denote the reproducing kernel function of [0,1]mW . By the definition of reproducing property in Eq. 

(2.10), for every [0,1]y  and [0,1]ms W  , we have 

 ( ) ( ( ), ( )) .m

y ms y s x R x   (A.1) 

By Eq. (2.10), the definition of inner product in [0,1]mW  , we have 

 
1 1

( ) ( ) ( ) ( )

0
0

( , ) (0) (0) ( ) ( ) ,
m

i i m m

y m y y

i

s R s R s x R x dx




     (A.2) 

Using integration by parts m  times, we can get 

 

2
1 11( ) ( 1) 1

0 200 0

( ) ( ) ( )
( ) ( 1) ( ) | ( 1) ( ) ,

m m i m
my y ym i m i m

xm m i mi

R x R x R x
s x dx s x s x dx

x x x


  



  
   

  
   

 (A.3) 

and after a change of variable, we obtain 

 

2 1
1 1( 1) ( )

2 10 0

( ) ( )
( 1) ( ) ( 1) ( ) .

m i m i
m my yi m i i i

m i m ii i

R x R x
s x s x

x x

  
  

   

 
  

 
    (A.4) 

Therefore, 
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2 1
1 ( ) ( 1)

2 10

2 1
1 ( 1) ( )

2 10

2
1

20

(0) (0)
( ( ), ( )) (0) ( 1)

(1)
( 1) (1)

( )
( 1) ( ) .

i m i
m y yi m i

y m i m ii

m i
m ym i i

m ii

m

ym

m

R R
s x R x s

x x

R
s

x

R x
s x dx

x

 
  

 

 
  

 

  
   

   


 




 









  (A.5) 

By Eq. (A.1), 
yR  satisfies 

 

2

2

2 1

( 1)

2 1

2 1

2 1

( )
( 1) ( ),

(0) (0)
( 1) 0,

(1)
0, 0,1, , 1.

m

ym

m

i m i

y ym i

i m i

m i

y

m i

R x
x y

x

R R

x x

R
i m

x

 

 

 

 

 

 
   


 

  
 


  



  (A.3) 

In case of x y , 
yR  satisfies 

 

2

2

( )
( 1) 0,

m

ym

m

R x

x


 


  (A.4) 

with the boundary conditions 

 

2 1

( 1)

2 1

2 1

2 1

(0) (0)
( 1) 0,

(1)
0, 0,1, , 1.

i m i

y ym i

i m i

m i

y

m i

R R

x x

R
i m

x

 

 

 

 

 

 
  

  



   

  (A.5) 

Equation 
2 0m  , is known as the characteristic equation of Eq. (A.4) with 2m  eigenvalue 

multiplicity for 0  . Hence, Eq. (A.3) has the following general solution 

 

2 1

1

2 1

1

( ) ( ) , ,
( )

( ) ( ) , .

m i

y ii

y m i

y ii

lR x c y x x y
R x

rR x d y x x y









  
 

 




  (A.6) 

Since 

 

2

2

( )
( 1) ( ),

m

ym

m

R x
x y

x


   


  (A.7) 

we conclude 

 

2 1 2 1

2 1 2 1

( ) ( )
, 0,1, ,2 2,

m m

y y

m m

rR y lR y
i m

x x

   

 

 
  

 
  (A.8) 

and 



9 
 

 

2 1 2 1

2 1 2 1

( ) ( )
( 1) 1.

m m

y ym

m m

rR y lR y

x x

   

 

  
      

  (A.9) 

Eqs. (A.8), (A.9), and 2m  equations from (A.5) are coupled for computing 4m  unknowns ( )ic y  and 

( )id y , 1,2, ,2i m , in (A.6). Beyrami et al. [‎37] presented the Mathematica source code of the 

above equations. 

