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Abstract 

The Master surgical scheduling (MSS) program is used at the tactical level of operating room scheduling, 

and its optimal creation can reduce the waiting queue of patients, as well as hospital costs. The patients’ 

length of stay (LOS) has a great impact on the downstream resources management. The uncertain nature 

of LOS and surgeries demand increases the challenges of MSS creation. The aim of the article is to 

determine the MSS program integrated with combination of surgical operations of each block of the 

operating rooms. For this purpose, a novel mathematical model was proposed for multi-objective MSS 

problems with a probabilistic LOS. Then, the chance-constrained programming (CCP) method was 

employed to cope with the uncertain demands. The ε-constraint method was used for small-scale 

problems. Moreover, two metaheuristic algorithms including the multi-objective grey wolf optimizer 

(MOGWO) and the non-dominated sorting genetic algorithm-II (NSGAII) were designed to deal with 

large-scale problems. Based on the results, the MOGWO outperforms the NSGAII in terms of both the 

mean ideal distance (MID) measure and the run time. The sensitivity analysis on the capacity of the wards 

parameter at different levels of demand uncertainty was performed to help managers to decide about the 

appropriate capacity of the wards.   
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1.  Introduction 

The proper management of hospitals is very important to use the resources appropriately, to provide 

satisfactory services to patients, and to increase hospital revenue [1]. The operating room (OR) is among 

the costliest facilities in hospitals. The optimal and effective use of these rooms with an efficient 

scheduling has become an important priority for hospitals [2]. In surgery scheduling, several related 

factors including operating rooms, surgeons, ward and ICU beds, surgical duration, patient stay duration, 

and the conflicting priorities of different stakeholders are involved, making it a complex task [3].  

There are different stages in scheduling ORs. A conceptual model was presented by Blake and Carter [4] 

to schedule ORs. In this model, there are three levels of decision making including strategic level 

planning, tactical level decisions, and operational level planning. The strategic level which is usually 

annual involves long-term planning. In this level, the capacity of the OR is allocated to each surgical 

group [5].  

The case mix planning (CMP) problem refers to the decisions concerning the capacity assignment of the 

OR to each group of patients. The tactical level is associated with a medium-term period (usually six 

months) during which the master surgical scheduling (MSS) problem is used. In a weekly planning 

horizon, the MSS problem assigns surgeons to a particular OR time block, day, and room [6]. In 

operational planning, the decisions are made for daily and weekly periods [7]. The scheduling procedure 

for the surgical department in nearly all hospitals has two principal steps. These two steps include 

allocating the patients to the OR and sequencing of the allocated patients in each room. [8].  

 The MSS problem is considered at the tactical level and the medium-term interval. The block 

scheduling strategy in which a specific time block is reserved for each surgeon or surgical team is adopted 

for elective patients. Because the resources available for surgery and after it (such as ward beds) are 

limited, designing an optimal MSS problem could contribute to an efficient management of hospital 

resources [9]. The patients’ length of stay (LOS) has a great impact on the available downstream 
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resources in each cycle of the planning horizon. Leveling the workload of nurses should also be 

investigated to enhance their job satisfaction. 

In real world situations, the parameters of patients’ LOS and demand that are used in forming the MSS 

program are uncertain. So far, no research has been carried out that considers the combination of surgeries 

and surgeon’s timetables in an integrated manner and also the two parameters of LOS and demand of 

surgeries are considered non-deterministic at the same time. Besides, in this article, the leveling of nurses’ 

workload is considered as an objective function.  Non-deterministic considering of the two mentioned 

parameters at the same time can be a challenging issue. Classical methods have not been able to solve 

problems in large dimensions, so providing algorithms that can solve problems in large dimensions and 

consider parameters as non-deterministic is one of the other challenges we are facing. 

The main research question in this study is how to solve the multi objective MSS problem considering the 

uncertainty in the related parameters. The sub questions are as follows: How can a mathematical model be 

presented for the MSS problem with probabilistic LOS and uncertain demand of surgeries? What is the 

appropriate solution method for solving the problem in large dimensions? What is the appropriate 

capacity of wards at different levels of demand uncertainty?  

Assigning the time blocks of the ORs to each surgeon or surgical group and determining the combination 

of surgical operations in each block, with the objective of minimizing the costs of ORs and leveling the 

workload of nurses are assessed in this study.  In this article, both the mathematical model and the meta-

heuristic algorithms are used to create the MSS program, and also the two mentioned parameters are 

considered non-deterministic at the same time.  

The LoS parameter is considered to have a discrete probability distribution. Furthermore, using a 

stochastic programming method, the problem in the current study is developed by considering the 

uncertain demands of surgery. In the present study, chance-constrained programming (CCP) which is one 

of the main methods for considering uncertain parameters in optimization problems is used. The MSS 
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problem is considered to be multi-objective and a mathematical model is developed for it. In small-scale 

problems, the CPLEX solver and the ε-constraint method are utilized. Two metaheuristic algorithms are 

used to solve large-scale problems and the results are evaluated using a specific measure. Also a 

sensitivity analysis of capacity of wards leads to managerial recommendations to decide about capacity of 

wards considering the associated costs. 

The present paper is structured in the following way. In Section 2, the literature review is presented. In 

Section 3, the problem is described. The mathematical model is introduced in Section 4. The problem 

solving methodology is described in Section 5. The numerical experiments and sensitivity analysis are 

presented in Section 6. Section 7 concludes the paper. 

2. Literature review 

To create an MSS, some factors such as the compatibility between the ORs and the specialties, the 

presence of sufficient downstream resources including the ICU and ward beds, and the availability of 

surgeons should be considered [10]. In this section, a number of articles on MSS are reviewed. The 

research on MSS can be classified into deterministic and nondeterministic categories. 

To create an MSS, Beliën et al. [11] presented a decision support system. In their paper, they had three 

goals: leveling the beds occupied in the wards, sharing the ORs as much as possible, and making the MSS 

as simple and repeatable as possible. Tànfani and Testi [12] presented a zero-one integer programming 

model to create an MSS that could be solved using a heuristic algorithm. Using a mathematical model, 

they attempted to minimize the patients’ waiting time in the first step. Next, they used a heuristic 

algorithm to solve this model. Gunawan and Lau [13] proposed a mathematical model in which the 

different constraints of the problem were considered. To run the large-scale model, they used a heuristic 

algorithm. Yahia et al. [9] presented a new MIP model for the MSS problem. Their objective function had 

two parts (summed in a weighted manner) including the minimization of the daily workload of nurses and 

the daily bed occupancy. Aringhieri et al. [14] presented a two-stage hierarchical model to assign surgical 
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blocks to surgeons. The objective function in this model reduced the waiting time and the hospital costs. 

