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In the current study, structurally graded nanobeams with distributed load are subjected to a large 
deflection analysis that takes surface effects into account. The nanobeams Young's elasticity 
modulus changes with thickness under a power-law function. The displacement elements are 
presented, generalization of the Young-Laplace formula is employed to account for the surface 
effects, and the total Lagrangian finite element formulation is utilized to get the outcomes by 
cracking the system of nonlinear differential equations founded on the Timoshenko beams theory. 
The reliability and correctness of the findings are confirmed by comparison with previously 
published publications. The investigation is done into how various characteristics, including 
length-to-thickness ratio, material gradient index, boundary conditions, and surface effects, affect 
the outcomes. The findings demonstrate that, in the presence of surface effects, residual surface 
tension plays a significant influence on the deflection of nanobeams. Additionally, a comparison 
of the power-law and exponential kinds of Functionally Graded (FG) distribution is conducted in 
this study, and it is discovered that the FG materials with the power-law distribution are more 
applicable since they are less susceptible to surface effects than the exponential type. 

1. Introduction
Functionally graded (FG) materials are one of the motivating 
constituents of structures for scientists. FG materials are 
oncoming composites usually produced from two different 
materials; the first one is a metal with high mechanical 
stiffness while the second one is a ceramic with high-
temperature resistance. In FG materials, properties vary 
gradually over the volume which notably lets to reduce 
delamination, stress concentrations, and cracking problems 
observed in classical composite materials [1-4].  

Various researches on the analysis of FG beams [5-11] 
and plates [12-21] have been done by many scientists, by the 
classical theory of elasticity. Here, some of the research on 
the analysis of FG beams have been mentioned. Benatta et 
al. [5] constructed the governing equations to assess the 
behavior of FG short beams under three-point bending using 
the higher-order shear deformation idea and the idea of  

virtual work. To illustrate the differences in material 
qualities, they employed a basic power-law function. Kang 
and Li [6] examined a cantilever FG beam to comprehend its 
large deflection behavior. They took into account how the 
structure's reaction will be affected by the material gradient 
index. The work by Li et al. [7] discussed the bending study 
of FG beams utilizing the Timoshenko Beam Theory (TBT). 
They acquired the outcomes under various border 
circumstances. Additionally, Murin et al. [8] reported their 
research on the modal analysis of FG beams and looked at 
the impact of the shear correction factor on it in another 
paper. Sitar et al. [9] researches on the large deformation 
behavior of FG composite beam is found. They explored 
various stress-strain relations in the tension and compression 
domains under the assumption that the beams are made up of 
an  infinite  number  of  laminates.  Concerning  tapered  FG 

https://doi.org/10.24200/sci.2023.60997.7113
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://scientiairanica.sharif.edu/
mailto:ytaghipour@sirjantech.ac.ir


2 Y. Taghipour and M. Zeinali / Scientia Iranica (2025) 32(6): 7113 

beams that were subjected to end stresses using the Finite 
Element (FE) approach, Kien and Gan [10] produced a 
significant deflection. The Newton-Raphson iterative 
approach and the arc-length control algorithm were both 
used to produce the large deflection response. 

In addition to the aforementioned, due to its distinctive 
features, nanostructure applications are now expanding 
quickly. Depending on the kind of material utilized, 
nanostructures like nanobeams and nanoplates may be used 
in a variety of sectors to make equipment for aerospace, 
medical, and other fields. The researchers searched for a way 
to accurately replicate the behavior of the nanostructure 
since the conventional elasticity theory is unable to account 
for dimension effects. Based on increasing the surface-to-
volume ratio in the nanostructures, modified theories of 
elasticity by the surface effects are suggested for the 
modeling the size effects [22]. 

Various analyses of structures have been conducted by 
many scientists, based on the theories of elasticity 
particularly FG structures with surface effects [22-27]. To 
examine the elastic mechanical behavior of FG films in the 
nano-dimension, Lü et al. [23] considered surface effects. 
They offered various numerical examples to determine the 
impacts of the surface on the bending behavior of the 
nanostructure mentioned above and employed Kirchhoff's 
theory, which is often used for thin structures and disregards 
the impacts of shear deformation. Sharabiani and Yazdi [24] 
investigated the vibration analysis of FG nanobeams. They 
used the Euler-Bernoulli Theory (EBT) and von Karman 
nonlinear relations. They studied the surface influence on the 
behavior of nanobeams, and provided the findings for 
various boundary conditions. Ansari and Norouzzadeh [25] 
on the buckling behavior of FG nanoplates in various shapes, 
such as elliptical, circular, and skew ones considered the 
surface stress and size impacts. Based on the Eringen and 
Gurtin-Murdoch hypotheses, they considered size effects. In 
their research, the Mori-Tanaka homogenization technique 
was used to ascertain the useful characteristics of the FG 
nanostructure. Recent research on the use of FE modeling for 
large deflection analyses of two different kinds of 
nanobeams was conducted by Taghipour and Baradaran [22]. 
The first kind of nanobeams was prismatic, whereas the 
second kind was tapered. They compared their findings to 
those of experiments and took into account the impact of 
residual surface stress on the behavior of the nanobeam, as 
well as the influence of surface through the extended Young-
Laplace formula in equations. TBT and nonlocal theory were 
utilized by Saffari et al. [26] to examine the dynamic stability 
of FG materials. Based on certain purposes, FG materials' 
characteristics might vary depending on their thickness or 
other factors. The characteristics are continuously varied, 
which is their main specification. Because of their 
exceptional qualities under various loading situations, their 
use in many scientific domains is expanding significantly. 
They evaluated the characteristics of the FG nanostructure 
over its thickness using a power-law function. To extract the 
differential equations, they used  Hamilton's  principle  and  

Figure 1. The nanobeam is in two rectangular and circular 
examples, shown from the cross-section. 

von Karman's nonlinearity presumptions. The Gurtin-
Murdoch continuum theory was also used by them to 
consider the surface tension impacts. Utilizing three alternate 
model of beams, Hashemian et al. [27] produced bending and 
buckling evaluations of nanobeams. The governing 
equations are developed from nonlocal strain gradient theory 
that takes surface effects into account. The governing 
equation is cracked by Navier's method. 

