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Abstract: 
The peristaltic flow of nanofluids is a topic of growing interest in fluid dynamics. This study 

investigates the effect of temperature-dependent viscosity and electric conductivity on the 

peristaltic flow of nanofluids. The mathematical model of the peristaltic flow is developed using 

the governing equations of continuity, momentum, and energy for a Newtonian fluid. Large 

wavelength and small Reynolds number assumptions are used to study peristaltic flow to 

simplify the equations of continuity, momentum, and energy. In this article, the nanofluids are 

assumed to be electrically conducting and temperature dependent, and the effects of Hartman 

number and Eckert number is studied. The resulting equations are solved using the Shooting 

Method. The results show that the temperature-dependent viscosity and electric conductivity 

significantly affect the peristaltic flow of nanofluids. The flow rate and pressure gradient 

decrease with increasing viscosity and conductivity while the temperature and heat transfer rate 

increase. Moreover, the nanofluid concentration and particle size significantly impact the flow 

characteristics. In conclusion, this study comprehensively analyses the peristaltic flow of 

nanofluids with temperature-dependent viscosity and electric conductivity. The results can be 

useful for understanding the behaviour of nanofluids in various applications, such as drug 

delivery systems, microfluidics, and thermal management. 
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1. Introduction: 

The word "nanofluid" was first used by Choi [1]. Nanofluid is a colloidal suspension containing 

nanoparticles with sizes ranging from 1 to 100 nanometers dispersed in a base fluid, such as 
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water, oil, or ethylene glycol [2-3]. The nanoparticles can be made of various materials, 

including metals, metal oxides, and carbon-based materials. Nanofluids exhibit unique properties 

due to the nanoparticles' high surface area to volume ratio, which can enhance the base fluid's 

thermal conductivity, electrical conductivity, and viscosity [4]. The study of nanofluids has 

gained considerable attention in recent years due to their potential applications in various fields 

such as energy, biomedical, and industrial sectors [5]. Nanofluids have been studied as a 

promising candidate for heat transfer applications in the energy sector, as they exhibit higher 

thermal conductivity than conventional fluids [6]. In the biomedical field, nanofluids have been 

studied as potential drug-delivery vehicles due to their ability to penetrate biological barriers [7]. 

The peristaltic flow of nanofluids is a field of fluid mechanics that combines the study of 

peristaltic motion, which is a type of fluid flow induced by periodic contraction and relaxation of 

a tube or channel, with the unique properties of nanofluids, which are colloidal suspensions 

containing nanoparticles dispersed in a base fluid [8]. The study of the peristaltic flow of 

nanofluids has gained considerable attention in recent years due to its potential applications in 

various fields, such as biomedical, industrial, and energy sectors [9]. The unique properties of 

nanofluids, such as high thermal conductivity and enhanced viscosity, can affect the behaviour of 

peristaltic flow. Additionally, the peristaltic motion can induce particle migration and 

concentration gradients in the fluid, leading to potential applications in drug delivery, 

microfluidics, and heat transfer [10].  

Studying the peristaltic flow of nanofluids requires a multidisciplinary approach that combines 

fluid mechanics, nanoscience, and engineering. Various analytical and numerical techniques 

have been used to study the peristaltic flow of nanofluids, including perturbation methods, 

numerical simulations, and experimental measurements [11-12]. Understanding the peristaltic 

flow of nanofluids is of great importance for designing and optimising microfluidic devices and 

heat transfer systems. The potential applications of peristaltic flow of nanofluids in the 

biomedical field, such as drug delivery systems and targeted therapy, have also generated 

significant interest among researchers [13-14]. The study of the peristaltic flow of nanofluids is a 

rapidly growing field that presents numerous opportunities for research and development, with 

potential applications in various areas, including energy, industrial, and biomedical sectors [15-

18]. The peristaltic flow of nanofluids with heat transfer is a field of fluid mechanics that 

combines the study of peristaltic motion with the unique properties of nanofluids, which are 
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colloidal suspensions containing nanoparticles dispersed in a base fluid, and heat transfer [19]. 