The model was solved by using a two-level metaheuristic method. Cappanera et al. [15] proposed a mixed 

integer goal-programming model for the MSS. The mathematical model presented in their article was 

deterministic. Penn et al. [16] proposed a multi-criteria MILP model to generate a new MSS. This model 

considered the availability of surgeons and minimized the maximum number of the required beds.  

Ghandehari and Kianfar [17] planned the OR using a block strategy. Two mixed-integer linear 

programming models have been developed for the problem, the first of which models and solves the 

whole problem in one step, and the second model deals with opening the OR and assigning surgeons to 

the operating room. Deklerck et al. [18] presented a deterministic optimization model that is based on the 

concept of service level to define more than expected values for patient demand. Patrão et al. [19] 

presented a deterministic integer linear programming model in which CMP and MSS levels are 

integrated. The objective function includes maximizing the allocation of operating rooms to surgeons and 

avoiding the misplacing of patients in the wrong wards. 

Some nondeterministic studies on the MSS are mentioned below. In nondeterministic studies, such 

parameters as the LOS, the duration of surgery, and the demand for surgery can be nondeterministic. 

A mathematical model for MSS where LOS was assumed to be uncertain was proposed by van Oostrum 

et al. [20]. To maximize the utilization of ORs and hospital bed leveling, they used the column generation 

method. Mannino et al. [21] proposed an MSS program with two MIP mathematical models. The first 

model aimed to balance the surgery demands for various specialties. The next model which had a light 

robustness and in which the demand for surgery was uncertain minimized the OR overtime. Banditori et 

al. [5] used an optimization-simulation method to generate an MSS. In the first stage of their study, they 

presented a deterministic MIP model. In the second stage, the robustness of the model was examined with 

respect to the duration of surgery and the patients’ LOS (the latter was uncertain). These stages resulted in 

a combined optimization-simulation approach with high robustness and efficiency. Hulshof et al. [22] 

presented an MILP model for generating an MSS. In their proposed model, several resources, time 
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periods, and groups of patients with uncertain treatment paths were considered. Fügener et al. [23] 

presented an MSS program. They initially proposed a stochastic analytical approach which calculated the 

exact distribution of demand for the downstream resources in a given MSS. Then, they proposed a 

heuristic algorithm to reduce the use of downstream resources. Cappanera et al. [24] utilized an 

optimization-simulation method to create an MSS. They developed an MIP model for this problem with 

three different objective functions and compared them with each other. They utilized the simulation 

method to evaluate the robustness of their model in which the surgical duration and the patients’ LOS 

were assumed to be uncertain. Li et al. [25] presented an MSS with a goal programming approach. Four 

objective functions were considered in their problem. Kumar et al. [26] presented a stochastic MIP model 

for the MSS program. This model considered the limitations of downstream resources. In their model, the 

patients’ LOS was considered uncertain. The simulation method was adopted to obtain the best scenario. 

Shafaei and Mozdgir [27] proposed a goal programming (GP) model. In their proposed probabilistic 

model, they employed a binomial distribution for surgical duration as the uncertain parameter. They used 

the robust estimator method to appraise this uncertain parameter. Marques et al. [6] presented an MIP 

model for MSS. In this model, four optimization criteria associated with four scopes were considered. In 

their model, the duration of surgery was assumed to be uncertain. Heider et al. [28] proposed a mixed-

integer quadratic model which optimized the surgery schedule at the tactical stage to level the expected 

daily occupancy of the planned patients in the ICU. The uncertainty of LOS was included in their model. 

Van den Broek d’Obrenan et al. [29] proposed an integer linear programming (ILP) to generate an MSS. 

Afterward, they used local search and simulation methods to improve the ILP solution. Bovim et al. [30] 

used the optimization-simulation method to solve the MSS model. In the optimization phase, they used a 

two-stage stochastic optimization model, while in the simulation phase, they employed a discrete-event 

simulation model.  

Shehadeh and Padman et al. [31] allocated elective patients to OR blocks. In their article, the duration of 

surgery and the LOS of patients are considered non-deterministic. Mazloumian et al. [32] presented a 
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multi objective integer linear programming in which tactical and operational levels are integrated in their 

model. The model presented by them has become a robust model and in addition, a two stage stochastic 

integer linear programming model has been developed for the problem. Santos and Marques [33] 

presented a two-stage stochastic model for the MSS problem, in which the demand is non-deterministic 

and the objective function includes the overuse penalty of the beds. Beritt et al. [34] developed a 

stochastic hierarchical mathematical programming model for an MSS problem. The duration of surgery 

and the LOS of patients are considered uncertain. 

In this article, a new generation meta-heuristic algorithm (multi-objective grey wolf optimizer 

(MOGWO)) and a classical algorithm (non-dominated sorting genetic algorithm-II (NSGAII)) have been 

used to solve problem.  

Das et al. [35] presented a modified genetic algorithm in which the crossover and mutation operators are 

considered different from the general mode. Negi et al. [36] investigated various meta-heuristic 

algorithms. Their paper uses a hybrid PSO-GWO algorithm. Sadhu et al. [37] investigated the 

applicability and performance comparison of 4 classical algorithms (i.e. SA, GA, PSO and differential 

evolution (DE)) and new generation algorithms (i.e. Firefly algorithm (FFA), Krill herd (Kh), GWO and 

symbiotic organism search (SOS)). SOS and Kh algorithms reached the optimal solution in the minimum 

time in most of the problems.  

Some of the most relevant articles in the field of MSS have been compared with the current study 

regarding the state of the model, the model variables, the uncertain parameters (operations’ durations, 

LOS, demand, emergency patients), the solution method, and the objective functions. A summary of the 

results can be seen in Table 1. 