Spouse that , 1, ,i j N  , have been determined by Eq. (2.12). Throughout what follows, 

calculation of the approximate solution ns  in Eq. (2.14) is described. Let 
* * * *

,1 ,2 ,( , , , )T

i i i i i  β  

denote the solution of the following linear system, 

 

*

,1 11 1 1 2 1 1

*

2 2 2 2 1 2,2

*
1 1 1 2 1 1 1, 1

( , )( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
,

( , ) ( , ) ( , ) ( , )

i i mm m i m

i m m i m i mi

i m i m i i m i i mi i

       

       

       





    

    
    
          
    
     

  (A.10) 

and
*

, 1i i  . Let A  denote the coefficient matrix of the above linear system. In order to get the 

entries of A , using the integral operator in Eq. (2.4), we define L  as 

 
0

( )( ) ( , ) ( ) , 0 1,
x

Ls x K x t s t t x     (A.11) 

A  is Hermitian matrix and its entries can be obtained by 

 

( ( ), ( )) ( ( ),[ ( )]( ))

[ ( ( ), ( )) ]( )

[ ( )]( ).

i j m i y x j m

y i x m j

y i j

x x x L R y x

L x R y x

L y x

  











  (A.12) 

We define
*

*

i
i

i m




β . In order to get the solution Ns , we proceed as follow. Let 

, ( , )i k i k m    

denote the coefficients of the following Fourier series, 

 
1

, ,1
.

i

i i k k i i ik
    




    (A.13) 

Hence, we have  

 
,

1 2 2

,1
( , ) ,

i k

i

i i m i ik
   




    

and 

 
,

12 2

, 1
( , ) ,

i k

i

i i i i mk
   




    

We denote the matrix form of the Eq. (A.13) as ξ Γξ , where 
1 2[ , , , ]T

N  ξ , 

1 2[ , , , ]T

N  ξ , and , , 1[ ]N

i j i j Γ  is a lower triangular matrix. For lower triangular matrix B , 
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whose ith row is T

iβ , we have ΓB I , where I  is the identity matrix. In what follows, c source 

code of the above procedure is presented. 

 void CalcBeta() 
 { 
  double sum; 
  for (int i = 0; i <= N - 1; i++) 
  { 
   for (int k = 0; k < i; k++)  
   { 
    BETA[i][k] = 0.0; 
    for (int q = 0; q <= k; q++) 
     BETA[i][k] += Beta[k][q] * A[i][q]; 
   } 
   sum = 0.0; 
   for (int q = 0; q < i; q++) 
    sum += pow(BETA[i][q], 2.0); 
 
   Beta[i][i] = 1.0 / (sqrt(A[i][i] - sum)); 
 
   for (int j = 0; j < i; j++)  
   { 
    sum = 0.0; 
    for (int q = j; q <= i - 1; q++)  
     sum += BETA[i][q] * Beta[q][j]; 
    Beta[i][j] = Beta[i][i] * (-sum); 
   } 
  } 
 } 
 
 double yn(double x) 
 { 
  double result = 0.0;   
  for (int i = 0; i < N; i++) 
   for (int k = 0; k <= i; k++) 
    result += Beta[i][k] * f(k) * SaiBar(i, x);  
  return result; 
 } 

 

Nomenclature 

Latin Greek 

r  Radial distance from the centrifuge axis 
to an arbitrary point in the centrifuge 
sore 

  Phase mass density 

1r  r at the inner core face   Difference between the phase densities 

2r  r at the outer core face   Centrifuge angular velocity 

Pc  Capillary pressure 
jk  Gram–Schmidt orthogonalization 

coefficients 

1Pc  Capillary pressure at 1r  j  Base functions of 
mW  

2Pc  Capillary pressure at 2r  j  Orthonormal  base functions of 
mW  

maxPc  maximum capillary pressure S  Wetting phase saturation defined on

max[0, ]Pc , i.e. 1( )s Pc where 

1 max0 Pc Pc   
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S  Wetting phase saturation defined on  

max[0, ]Pc , i.e. 1( )S Pc where 

10 1Pc   

nS  Approximate value of wetting phase 

saturation defined on  max0,Pc  

S  Average wetting phase saturation 

defined on  max[0, ]Pc  

Metric Units 

B  Dimensionless factor, 
2

2 11 ( / )B r r 

for drainage and 
2

1 21 ( / )B r r  for 

imbibition 

Pc  pascal 

F  Known side of the Volterra integral 

equation defined on max[0, ]Pc  

r  Meter (m) 

K  Kernel of the Volterra integral operator   Kgr/m3  

f  Known side of the Volterra integral 
equation defined on [0, 1] 

  Radian per second 

s  Wetting phase saturation defined on

 0,1 , i.e. 1( )s Pc where 10 1Pc   

  

ns  Approximate value of wetting phase 

saturation defined on  0,1  
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Figure 1: Centrifuge experiment setup: (a) drainage and (b) imbibition experiment setup. 