The study of the peristaltic flow of nanofluids with heat transfer has gained considerable 

attention in recent years due to its potential applications in various fields, such as energy, 

biomedical, and industrial sectors [20]. Peristaltic motion induced by periodic contraction and 

relaxation of a tube or channel can enhance heat transfer due to the mixing of the fluid and the 

generation of vortices. Additionally, the unique properties of nanofluids, such as high thermal 

conductivity, can further enhance heat transfer in peristaltic flow. Studying the peristaltic flow of 

nanofluids with heat transfer requires a multidisciplinary approach that combines fluid 

mechanics, nanoscience, and heat transfer. Various analytical and numerical techniques have 

been used to study the peristaltic flow of nanofluids with heat transfer, including perturbation 

methods, numerical simulations, and experimental measurements. Understanding the peristaltic 

flow of nanofluids with heat transfer is of great importance for the design and optimization of 

microfluidic devices and heat transfer systems, as well as for the development of new materials 

for heat transfer applications [21-23]. 

The potential applications of the peristaltic flow of nanofluids with heat transfer in the energy 

sector, such as in designing cooling systems for electronic devices and developing thermal 

energy storage systems, have generated significant interest among researchers [24]. In the 

biomedical field, the peristaltic flow of nanofluids with heat transfer can potentially be used in 

hyperthermia treatment for cancer therapy [25]. The study of the peristaltic flow of nanofluids 

with heat transfer is a rapidly growing field that presents numerous opportunities for research 

and development, with potential applications in various areas, including energy, biomedical, and 

industrial sectors [26]. The peristaltic flow of nanofluids with heat transfer having temperature-

dependent viscosity and electric conductivity is an advanced field of fluid mechanics that 

combines the study of peristaltic motion with the unique properties of nanofluids and their 

temperature-dependent viscosity and electric conductivity. The analysis of the peristaltic flow of 

nanofluids with heat transfer and variable properties has gained considerable attention in recent 

years due to its potential applications in various fields, such as energy, biomedical, and industrial 

sectors [27-29]. The properties of nanofluids, such as high thermal conductivity and enhanced 

viscosity, can affect the behaviour of peristaltic flow [30]. Additionally, the peristaltic motion 

can induce particle migration and concentration gradients in the fluid, leading to potential 

applications in drug delivery, microfluidics, and heat transfer [31]. However, the properties of 
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nanofluids can vary significantly with temperature, which can affect the behaviour of peristaltic 

flow and heat transfer.  

Studying the peristaltic flow of nanofluids with heat transfer having temperature-dependent 

viscosity and electric conductivity requires a multidisciplinary approach that combines fluid 

mechanics, nanoscience, heat transfer, and electromagnetics. Various analytical and numerical 

techniques have been used to study the peristaltic flow of nanofluids with variable properties, 

including perturbation methods, numerical simulations, and experimental measurements [32-33]. 

Understanding the peristaltic flow of nanofluids with heat transfer and variable properties is of 

great importance for the design and optimization of microfluidic devices and heat transfer 

systems [34]. The potential applications of peristaltic flow of nanofluids with variable properties 

in the energy sector, such as in designing cooling systems for electronic devices and developing 

thermal energy storage systems, have generated significant interest among researchers. In the 

biomedical field, the peristaltic flow of nanofluids with variable properties can potentially be 

used in hyperthermia treatment for cancer therapy and drug delivery systems [35]. 

Studying the peristaltic flow of nanofluids with heat transfer having temperature-dependent 

viscosity and electric conductivity is an emerging and challenging field that presents numerous 

opportunities for research and development, with potential applications in various areas, 

including energy, biomedical, and industrial sectors. The temperature-dependent viscosity and 

electric conductivity of nanofluids can significantly affect the behaviour of peristaltic flow and 

heat transfer. The following are some of the results that have been observed in the study of the 

peristaltic flow of nanofluids with variable properties: 

1. Temperature-dependent viscosity: The viscosity of nanofluids can increase significantly 

with increasing temperature due to Brownian motion and particle aggregation. This can 

affect the peristaltic motion and the generation of vortices, leading to changes in heat 

transfer characteristics. Furthermore, an increase in viscosity can also result in higher 

pressure drop, which can affect the pumping efficiency of the system. 

2. Temperature-dependent electric conductivity: The electric conductivity of nanofluids can 

also vary with temperature due to changes in the mobility of ions and electrons. The 

peristaltic motion can induce electrical charges and create electric fields, leading to 

potential applications in electrokinetics and electroosmotic flow. The electric 
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conductivity can also affect the Joule heating and the overall heat transfer characteristics 

of the system. 