[ Insert Table 1] 
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Reviewing the existing literature showed that a few articles determined the surgeons’ time table integrated 

with combination of surgeries in each block (shown in table 1) but none of the studies simultaneously 

considered the two parameters LOS and demand as uncertain. The uncertain nature of these two 

parameters has a great impact in designing a proper MSS considering downstream resources. In addition, 

in previous studies, the CCP approach was not used to address the uncertainty. 

The contributions of this study were as follows: designing a new mathematical model for a multi-

objective MSS problem with a probabilistic LOS and an uncertain demand; presenting a CCP model to 

deal with an uncertain demand parameter; generating Pareto solutions by considering both the cost of 

ORs and leveling the workload of nurses; proposing the NSGAII and MOGWO metaheuristic algorithms 

and analyzing their results through solving different instances. 

3. Problem description 

The problem addressed in the present paper determines which surgeon is assigned to which surgical block 

on which day of the week. It also demonstrates the volume and combination of surgical operations in each 

block. Minimizing the cost of idle time and overtime of the ORs and minimizing and leveling the nurses’ 

maximal daily workload are the objective functions of the present study. In the present study, two types of 

nurses are considered: those who work in ORs and those who provide services to patients after surgery 

and during hospitalization in the downstream units such as the wards. Each OR on each day consists of 

two blocks to which the surgical procedures of the surgeons are assigned. The demands of different types 

of surgical procedures for each surgeon are based on his/her specialty estimated according to the demand 

data in the past. Each surgeon is associated with one of the surgical wards (u) according to his/her 

specialty. For each surgical procedure, the patients’ LOS is defined as a discrete probability function. 

Each surgeon prefers specific days of the week for performing the surgeries. These days are defined as a 

matrix. The surgical block in one day preferred by a surgeon is given the value of one. Otherwise, it is 

given the value of zero. This problem involves the development of an MSS during the planning horizon 
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(𝑇). Symbol 𝑡 indicates the days of the week on which the surgeries are performed in a hospital. Here, the 

MSS is a plan for 7-day cycles and is iterated during the medium-term period. If a patient’s surgery is 

performed in the current cycle, depending on his/her LOS in the ward, he/she may still stay in a ward in 

the next cycle. This will affect both the available downstream resources and the planning of surgeries in 

the next week. These conditions may continue for two or three subsequent cycles. Thus, it is necessary to 

consider the constraints of ward beds in a cyclic manner. The model assumptions in this study are as 

follows: 

1) The OR schedule is only considered for the elective patients since it is assumed that there are 

emergency ORs for emergency patients. 

2) Surgery is not performed at the end of the week. Therefore, the ORs will be closed in these days. 

3) Hospitalized patients are those who have stayed in a hospital for at least one day. 

 4) The patients’ LOS in the ward has a discrete probability distribution which could be appraised from 

the archival data of the hospital. 

5) The patients can be discharged from the hospital on any week day. 

6) The OR setup time is considered to be sequence independent. 

7) The duration of surgery includes the OR setup time and both of them are considered deterministic. 

8) In the first model, the demand for each surgeon’s different types of surgery is considered to be 

deterministic and is estimated based on the average demand of the past. In the second model, the demand 

is considered nondeterministic. 

In Table 2, the parameters, indices, and variables of the problem are tabulated: 

[ Insert Table 2] 
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4. Mathematical model 

First, an MIP model with the probabilistic constraint of LOS is presented in sub-section 4-1. Then, in 

sub-section 4-2, a stochastic model is presented and the demand parameter is considered to be 

uncertain. 

4.1. The first MIP model with a probabilistic LOS (Model I) 

In this sub-section, a mathematical model of the problem is proposed in which the patients’ LOS is 

assumed to be probabilistic and a discrete probability distribution function is considered for it. The 

demand parameter is considered to be deterministic and the average of historical data is used for it. The 

developed MIP model for generating an MSS is as follows:   
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0pkbjtY  and integer , , , ,p P k K b B j J t      (20) 

 0,1bjtkX  , , ,b B j J t k K     (21) 

,u tNW  Positive integer ,u U t   (22) 

,b tN  Positive integer , 1,2t i   (23) 

The first objective function (Eq. 1) minimizes the overtime and idle time costs of the ORs in a week. The 

second objective function (Eq. 2) minimizes the maximal daily workload of nurses. Constraint 3 ensures 

that only one surgical group is assigned to each OR block. Eq. 4 limits the number of scheduled surgery 

type p for each surgeon according to the demand for that type of surgery. Constraint 5 states that if a 

block from the OR is assigned to a surgeon, the surgeon’s surgeries with different lengths of time can be 

assigned to that block. Therefore, the total time of operations performed in each block is controlled by the 

Mb parameter. In other words, this parameter limits the maximum overtime of each block. Constraint (6) 

calculates the overtime of the OR. Constraint (7) calculates the idle time of the OR. Constraint (8) 

indicates the surgeon’s preferences in the assigned blocks to him/her. Eq. (9) calculates the number of 

beds of ward u occupied on day 𝑡 considering both the number of patients who had surgery on the days 

( 1)tht   of the previous cycles ( 1,..., )l t T   and their stay continued until day t of the current cycle 

and the sum of patients who had surgery on the days ( 1,..., )l t of the current cycle and the previous 

cycles and their stay still continued. For the bed constraint, the probability parameter ',p l
C  was used to 

consider the probability of the patients’ LOS.  

Constraint 10 ensures that the number of used beds does not surpass the capacity of each ward. 

Constraints 11-14 are used to calculate the maximal daily workload of nurses in ORs. Constraints 11 and 

13 calculate the workload of nurses on day t over blocks 1b   and 2b  , respectively. Constraints 12 
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and 14 determine the workload peak of the nurses in each block. Constraints 15 and 16 are used to 

calculate the maximal daily workload of nurses in the wards. Constraint 15 computes the workload of 

nurses on day t in wardu . Constraint 16 limits the maximum workload of nurses in each ward. The 

variables have been defined through constraints 17-23. 

4.2.  The stochastic model with an uncertain demand (Model II)  

The chance-constrained method is widely used to solve optimization problems with different 

uncertainties. In this sub-section, a stochastic MSS model is proposed in which the surgery demand is 

considered to be uncertain. The CCP approach is used to handle the uncertainty of this parameter. 