 
(a) 

 
(b) 

 

Figure 2: (a) Exact and local saturation obtained by RKHS method for Example D1 with B=0.75 and n=5, 10, and 50 data 
points. (b) The relative error of obtained approximate solutions. 

 
(a) 

 
(b) 

 

Figure 3: (a) Exact and local saturation obtained by RKHS method for Example D2 with B=0.75 and n=5,10,50 data points. (b) 
The relative error of obtained approximate solutions. 
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Figure 4: (a) Exact and local saturation obtained by RKHS method for Example D3 with B=0.75 and n=5, 10, and 50 data 
points. (b) The relative error of obtained approximate solutions. 

 
(a) 

 
(b) 

 

Figure 5: (a) Comparison of local saturation obtained by RKHS and Forbes methods versus the exact function for Example D1 

with B=0.75 and n=10 data points. (b) Interpretation of ( )BS Pc  and 
1( )BS Pc  for Example D1 with n=50 data points 

and B=0.1, 0.5, 0.8, 0.95, and 1. 

 
(a) 

 
(b) 

 

Figure 6: (a) Comparison of local saturation obtained by RKHS and Forbes methods versus the exact function for Example D2 

with B=0.75 and n=10 data points. (b) Interpretation of ( )BS Pc  and 
1( )BS Pc  for Example D2 with n=50 data points and 

B=0.1, 0.5, 0.8, 0.95, and 1. 

 
(a) 

 
(b) 
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Figure 7: (a) Comparison of local saturation obtained by RKHS and Forbes methods with the exact function for Example D3 

with B=0.75 and n=10 data points. (b) Interpretation of ( )BS Pc  and 
1( )BS Pc  for Example D3 with n=50 data points and 

B=0.1, 0.5, 0.8, 0.95, and 1. 

 
(a) 

 
(b) 

 

Figure 8: (a) Exact and local saturation obtained by RKHS method for Example I1 with B=-4.0 and n=5, 10, 50 data points. (b) 
The relative error of obtained approximate solutions. 
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(b) 

 

Figure 9: (a) Exact and local saturation obtained by RKHS method for Example I2 with B=-4.0 and n=5, 10, 50 data points. (b) 
The relative error of obtained approximate solutions. 
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Figure 10: (a) Comparison of local saturation obtained by RKHS and Forbes methods with exact function for Example I1 with 

B=-4.0 and n=10 data points. (b) Interpretation of ( )BS Pc  and 
1( )BS Pc  for Example I1 with n=50 data points and B=-0.1, 

-1, -4, -20, and -100. 

 
(a) 

 
(b) 

 

Figure 11: (a) Comparison of local saturation obtained by RKHS and Forbes methods with exact function for Example I2 with 

B=-4.0 and n=10 data points. (b) Interpretation of ( )BS Pc  and 
1( )BS Pc  for Example I2 with n=50 data points and B=-0.1, 

-1, -4, -20, and -100. 

 
(a) 

 
(b) 
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Figure 12: (a) Interpretation of measured saturation for plug Example D4 where B=0.683148, based on RKHS and Forbes 
method for drainage experiment. (b) Interpretation of measured saturation for plug Example I3 where B=-1.06773, based 

on RKHS and the Forbes method for imbibition experiment. 

 
(a) 

 
(b) 

 

Table 1: The calculated RMSE of different methods for different drainage examples. 

 ExamD1 ExamD2 ExamD3 

HB [‎14] 0.184 0.118 0.158 

NM [‎20] 0.048 0.059 0.088 

Forbes [‎19] 0.053 0.062 0.080 

RKHSM 4.91E-3 0.031 0.031 

 

Table 2: The calculated RMSE of different methods for different drainage examples. 

 ExamI1 ExamI2 

Forbes [‎19] 0.041 0.047 

RKHSM 9.41E-3 7.29E-3 

 

Table 3: Rock sample properties of Example D4 

Property Value Unit 

Porosity 17.424 Percent 

Absolute permeability 0.806 mD 

Length 5.101 cm 

Diameter 3.799 cm 

Grain Density 2.836 gr/cc 

 

Table 4: Rock sample properties of Example I3 

Property Value Unit 

Porosity 20.827 Percent 

Absolute permeability 3.362 mD 

Length 5.110 cm 

Diameter 3.799 cm 

Grain Density 2.851 gr/cc 
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