3. Particle migration and concentration gradients: The peristaltic motion can induce particle 

migration and concentration gradients in the fluid due to the combined effects of fluid 

flow and electric fields. The migration and concentration of nanoparticles can affect the 

thermal conductivity and heat transfer characteristics of the system. 

4. Non-Newtonian behavior: Nanofluids can exhibit non-Newtonian behavior due to the 

presence of nanoparticles and their interaction with the base fluid. The non-Newtonian 

behavior can affect the peristaltic motion and the overall heat transfer characteristics of 

the system. 

The temperature-dependent viscosity and electric conductivity of nanofluids can significantly 

affect the behaviour of peristaltic flow and heat transfer. The study of the peristaltic flow of 

nanofluids with variable properties is an emerging field that presents numerous opportunities for 

research and development, with potential applications in various areas, including energy, 

biomedical, and industrial sectors. 

2. Problem Formulation: 

Flow of an incompressible nanofluid in a 1 2l l  width asymmetric channel. The flow is caused 

by the propagation of sinusoidal waves over the channel's non-conducting and flexible walls. 

The following are the mathematical formulas for channel walls [36] as seen in Figure. 1: 

1 1 1

2
(X, t) l cos (X st) ,Y W






 
    

 
 

 

2 1 2

2
(X, t) l cos (X st) ,Y W


 



 
      

 
 

(1) 

In the case of rectangular coordinates, the length of the channel and the normal to its walls are 

used, while time coordinate is represented by t. The amplitudes of the upper and lower walls of 

the channel are denoted by the letters L1 and L2, respectively. These amplitudes may be used to 

calculate the Reynolds number, which is a dimensionless parameter that describes the ratio of 

inertial forces to viscous forces in the fluid. The Reynolds number is an important parameter in 

fluid mechanics, as it can determine the nature of the fluid flow behavior, such as laminar or 

turbulent flow. Overall, the choice of coordinate system and the parameters used to describe fluid 

flow behavior depend on the specific problem being analyzed and the physical system being 
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studied, while the phase difference is denoted by the letters 𝛼 ∈ [0, 𝜋] and the wavelength is 

denoted by the letter𝜆. Furthermore, the amplitudes 1 2,  , the width of the channel 1 2l l  and the 

phase difference meets the following constraint: amplitudes 1 2,  , width of the channel 1 2l l .In 

addition, the magnetic field is present. 

1 2 1 2 1 22 cos( ) ( )l l         (2) 

It is assumed that constant wall temperature of the upper wall denoted  𝑇0  and the constant 

temperature of the lower wall satisfies the following the condition  0 1T ,T When a magnetic 

field is present, it can exert a force on the charged particles in the fluid, which in turn can affect 

the fluid flow behavior. To model the effects of a magnetic field in a fluid, the magnetic field 

strength is typically described using the magnetic field intensity, denoted by the symbol 

M [0;M;0] . Temperature dependent viscosity and electric conductivity are two crucial 

properties that are at the heart of many scientific research studies. Viscosity is a measure of a 

fluid's resistance to flow, while electric conductivity is a measure of a material's ability to 

conduct electrical current. Both of these properties are highly dependent on temperature, which 

can have a significant impact on the behavior of materials and fluids. In many industrial and 

scientific applications, understanding the temperature-dependent behavior of viscosity and 

electric conductivity is essential. For example, in the petroleum industry, knowledge of viscosity 

is crucial for predicting the flow behavior of crude oil through pipelines. Similarly, in the field of 

materials science, understanding the electric conductivity of materials at different temperatures is 

important for developing new technologies such as solar cells and batteries. Research into the 

temperature-dependent behavior of viscosity and electric conductivity is ongoing, and new 

insights into these properties are continually being discovered. As scientists continue to deepen 

our understanding of these properties, we are able to better predict and control the behavior of 

materials and fluids, leading to advances in a wide range of industries and fields. 

2.1. Mathematical Modeling:  

The peristaltic flow of nanofluids with heat transfer can be mathematically modeled using the 

Navier-Stokes equations for fluid flow and the energy equation for heat transfer. The governing 

equations are supplemented by the continuity equation and the Maxwell equations for the electric 

field. 
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The continuity equation is given as [37]: 

( ) 0,u
t





 


 

(3) 

where ρ is the density, t is time, u is the velocity vector, and ∇ is the gradient operator. 

The Navier-Stokes equations are [38]: 

21
. ( ) ,

u
u u p u f

t





       


 

(4) 

where 𝑝 is the pressure, 𝜇 is the dynamic viscosity, and 𝑓 is the body force per unit mass. For 

peristaltic flow, 𝑓 is modeled as the wave velocity and amplitude. 