Charnes et al. [38] proposed this approach to determine the level of confidence for constraints with a 

stochastic parameter. 

In the current research, the CCP method is employed to convert the MSS problem into a stochastic MIP. 

The CCP model proposed for MSS is presented below: 

1 ( * * )jtb jtb

j t b

MinObj Co Cu     

2 u

u

MinObj MDNRM MDNRA MDN                                                                                                       

s.t. 

- Eqs. (3), - Eqs. (5) – (23), 

pkbjt kp

j t b

Y d ,k K p P    (24) 

As can be seen in the above model, the demand for surgeon k for surgery type p ( kpd ) is considered as 

an uncertain parameter. The probability distribution of the demand parameter is derived from historical 

data. To solve the uncertain model, it should first be converted into a deterministic one using the CCP 

approach. To obtain the feasible area, the constraint with an uncertain parameter must undergo some 



14 
 

changes. The least probability to meet the rewritten constraint is (1 ) . Therefore, considering the 

general probability distribution for parameter kpd , the CCP model for constraint 24 is as follows: 

Pr( ) 1pkbjt kp

j t b

Y d    ,k K p P    (25) 

The point ( )kpd  with Pr( ( ) ) 1kp kpd d     could be calculated using

( )

( ) ( ) 1

kpd

kp kpf d d d






  . In 

this equation, ( )kpf d  is the probability density function. Hence, the following equation is obtained: 

( )pkbjt kp

j t b

Y d  ,k K p P    (26) 

In the present research, the uniform distribution in ( , )kp kpLd Ud is regarded for the uncertain demand. 

Consequently, constraint 30 is converted into constraint 27. 

* (1 )pkbjt kp kp

j t b

Y Ld Ud    ,k K p P    (27) 

5. Problem solving methodology 

The proposed MIP models were solved in small-scale problems using the ε-constraint method and the 

CPLEX solver. The ε-constraint method was employed for solving the mathematical model in small 

dimensions. The ε-constraint approach is widely used for solving multi-objective problems. It solves 

these types of problems by converting all their objective functions (except for one) into constraints at each 

stage [39]. Given the fact that the MSS problem is NP-hard [40], the metaheuristic algorithms NSGAII 

and MOGWO are utilized to solve it. In addition, these metaheuristic algorithms are also used to solve 

large-scale problems. 
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5.1. The proposed metaheuristic algorithms 

The genetic family usually has a good performance in all optimization problems [41]. The second version 

of the genetic algorithm (GA) (i.e. the NSGAII) was proposed by Deb et al. [42]. The NSGAII is a multi-

objective optimization algorithm. The aim of the NSGAII is to increase the adaptive fit of a set of 

candidate solutions to a Pareto front for the objective functions. This algorithm uses evolutionary 

operators such as selection, mutation, and crossover. The population is ordered into an array of sub-

populations according to the Pareto dominance order. In general, the N-sized population is considered and 

the solutions are ordered into a hierarchy of non-dominated Pareto fronts. Among the algorithms 

presented in recent years, the GWO has a higher computational ability and a relative superiority [43]. The 

GWO, which is newer and more efficient than the other meta-heuristic algorithms, was used in the present 

study [44]. The GWO algorithm was introduced by Mirjalili et al. [45]. Mirjalili et al. [46] also presented 

the multi-objective version of this algorithm. In the GWO algorithm, four types of gray wolves (alpha, 

beta, delta, and omega) are employed for the simulation of the leadership hierarchy. In this algorithm, the 

three main stages of hunting are the search for prey, encircling the prey, and attacking the prey. The best 

solution is called alpha (α) and the second and third solutions are called beta (β) and delta (δ), 

respectively. The other solutions are considered omega (ω) wolves. The GWO algorithm uses the three 

solutions α, β, and δ to guide the hunt (optimization) and the ω solution follows these three solutions. In 

this paper, two meta-heuristic algorithms were utilized to solve the investigated problem.  

In this article, a new generation meta-heuristic algorithm (MOGWO) and a classical algorithm (NSGAII) 

have been used to solve problems in large dimensions. As stated in the literature review and also in the 

article of Sadhu et al. [37], new generation algorithms perform better than classical algorithms. 

Meanwhile, Mirjalili et al. [45] compared the GWO algorithm with other meta-heuristic algorithms, 

including Gravitational search algorithm (GSA), Evolutionary programming (EP) and Evolution strategy 

(ES). The results showed that the GWO algorithm has provided very competitive results compared to 
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known meta-heuristic algorithms. This good performance of GWO algorithm is due to the high ability of 

this algorithm in searching unknown spaces as well as exploration and exploitation phases.  

5.2. The solution structure  

A key factor in devising metaheuristic algorithms is the appropriate solution structure to set feasible 

values for all decision variables with minimum calculations. In this paper, the solution structure has two 

parts. In the first part, the block and the OR are assigned to the surgeon. In Fig. 1, the given values in the 

matrix cells (genes) are real numbers ranging from 0 to 1. The matrix cells are set as follows: B, T, and J 

indicate block, day, and OR, respectively. The value of each cell determines the ID number of the 

assigned surgeon. 

[Insert Fig. 1] 

 

As observed, with a value of 0.91, the first gene determines the surgeon assigned to block 1, on day 1, 

in OR 1. If there are four surgeons, Eq. 28 is used to determine the ID number of the surgeon. 

* 1 0.91*4 1 4k gene K            (28) 

In the second part, first, the value of the variable pkbjtY  is set. Next, the values of the other decision 

variables are determined accordingly. For this purpose, similar to the first part, a 4-dimensional 

chromosome is converted into a 1-dimensional chromosome. At first, a row is added to the matrix of the 

second part of the chromosome below the columns of the surgery types. The values of this row show the 

difference between the number of assigned surgery demands and the number of demands for that type of 

surgery and the related surgeon. The non-covered demands of each surgery type are stored in the added 

row and should be minimized. The pkbjtY  decision variable can be calculated using Eq. 29: 
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p kp
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Y D

cell





k  (29) 

where, bjtpcell  belongs to the second part of the solution. The value of Y is used to determine the value of 

X. If Y is greater than 0, the value of X in the corresponding index will be 1. In the proposed algorithm, 

first, the value of Y is calculated. Afterward, the value of X is determined based on the value of Y. The 

other variables of the model are determined based on the value of Y and the conditions of the model. The 

pseudocodes and details of the MOGWO and the NSGAII are found in the studies of Mirjalili et al. [46] 

and Deb et al. [42], respectively. 