The energy equation for heat transfer is [39]: 

( u. T) .(k ) Q,p

T
c T

t



     


 

(5) 

where 𝐶𝑝 is the specific heat, T is the temperature, k is the thermal conductivity, and Q is the 

heat generation or absorption term. 

For nanofluids, the viscosity and electric conductivity can be modeled as temperature dependent 

functions. The viscosity can be modeled using the Vogel-Fulcher-Tamman (VFT) Equation (6) 

[40]:  

0

0

(T) exp[ ],
b

E

k T T
 





 

(6) 

Where  𝜇0 is the viscosity at a reference temperature 𝑇0, 𝛥𝐸 is the activation energy, 𝐾𝑏is the 

Boltzmann constant, and 𝑇 is the temperature. 

The electric conductivity can be modeled using the Arrhenius equation (7) [41] 

0

0

1 1
( ) exp[ ( )],

b

Ea
T

k T T
     

(7) 

where 𝜎0 is the electric conductivity at a reference temperature T0, Ea is the activation energy, 

and T is the temperature. 

The Maxwell equations for the electric field are [42]: 

0.E / ,

E ,

e

B

t

  


  



 

(8) 

where 𝐸 is the electric field, 𝜌𝑒 is the charge density, 𝜀0 is the electric constant, and 𝐵 is the 

magnetic field. 
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Governing Equations in Cartesian form is written as which is modeled on the basis of 

temperature depend  

The governing equations for the continuity, momentum and energy equations are given below 

[43]. 

0,
u v

x y

 
 

 
 

(9) 

2

2

2

0

( )
2 ( ) (T)

( v )

[ (T)( )] (T) M

p T T u u

x T x x xu u u
u

t x x u v
u

Y x y






 

      
     
            

       
  

 

(10) 

2

2

( )
2 ( ) (T)

( v )

[ (T)( )]

p T T u u

y T y y yv v v
u

t x x u v

x y x








      
     
            

      
  

 

(11) 

2 2
2

02 2

2 2 2

( )

( ) ( v )

(T) ( ) 2( ) 2( )

nf

nf

T T
k T M

x yT T T
s u

t x y u v u u

y x x x







   
    

      
   

       
        

 

(12) 

The following equations are used to express the frames that relate unsteady and steady flow 

phenomena, which are referred to as the fixed frame and the moving frame, respectively: 

(X,Y, t) V(X,Y)

, P(X,Y, t) (X,Y) ,

( , , ) (X,Y) s T(X,Y, t) T(X,Y)

X X st V

Y Y st P

U X Y t U

   
 

   
 

   

 

(13) 

The non-dimensional parameters are provided as follows: 



9 
 

2
2

1

2

1

*

1 0

0

0

(T T )

(S )
Pr

(T)
( )

p b

b

nf

nf

X

V

s

w
w

L

L
L

L

k







 




 












 






  






 



 

1

1
1

1

2

1

0

0

1 0

2

1 0(S ) (T T )p b

Y

L

L

L

pL
p

s

T T

T T

s
Ec









 











 



 




 



 
 

 

1
1

1

2
2

1

2 2
2 0 0 1

0

1

0

Re

U
u

s

W
w

L

L

M L
Ha

sL













 










 


 


 

   
   
   
   
   
  (14) 

The following dimension less equations are obtained by apply the assumptions of the long 

wavelength and low Reynolds number then also apply the stream function on the obtained 

governing equations such as,  

, v ,u
 

 

 
  
 

 
(15) 

Also substituting the values of the 𝜇𝑛𝑓
(𝜃), 𝜎𝑛𝑓(𝜃)  and  𝜅𝑛𝑓 in the obtained governing equations 

such as 

2
* * 2

1 22
((1 ) ) (1 )A ( 1),

p
A Ha

 
   

   

   
    

   
 

(16) 

0,
p







 

(17) 

2 2
* 2 2 *

3 1 22 2
( ) A Pr (1 )( ) Pr (1 )A Ec EcHa A

 
  

 

 
   

 
 

(18) 

The values of the 𝐴1, 𝐴2 𝑎𝑛𝑑 𝐴3written in the given, 
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1 2.5

* *

0 0
2 * *

0 0

3

1
,

(1 )

2 (1 ) 2 ( (1 ))

2 (1 ) ( (1 ))

2 2 (k k )
,

2 (k k )

s s

s s

s b s b

s f s b

A

A

k k
A

k k



        

        








    


    

  


  

 

 

  

Equations (16-17) is simplified by removing the pressure gradient. 

3 2 2 3
* * *

1 3 2 2 3

2 *

2

* 2

2

* 2

2

[1 2 ]

( 1)
0,

[(1 )

[(1 ) ( 1)]

A

A Ha

A Ha

A Ha

   
   

   

 


 

 


 



    
  

   

  
  

  
 

 

 


 

(19) 

Dimensionless boundary conditions, 

2

1

, 0, 1 ,
2

, 0, 0 ,
2

F
at

F
at


   




   




    




    



 

 

 (20) 

* ,F K L  , where  F   and  *K  respectively are the dimensionless mean flow rates in fixed and 

wave frames. 

3. Solution Methodology: 

The numerical approach implemented in Maple 2022 in which shooting technique is used to 

assess the final simplified Equations in (16), (17), (18) and (19), as well as the appropriate 

boundary conditions supplied in Equation. (20). 

4. Results and Discussions: 
The impacts of different physical factors on heat transfer coefficient, dimensionless velocity 

𝑢(𝜉, 𝜂), temperature 𝜃(𝜉, 𝜂), and axial pressure gradient 
𝑑𝑝

𝑑𝜉
 were investigated and described in 

this section. Figures (2-13) show the influence of the Hartmann number on the velocity, 

temperature and axial pressure gradient respectively, in order to better understand the 

phenomenon. Each of these graphs represents a nanofluid of water (−𝐹𝑒3𝑂4). The Hartmann 
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number (Ha) is a dimensionless parameter used to characterize the behavior of a conducting fluid 

in the presence of a magnetic field. It is defined as the ratio of the magnetic field strength (B) to 

the velocity of the fluid 𝑢(𝜉, 𝜂) times the square root of the fluid's electrical conductivity (σ) and 

density (ρ): 

* *
( , )

B
Ha

u
 

 
 The relationship between velocity and Hartmann number in Figure 2 can 

be analyzed by considering the effects of a magnetic field on the fluid flow. The magnetic field 

can cause the fluid to become more viscous and resistive, which in turn can affect the velocity of 

the fluid. In general, for a fixed magnetic field strength and electrical conductivity, as the 

velocity of the fluid increases, the Hartmann number decreases. This is because the denominator 

of the Hartmann number equation, ( , )* *u     increases as the velocity increases, leading to 

a smaller Ha value. Conversely, for a fixed velocity and electrical conductivity, as the magnetic 

field strength increases, the Hartmann number increases. This is because the numerator of the 

Hartmann number equation, B, increases as the magnetic field strength increases, leading to a 

larger Ha value. The relationship between velocity and Hartmann number can have significant 

implications for the behavior of conducting fluids in magnetic fields. For example, at high 

Hartmann numbers, the magnetic field can dominate the fluid flow and suppress turbulence, 

while at low Hartmann numbers, the fluid flow can become turbulent and chaotic. Overall, the 

relationship between velocity and Hartmann number is complex and depends on the specific 

conditions of the fluid flow and magnetic field. However, understanding this relationship can 

help in predicting and controlling the behavior of conducting fluids in the presence of magnetic 

fields. The pressure gradient, in Figure 3 on the other hand, is a measure of how the pressure of a 

fluid changes with respect to distance. In general, a positive pressure gradient means that the 

pressure increases in the direction of flow, while a negative pressure gradient means that the 

pressure decreases in the direction of flow. The relationship between the pressure gradient 
𝑑𝑝

𝑑𝜉
 and 

Hartmann number can be analyzed by considering the effects of a magnetic field on the fluid 

flow. The magnetic field can cause the fluid to become more viscous and resistive, which can in 

turn affect the pressure gradient of the fluid. In general, for a fixed magnetic field strength and 

electrical conductivity, as the pressure gradient increases, the Hartmann number decreases. This 

is because the denominator of the Hartmann number equation, ( , )* *u     increases as the 
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pressure gradient increases, leading to a smaller Ha value. Conversely, for a fixed pressure 

gradient and electrical conductivity, as the magnetic field strength increases, the Hartmann 

number increases. This is because the numerator of the Hartmann number equation, B, increases 

as the magnetic field strength increases, leading to a larger Ha value. The relationship between 

pressure gradient and Hartmann number can have significant implications for the behavior of 

conducting fluids in magnetic fields. For example, at high Hartmann numbers, the magnetic field 

can dominate the fluid flow and suppress turbulence, while at low Hartmann numbers, the fluid 

flow can become turbulent and chaotic. Similarly, changes in the pressure gradient can affect the 

behavior of the fluid, including its stability and the formation of vortices and eddies. The 

trapping phenomenon is a well-known phenomenon that occurs in magnetohydrodynamics 