5.3. Tuning the parameters of the proposed algorithms 

To enhance the performance of the developed algorithms in solving various numerical problems, it is 

required to obtain the optimal levels of their parameters. In this study, the parameters of the MOGWO 

(i.e. the number of iterations and agents) and the NSGAII (i.e. the number of population, the number of 

iterations, the crossover rate, and the mutation rate) are tuned based on the experimental design. The 

experimental design is performed according to the response surface methodology (RSM). The parameter 

ranges of the algorithms are shown in Table 3. 

[Insert Table 3] 

 

After running the necessary tests using the RSM method in the Design-Expert software (version 12), the 

optimal values for the parameters of the proposed algorithms were obtained as tabulated in Table 4. 

[Insert Table 4] 
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6. Numerical results and discussion 

In the present paper, the planning horizon was supposed to consist of 7 days (T=7). At first, several 

random instances were generated to evaluate the model and the proposed algorithms and to tune their 

parameters. To generate random instances, the duration of surgery was considered as a random value in 

the interval of [0.5, 5] hours and the LOS was randomly generated in {1, 5} days. The surgical demands 

of the surgeons for each type of surgery were randomly set in {1, 5}. Given that there must be a 

correlation between the number of surgeons and the number of ORs, two intervals were considered for 

producing the instances. In other words, for {7-10} ORs, {14-30} surgeons would be considered and for 

{11-15} ORs, {31-45} surgeons would be assumed. The probability of the LOS was estimated using a 

discrete probability function in the sense that the probability of the patients’ LOS in a ward was in [0, 1] 

and the total probability of LOS was one. Because multi-objective algorithms have a set of Pareto 

solutions called the Pareto front, it is necessary to define the criterion which illustrates the quality of the 

Pareto members for comparison. The present study used a well-known performance evaluation metric for 

quantitative comparisons between the algorithms: 

 The mean ideal distance (MID) computes the mean distance between the ideal point ( )idealf and 

the non-dominated set. The MID is calculated as follows: 

1

n
i

i

c
MID

n

  (30) 

where  1 2, min( ),min( ),...,min( )i i ideal ideal kc f f f f f f   , and n represents the number of 

non-dominated solutions. The lower the value of the MID, the better the performance of the 

algorithm.                                                                              
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6.1. Comparing the proposed algorithms with the mathematical models with respect to 

small-scale instances 

Five small numerical instances were randomly generated to compare the results of the proposed 

algorithms with those of the mathematical models. Using the MID measure, their efficiencies were 

compared. The number of iterations and population sizes were identical in the NSGAII and MOGWO. 

The features of the instances are shown in Table 5. 

[Insert Table 5] 

 

In this section, five instances with specified sizes (Table 5) are considered. As can be seen in Table 6, the 

models (I and II) and the metaheuristic algorithms (NSGAII and MOGWO) are compared in terms of the 

MID measure and the run time. Because a different Pareto front is generated for each run in meta-

heuristic algorithms, the algorithms are run five times for each problem with different alphas. The 

averages of these five runs for each problem are compared in terms of the MID measure. Furthermore, the 

average run time for these five runs is shown. To consider the uncertainty in the demand parameter, three 

scenarios were designed in which alpha had three different values ( 0.05,0.1,0.15)  . 

[Insert Table 6] 

 

Table 6 illustrates the values of the MID measure for Model I, Model II, and the two metaheuristic 

models. This table demonstrates that in comparing the results of Model II, NSGAII, and MOGWO in an 

uncertain environment, the MID measure has the best value for Model II followed by the MOGWO and 

the NSGAII. The results show that the MID measure has the lowest value for 0.15  and the highest 

value for 0.05  . By comparing the results, it becomes clear that the MOGWO outperforms the 

NSGAII. As can be seen, the solving time of the mathematical model increases sharply as the dimensions 
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of the problem increase. The shortest run time belongs to the MOGWO. Therefore, the MOGWO 

outperforms the NSGAII in terms of both the MID measure for different alphas and the run time.  

The Pareto fronts obtained from the metaheuristic algorithms and Model II ( 0.15  ) in the fifth small 

instance are shown in Fig. 2. The Pareto front generated by the NSGAII and the MOGWO is similar to 

that of the efficient frontier. In the bound at the end of the frontier, the solutions of these algorithms are 

fitted to the efficient frontier. This indicates the efficiency of these algorithms in solving small-scale 

problems. Since these meta-heuristic algorithms can solve the instances in a short time and their Pareto 

fronts are close to the efficient frontier, they can be used to solve large-scale problems. 

[Insert Fig. 2] 

 

In general, in solving small-scale problems, the algorithms have a close performance and do not differ 

much from one another. To examine the performance of the proposed algorithms in solving large-scale 

problems more accurately, some numerical instances are presented. 

6.2. Evaluating the efficiency of the proposed algorithms in solving large-scale instances  

Thirty large-scale instances were randomly produced for three different alphas (Table 7) to evaluate the 

efficiency of the proposed algorithms. In Table 7, 30 large-scale instances with the sizes of K×R×P×W 

(surgeon×operating room×type of surgery×wards) for the NSGAII and the MOGWO are run five times. 

In addition, the averages of these five runs are compared in terms of the MID measure for three different 

scenarios. 

 

[Insert Table 7] 
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As observed in Table 7, The MOGWO outperforms the NSGAII in solving all the instances with different 

alphas in terms of the MID measure. 

 To better show the results, Figure 3 compares the MOGWO and NSGAII based on 0.1  . According to 

Fig 3, it can be seen that MOGWO algorithm performed better than NSGAII algorithm. In addition, with 

the increase in the dimensions of the problem, the MID measure decreased, which shows the good 

performance of the algorithms in the exploration and exploitation phases in large scale problems. 

[Insert Fig. 3] 

 

According to Table 7, in both algorithms, the MID has the highest value for 0.05  and the lowest 

value for 0.15  . The MID measure decreased with the increase of α for both algorithms. In other 

words, by increasing the flexibility of the model, a better value has been obtained for this measure. 