(MHD), where a magnetic field is applied to a conducting fluid. The Hartmann number, which is 

a dimensionless parameter, is used to characterize the strength of the magnetic field. In this 

discussion, we will examine the trapping phenomenon for various values of the Hartmann 

number.The trapping phenomenon occurs when the magnetic field is strong enough to slow 

down the fluid flow in the direction perpendicular to the magnetic field lines, but not strong 

enough to completely stop it. This results in a build-up of fluid in Figure 4 in the direction 

perpendicular to the magnetic field, leading to the trapping phenomenon. The strength of the 

magnetic field is characterized by the Hartmann number, which is given by: 

0 ( / )Ha B d    

where 𝐵0 is the strength of the magnetic field, d is the characteristic length scale of the system, 𝜎 

is the electrical conductivity of the fluid, 𝜌 is the density of the fluid, and 𝜇 is the magnetic 

permeability of the fluid. When the Hartmann number 𝐻𝑎 is small, the magnetic field is not 

strong enough to cause trapping, and the fluid flows freely. As the Hartmann number increases, 

the magnetic field becomes stronger, and the fluid flow is slowed down. Eventually, a critical 

Hartmann number 𝐻𝑎 is reached, at which point the trapping phenomenon occurs. Beyond this 

critical Hartmann number 𝐻𝑎, the fluid is trapped and does not flow freely anymore. The critical 

Hartmann number 𝐻𝑎 depends on the specific system being studied, as well as the parameters of 

the system such as the fluid conductivity and density. However, in general, the critical Hartmann 

number increases with increasing fluid conductivity and decreasing density. In conclusion, the 

trapping phenomenon is a well-known phenomenon that occurs in magnetohydrodynamics when 

the magnetic field is strong enough to slow down the fluid flow in the direction perpendicular to 
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the magnetic field lines, but not strong enough to completely stop it. The strength of the 

magnetic field is characterized by the Hartmann number 𝐻𝑎, and the critical Hartmann number 

𝐻𝑎 at which the trapping phenomenon occurs depends on the specific system being studied, as 

well as the parameters of the system such as the fluid conductivity and density. In general, the 

Hartman number is used to analyze the effect of magnetic fields on the behavior of conducting 

fluids. The Hartman number 𝐻𝑎 varies with temperature because the electrical conductivity of 

the fluid depends on temperature as shown in the Figure 5. As the temperature 𝜃(𝜉, 𝜂) increases, 

the electrical conductivity generally increases as well. If we consider a system with a constant 

magnetic field strength and length scale, we can study how the Hartman number 𝐻𝑎 changes 

with temperature 𝜃(𝜉, 𝜂) by looking at the other parameters in the equation. As the electrical 

conductivity σ increases with temperature, the Hartman number will increase as well, since it 

appears in the denominator of the equation. On the other hand, the fluid density ρ and kinematic 

viscosity ν generally decrease with increasing temperature 𝜃(𝜉, 𝜂), which would tend to decrease 

the Hartman number. Therefore, the net effect of temperature 𝜃(𝜉, 𝜂) on the Hartman number 𝐻𝑎 

would depend on the relative magnitudes of these factors. Without more specific information 

about the system in question, it is difficult to say more about how the Hartman number 𝐻𝑎 might 

vary with temperature 𝜃(𝜉, 𝜂). 

Figure 6 depicts the effect of the parameter velocity𝑢(𝜉, 𝜂). The behaviour on the wall surfaces 

is diametrically opposed. The velocity profile rises as the distance between the higher wall and 

the ground increases. With an increase in the variable viscosity parameter Figure 7, the amount 

of the pressure gradient reduces in magnitude. Fluid is trapped in the variable viscosity case as 

compared to the constant velocity case. Impact of variable viscosity parameter on the 

dimensionless temperature  𝜃(𝜉, 𝜂)  is captured in Figure 8. Temperature of the fluid  𝜃(𝜉, 𝜂)  

decreases by increasing the variable viscosity parameter. 

Figure 9 is presented to see the variation in the velocity  𝑢(𝜉, 𝜂)  with variable electric 

conductivity.  Increase in electric conductivity results in velocity decrease in the vicinity center 

of channel. Because electrical conductivity enters in the momentum equation as a function of the 

Lorentz force, it may have the same effect as the Hartmann number. Figure 10 show that effect 

of variable electric conductivity parameter on magnitude of the pressure gradient  
𝑑𝑝

𝑑𝜉
  is also 
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similar to Hartmann number, that is, it decreases by increasing electric conductivity. Size of 

trapped bolus also decreases by increasing 𝛾∗ .  Figure 11 is plotted to see the impact of electric 

conductivity on temperature. The graph exhibits decrease in temperature with the increase in  𝛾∗ . 

Figure 12-13 are displayed to demonstrate the effect of Eckert number  𝐸𝑐  on the velocity  

𝑢(𝜉, 𝜂),  axial pressure gradient  
𝑑𝑝

𝑑𝜉
  and the temperature  𝜃(𝜉, 𝜂),  respectively. Eckert number  

𝐸𝑐  appears in the energy equation when we incorporate the viscous dissipation effects. Due to 

viscous dissipation, kinetic energy is converted to heat energy in the flow process and increasing 

the Eckert number  𝐸𝑐  increases the heat energy. Therefore, both velocity  𝑢(𝜉, 𝜂)  and 

temperature  𝜃(𝜉, 𝜂)  of the fluid enhances by increasing the Eckert number  𝐸𝑐.  Magnitude of 

the axial pressure gradient  
𝑑𝑝

𝑑𝜉
  decreases by increasing Eckert number  𝐸𝑐. 

5. Conclusions 

This paper investigates the peristaltic transport of nanofluid via an asymmetric channel under the 

influence of a magnetic field in which the viscosity and electric conductivity of the fluid vary. 

The effects of the many physical factors under consideration are analysed, and their behaviour is 

expanded via the use of graphs and tables. The following are the most significant findings: 

 When nanoparticles are introduced to a base fluid, the rate of heat transmission rises 

significantly. 

 The addition of 2 percent nanoparticles to the base fluid results in the greatest increase in 

heat transfer rate in the case of blood-Au nanofluid, which is 5.82 percent higher than the 

base fluid. 

 The fluid's velocity falls as the Hartmann number and the variable electric conductivity 

parameter increase. 

 Increases in the Hartmann number and the variable electric conductivity parameter both 

enhance the rate of heat transmission but increases in the variable viscosity parameter 

reduce the rate of heat transfer. 

 When the variable viscosity parameter is increased, the magnitude of the pressure 

gradient increases, but the reverse tendency is seen when the variable electric 

conductivity parameter is increased. 
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 The size of the trapped bolus diminishes when the intensity of the magnetic field is 

increased. 
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7. Appendices sections: 

 

Figure 1.The problem's geometrical characteristics 
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Figure.1 Variation in velocity 𝑢(𝜉, 𝜂)with Hartman number 

 

Figure.2 Variation in pressure gradient 
𝑑𝑝

𝑑𝜉
 with Hartman 

number 

 

Figure.4 Variation in temperature 𝜃(𝜉, 𝜂)with Hartman 
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Figure.5 Variation in velocity 𝑢(𝜉, 𝜂)with variable viscosity Figure.6 Variation in pressure gradient 
𝑑𝑝

𝑑𝜉
with variable 

viscosity 
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Figure.7 Variation in temperature 𝜃(𝜉, 𝜂)with variable viscosity 

 

Figure.8  Variation in velocity 𝑢(𝜉, 𝜂)with variable electric 
conductivity 

 

Figure.9  Variation in pressure gradient 
𝑑𝑝

𝑑𝜉
with variable 

electric conductivity 
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Figure.10 Variation in temperature 𝜃(𝜉, 𝜂)for electric conductivity 

 

 

 

 

 

 

 

 

 



25 
 

 

Figure.11 Variation in velocity 𝑢(𝜉, 𝜂)for Eckert number 

 

 

Figure.12 Variation in pressure gradient 
𝑑𝑝

𝑑𝜉
for Eckert 

number 

 

 

Figure.13  Variation in temperature 𝜃(𝜉, 𝜂)for Eckert number 

 