In what follows, the sensitivity analysis of the number of beds is performed for a large-scale instance with 

20 operating rooms, 47 surgeons, 7 wards, and 120 different types of surgery. For this purpose, the 

number of beds is changed in 4 scenarios (+15%, -15%, +30%, and -30%) and the results are analyzed. 

Figure 4 shows that as the number of beds increases, the workload of nurses and the costs increase, and 

when it decreases, these two values decrease. These changes are more pronounced in the figure for ±30%. 

In order to better analyze the results of each scenario, the uncovered demand is also calculated. With a 

30% increase in the number of beds, the covered demand is increased by 27% (from 346 to 440), while 

the workload of nurses and the costs are respectively increased by 29% and 21%. Reducing the number of 

beds by 30% decreases the covered demand, the costs, and the workload of nurses by 22%, 11%, and 

46%, respectively. As the number of beds increases, the number of surgeries in the hospital and the 

uncovered demand decrease. However, the workload of nurses and the costs increase. 

[Insert Fig. 4] 
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According to Figure 4, with the increase in the number of beds, the costs and the workload of nurses also 

increase. The increase in the costs could be due to the greater demand coverage. With the increase in the 

number of beds, the probability of allocating more surgeries to the ORs increases. As a result, the 

overtime cost may increase. As the number of beds and the number of surgeries allocated to the ORs 

increase, the workload of nurses also increases. The increase in demand coverage can be investigated 

through a sensitivity analysis on the alpha parameter in the CCP model. The covered demand can be 

obtained from the results of the model. By changing the alpha parameter, the feasibility of the model is 

checked. By implementing the model, it is observed that the model is infeasible for 0   up to 0.13 

. Put differently, by considering the number of beds, the maximum probability of covering the demand is 

87%. Five Pareto points for 0.13  are selected. The objective functions and the covered demands of 

these points are shown in Table 8. 

[Insert Table 8] 

 

It is noted that with an increase in idle time costs, the workload of nurses decreases, leading to less 

demand coverage. When the number of beds is increased by 30%, the amount of covered demand can 

increase. By changing the alpha parameter in the CCP model, it is observed that the model becomes 

infeasible for 0   up to 0.07  . Therefore, in this scenario, the probability of demand coverage can 

increase by 6% compared to the previous scenario. The changes for the five Pareto points are shown in 

Table 9. 

[Insert Table 9] 

 

According to the above results, it is clear that as the number of beds increases, more surgeries are 

performed. This leads to an increase in overtime costs, a decrease in idle time costs, and an increase in the 

workload of nurses. In other words, the hospital managers can cover 93% of the demand with a 30% 

increase in the number of beds. When the number of beds is increased by 34%, the maximum number of 



23 
 

covered demand reaches 98%. In other words, the value of ∝ is 0.02. In Table 10, the results are 

illustrated. An increase of more than 34% in the number of beds does not affect the covered demand. Put 

differently, the upper limit of the increase in the number of beds is 34% and 2%  . 

[Insert Table 10] 

 

7.  Concluding remarks  

Designing an optimal MSS could contribute to an efficient management of hospital resources due to 

limitation in available resources for surgery and after it (such as ward beds).  

 In response to research questions in this paper, a multi-objective MIP model has been developed 

considering the LOS in a probabilistic manner (Model I). In the proposed model, the objective functions 

include minimizing the costs of idle-time and overtime of the operating rooms and minimizing the 

maximal daily workload of nurses. The model determines the surgeon and combination of surgical 

operations of a specific block of the OR considering the preferences of surgeons. This new mathematical 

model was proposed for a situation in which the constraints of the downstream resources are considered 

in a cyclical manner and the uncertain nature of the patients’ LOS is considered in a probabilistic manner. 

Then, a stochastic model was developed in which the demand parameter was considered to be uncertain 

using the CCP approach (Model II). By considering these two parameters as uncertain, the model got 

closer to the real state. This model can be used as an auxiliary tool in hospital management to make final 

decisions about assigning the OR blocks to different surgeons and surgery types by optimizing the costs 

of ORs and leveling the workload of nurses. Since the MSS was NP-hard, two metaheuristic algorithms 

including NSGAII and MOGWO were used to solve it in large dimensions. An appropriate comparison 

measure was utilized to evaluate the efficiency of these algorithms in solving different numerical 

instances with different dimensions. According to the results, the MOGWO outperformed the NSGAII. 

The proposed model considered the bed constraint for an unlimited time horizon in order to reduce 
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significantly the concerns of hospital managers about bed shortages. The sensitivity analysis of the 

number of beds is performed that can be used as a tool to help hospital managers to decide about proper 

wards capacity.  

Designing a new mathematical model for a multi-objective MSS problem with a probabilistic LOS and an 

uncertain demand; presenting a CCP model to deal with an uncertain demand parameter; generating 

Pareto solutions by considering both the cost of ORs and leveling the workload of nurses; proposing the 

NSGAII and MOGWO metaheuristic algorithms and analyzing their results through solving different 

instances, are the main contributions of this paper. The limitations of the research include lack of access 

to real hospital information, not considering emergency patients, and not considering the ICU bed 

constraint. 

Some suggestions for future studies in this field are using the robust approach, considering other sources 

of uncertainty and proposing appropriate methods for solving them, and developing other efficient 

methods for solving large-scale problems. 
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Figure and table captions: 

 

Table 1. Comparing the features of the current study with those of relevant studies 

Table 2. The parameters, indices, and variables of the problem 

Table 3. The bounds of the parameters of the proposed algorithms  

Table 4. The optimal values for the parameters of the proposed algorithms 
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Table 5. The features of the small-scale instances  

Table 6. Comparing the mathematical models with the meta-heuristic algorithms for different values of alpha  

Table 7. The results of the proposed algorithms in solving different instances 

Table 8. Five Pareto points for ∝=0.13  

Table 9. Five Pareto points for ∝=0.07 with a 30% increase in the number of beds 

Table 10. Five Pareto points for ∝=0.02 with a 34% increase in the number of beds 

Figure. 1. The solution structure 

Figure. 2. The comparison of the Pareto fronts obtained from Model II and the metaheuristic algorithms 

Figure. 3. Comparison of  multi-objective grey wolf optimizer (MOGWO) and the non-dominated sorting 

genetic algorithm-II (NSGAII ) based on α=0.1  

Figure. 4. The Pareto front changes in different scenarios for the parameter of the number of beds 
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Santibáñez et 

al. [10] 
●  ● ●    ● 

Mixed Integer 

Programming(MIP) 

model 

Minimizing the bed utilization and maximizing the total 

throughput 

Banditori et 

al. [5] 

 

 ● ● ● ● ●   
Simulation-optimization 

(MIP model) 

Maximizing the total throughput, minimizing the penalties due 

to missing due dates, and minimizing bed mismatching 

Cappanera et 

al. [24] 

 

 ● ● ● ● ●   
Simulation-optimization 

(MIP model) 

Minimizing the maximum daily utilization of Operating 

rooms(ORs), minimizing the difference between the maximum 

and minimum daily use of resources, and minimizing the 

deviation between the actual and target use of resources 
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Yahia et al. 

[9] 
●  ● ●     MIP model 

Minimizing the bed occupancy and the workload of nurses  

Cappanera et 

al. [15] 

 

●  ●      Goal programing 

Minimizing the penalties due to missing due dates, leveling the 

OR usage, leveling the use of post-surgical wards, and 

maximizing the number of planned surgeries 

Penn et al. 

[16] 
●   ●     MIP model 

Minimizing the gap between the number of accessible beds and 

the number of needed beds, maximizing the surgeons’ 

preferences, and maximizing the number of times the same 

surgeon is allocated to successive time blocks in the same OR 

and on the same day 

M'Hallah, 

and Visintin 

[3] 

 ●  ● ● ●   
MIP and sample average 

approximation 

Maximizing the throughput 

Marques et 

al. [6] 
 ●  ● ●    MIP model 

Minimizing the workload of wards, assigning the surgeons 

with the same surgical specialty to the same room to the extent 

possible, minimizing the deviation between the shift dedicated 

to each surgeon and the shift which the surgeon would like to 

have, and minimizing the deviations of the OR time allocated 

to each surgeon from the median value of the time utilized by 

the surgeon 

Heider et al. 

[28] 
 ● ● ●  ●  ● Quadratic programming 

Minimizing the difference between the actual and target bed 

usage 

Van den 

Broek 

d’Obrenan et 

al. [29] 

 ●  ●  ●   

Integer Linear 

Programming (ILP) 

model, Tabu search, 

Monte Carlo simulation 

Minimizing the variability of the required bed capacity, 

maximizing the number of operations, minimizing the waiting 

time 

 

Bovim et al. 

[30] 

 

 ● ● ● ● ●  ● 

Simulation-optimization 

(two-stage stochastic 

optimization model) 

Minimizing the number of planned surgeries, minimizing the 

number of cancellations, and minimizing the number of 

patients hospitalized in wards not allocated for this purpose 

The current 

research 
 ● ● ●  ● ●  

MIP model, Chance 

Constraint 

Programming (CCP) 

model, two 

metaheuristic 

algorithms 

Minimizing the overtime and idle time costs of the ORs and 

leveling the workload of nurses 

 

 

 

 

Table 2 

Indices 

𝑝: Types of surgical procedures  

1,...,p P  

𝑇: The number of planning horizon days 

𝐾: The number of surgeons         

1,...,k K  

𝑡: The days of the week on which the surgeries are performed      

 1,...,5t   

𝐽: The number of available 

Operating Rooms (ORs)  

1,...,j J  

𝑈: The number of surgical wards 

 1,...,u U  

𝑏: The OR blocks     

 
𝑙: The set of stay days in the hospital   1,..., pl h  

Parameters 
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ℎ𝑝 The maximum LOS of the patient with surgery type p  

𝐶𝑝,𝑙′ The probability of staying 𝑙′ days in the ward for a patient with surgery type 𝑝  

𝐴𝑉𝑘𝑏𝑡 
Binary parameter: 1 if the 𝑘𝑡ℎ surgeon is available in block 𝑏 on day 𝑡; 

otherwise 0  

Co OR overtime cost/unit of time  

Cu OR idle time cost/unit of time  

𝑑𝑢𝑟𝑝 The duration of the surgical procedure type 𝑝 

𝑑𝑢𝑟𝑏 The duration of block 𝑏 of the OR  

𝑏𝑒𝑑𝑢 The number of beds available in ward u 

𝑑𝑘𝑝 Weekly demand for surgeon 𝑘 for surgery type 𝑝  

𝑘𝑝𝑘 The set of surgeon 𝑘’s surgical operations  

𝑢𝑘𝑢 The set of surgeons related to the 𝑢𝑡ℎ ward 

Τ The number of cycles a patient has stayed in the ward 

SNNR 
The standard number of nurses needed to provide services to one patient in the 

ORs. 

SNNU 
The standard number of nurses needed to provide services to one patient in the 

downstream units (wards). 

Mb The parameter controlling the allocated hours and the maximum OR overtime 

Variables 

𝑌𝑝𝑘𝑏𝑗𝑡 
The number of surgeon 𝑘’s surgery type 𝑝 allocated to block b of the OR 𝑗 on 

day 𝑡 

𝑋𝑏𝑗𝑡𝑘 {
1  If block 𝑏 from 𝑂𝑅 𝑗 is assigned  to surgeon 𝑘 on day 𝑡  

0  Otherwise                                                                                             
 

𝛼𝑗𝑡𝑏 The overtime of block b of OR 𝑗 on day 𝑡 

𝛽𝑗𝑡𝑏 The idle time of block b of OR 𝑗 on day 𝑡 

𝐼𝑢,𝑡 The number of beds in ward 𝑢 occupied on day 𝑡 

Nb,t The workload of nurses during time block b on day t for all ORs 

MDNRM The maximum daily workload of nurses for all ORs in the first block  

MDNRA The maximum daily workload of nurses for all ORs in the second block  

MDNu The maximum daily workload of nurses for ward u 

NWu,t The workload of nurses on day t for ward u 

 

 

Table 3 

 

 

 

Table 4 

 Lower bound (-1) Medium bound (0) Higher bound (1) 

Number of iterations 50 125 200 

Population 30 65 100 

Crossover rate 0.5 0.7 0.9 

Mutation rate 0.1 0.25 0.4 
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The instance size  
Number of 

iterations 
Population Crossover rate Mutation rate 

Small 
NSGAII 100 50 0.7 0.2 

MOGWO 80 30 - - 

Medium 
NSGAII 100 50 0.7 0.2 

MOGWO 100 30 - - 

Large 
NSGAII 150 100 0.7 0.3 

MOGWO 100 40 - - 

 

Table 5 

Numerical instances Number of Surgeons Number of ORs Number of surgery types Number of wards 

SM1 5 3 5 3 

SM2 6 4 8 3 

SM3 9 6 10 4 

SM4 12 8 12 4 

SM5 15 9 15 5 

 

Table 6 

In
st

an
ce

 N
u

m
b

er
 Model I Model II NSGAII MOWO 

M
ID

 

R
u

n
 t

im
e(

se
c)

 MID 

A
v

er
ag

e 
ru

n
 

ti
m

e(
se

c)
 

MID 

A
v

er
ag

e 
ru

n
 

ti
m

e(
se

c)
 

MID 

A
v

er
ag

e 
ru

n
 

ti
m

e(
se

c)
 

∝
=

0
.0

5
 

∝
=

0
.1

 

∝
=

0
.1

5
 

∝
=

0
.0

5
 

∝
=

0
.1

 

∝
=

0
.1

5
 

∝
=

0
.0

5
 

∝
=

0
.1

 

∝
=

0
.1

5
 

1 3.85 371 4.24 4.11 3.97 376 4.96 4.88 4.75 193 4.68 4.54 4.39 182 

2 3.08 683 3.77 3.62 3.31 689 4.89 4.69 4.28 311 4.04 3.86 3.62 274 

3 2.73 2455 3.01 2.95 2.84 2510 3.83 3.56 3.54 792 3.58 3.44 3.2 683 

4 2.39 6829 2.65 2.61 2.49 6836 3.46 3.37 3.15 937 3.09 2.78 2.6 820 

5 1.88 16593 2.23 2.12 1.95 16621 2.88 2.83 2.73 1140 2.59 2.34 2.28 972 

 

 

 

 

Table 7 

Instance 

Size MID 

(K×R×P×W) 

NSGAII MOGWO 

MID MID 

∝
=

𝟎
.𝟎

𝟓
 

∝
=

𝟎
.𝟏

 

∝
=

𝟎
.𝟏

𝟓
 

∝
=

𝟎
.𝟎

𝟓
 

∝
=

𝟎
.𝟏

 

∝
=

𝟎
.𝟏

𝟓
 

1 (8×3×15×3) 4.97 4.8 4.7 4.79 4.64 4.59 

2 (10×4×15×3) 4.91 4.71 4.27 4.36 4.13 4.1 

3 (10×4×18×3) 4.84 4.64 4.18 4.27 4.08 4.09 

4 (11×3×18×3) 4.56 4.49 4.16 4.25 3.96 3.94 

5 (11×4×15×3) 4.43 4.42 4.37 4.46 3.95 3.92 



33 
 

6 (12×4×15×4) 4.24 4.19 4.09 4.18 3.91 3.84 

7 (12×4×20×4) 4.06 3.97 3.8 3.89 3.62 3.6 

8 (14×4×25×4) 3.74 3.63 3.6 3.69 3.58 3.56 

9 (14×4×30×4) 3.7 3.56 3.48 3.57 3.47 3.48 

10 (15×5×45×4) 3.52 3.47 3.43 3.52 3.41 3.41 

11 (15×5×60×4) 3.4 3.35 3.3 3.39 3.3 3.3 

12 (18×4×60×5) 3.38 3.34 3.3 3.39 3.27 3.23 

13 (18×4×70×5) 3.28 3.2 3.17 3.26 3.13 3.14 

14 (20×5×70×5) 3.1 3.05 2.99 3.08 3.02 2.99 

15 (22×7×90×5) 2.99 2.92 2.81 2.9 2.84 2.85 

16 (22×7×105×5) 2.95 2.9 2.81 2.9 2.81 2.77 

17 (24×6×110×5) 2.91 2.77 2.71 2.8 2.65 2.64 

18 (24×6×110×6) 2.9 2.85 2.8 2.89 2.64 2.61 

19 (26×4×110×6) 2.84 2.72 2.68 2.77 2.62 2.57 

20 (26×4×115×6) 2.7 2.61 2.49 2.58 2.52 2.53 

21 (28×5×115×6) 2.64 2.52 2.43 2.52 2.39 2.38 

22 (28×5×120×6) 2.49 2.52 2.43 2.52 2.38 2.38 

23 (30×6×120×6) 2.43 2.35 2.31 2.4 2.32 2.33 

24 (30×6×120×7) 2.37 2.32 2.24 2.33 2.16 2.15 

25 (34×7×120×7) 2.3 2.22 2.2 2.29 2.14 2.11 

26 (34×7×120×7) 2.24 2.19 2.14 2.23 2.11 2.11 

27 (40×8×120×7) 2.16 2.1 2.04 2.13 2.03 1.97 

28 (40×8×115×7) 2.1 1.93 1.91 2 1.89 1.89 

29 (42×10×110×7) 2.03 1.98 1.88 1.97 1.85 1.88 

30 (42×10×120×7) 1.96 1.82 1.77 1.86 1.75 1.74 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

∝= 0.13 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1(Overtime, Idle time) 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2 Covered demand 

1 (11270, 2310) 222 301 

2 (11150, 2640) 220 299 

3 (11000, 2970) 219 295 

4 (10910, 3300) 218 293 

5 (10800, 3520) 216 292 

 

Table 9 

∝= 0.07 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1(Overtime, Idle time) 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2 Covered demand 

1 (15270, 1690) 248 322 

2 (15240, 1760) 245 319 

3 (15040, 2040) 241 318 
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4 (14610, 2300) 240 317 

5 (14310, 2710) 237 315 

 

Table 10 

∝= 0.02 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1(Overtime, Idle time) 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2 Covered demand 

1 (18320, 1400) 258 339 

2 (18200, 1530) 255 338 

3 (17900, 1900) 251 336 

4 (17740, 2180) 249 334 

5 (17570, 2500) 247 330 

 

 

 

 

 

 

 

 

Fig. 1 

 

 

Fig. 2 
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Fig. 3  

 

Fig. 4 
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