In addition to investigating the small deflection of beams 
with different beam theories [5,7,8,11,27-29], generally, two 
different types of theory may be used to analyze the large 
deflection of beams [6,9,10,22,24,26], it has detailed by 
Taghipour and Darfarin [30]. There are two types of people: 
the first ignores the shear deformation effect, while the 
second considers it. EBT for beams is one such theory that 
typically only takes into account the deformation of thin 
beams [6,9]. However, TBT behaves differently and takes 
shear deformations into account, allowing it to be applied to 
thick beams [10,22]. The nonlinear governing differential 
equations are extracted founded on TBT, which are more 
precise in comparison to other cases, even with nonlinear 
von Karman strains [24,26]. 

A review of previously published publications in the open 
literature reveals a lack of research on the large deflection of FG 
nanobeams that accounts for surface effects, based on TBT. The 
goal of the present work is to use the generalization of Young-
Laplace equation to investigate the large deflection analysis of 
FG nanobeams under distributed load and with attention to 
surface effects. The FG nanobeam's characteristics vary in the 
thickness direction according to a power-law function that takes 
into account the gradient index of material in the displayed 
material distribution. The governing equations are solved using 
the total Lagrangian FE formulation, which can produce the 
result for a variety of boundary conditions and loading types. 
The impact of the most important factors on the dimensionless 
deflection of the under-considered structure is then taken into 
account once the findings have been validated against those that 
have already been published. The findings of this research might 
be used to design and produce nanostructures with the 
appropriate qualities to withstand various loading 
circumstances. 

2. Mathematical formulations
The under-considered models are nanobeams with two 
different cross-sectional shapes:  Circular and rectangular 
cross-sections, as  previously  mentioned and illustrated in 
Figure 1. 𝑡𝑡1  displays  the  nanobeam   thickness    for   both 
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Figure 2. Owing to the positive residual surface stress, distributed load. 

Figure 3. Sectional Timoshenko beam model deformation. 

circular and rectangular shapes. The diameter of the circular 
type is represented by 𝐷𝐷, while the height and breadth of the 
rectangular nanobeam are shown by 𝑡𝑡 and 𝑤𝑤, respectively. 
For both kinds, the source of the coordinate system is 
situated at the center point. 

The deflection of the nanobeam, composed of bulk and 
surfaces and as a result has various characteristics with stress 
interactions and continuous deformations, is captured by the 
extended Young-Laplace equation as a modified continuum 
theory. The surface's overall stress-strain relationship may be 
expressed as [22]: 

𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖𝑖𝑖0 + 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘 ,   𝑖𝑖, 𝑗𝑗 = 1,2 , (1) 

where 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the stiffness tensor, 𝜏𝜏𝑖𝑖𝑖𝑖 represents the second-
order stress tensor of surface, 0 the starting stress of surface, 
and 𝜀𝜀𝑘𝑘𝑘𝑘 the strain tensor of surface. For the one-dimensional 
situation of nanobeams, Eq. (1) may be reduced as follows: 

𝜏𝜏 = 𝜏𝜏0 + 𝐸𝐸𝑠𝑠𝜀𝜀𝑥𝑥, (2) 

where 𝐸𝐸𝑠𝑠 is the surface's elasticity modulus and 𝜏𝜏0 the 
residual surface stress.

For nanobeams with a high deflection, the distributed 
load that is parallel to the neutral axis and caused by surface 
effects is seen in Figure 2 and may be expressed as [22]: 

𝑞𝑞𝑠𝑠 = 𝐻𝐻𝜅𝜅𝜃𝜃 . (3) 

The constant parameter i.e., 𝐻𝐻 is given by the cross-section 
type and is equal to 2𝜏𝜏0𝑤𝑤 for a rectangular cross-section and 
2𝜏𝜏0𝐷𝐷 for a circular one. 𝜅𝜅𝜃𝜃 is the curvature of the neutral axis 
(i.e., its slope with respect to 𝑋𝑋), and 𝐻𝐻 is a constant 
parameter. Figure 3 illustrates the deformation of the cross-
section of a nanobeam based on TBT, where the particle 𝑃𝑃0 
position in the undeformed state becomes 𝑃𝑃 after 
deformation. As a result, the coordinate of a particle like 𝑃𝑃 
in the situation of deformation may be written as [31]: 

𝑥𝑥 = 𝑋𝑋 + 𝑢𝑢0 − 𝑌𝑌 sin𝜑𝜑, (4) 
𝑦𝑦 = 𝑣𝑣0 + 𝑌𝑌 cos𝜑𝜑. (5) 

The centroid's displacements in the 𝑋𝑋 and 𝑌𝑌 directions are 
indicated in the relationships above by 𝑢𝑢0 and 𝑣𝑣0, 
respectively. Additionally, respectively, 𝜑𝜑 and 𝜃𝜃 depict the 
neutral axis slope and cross-section rotation. It should be 
noted that the shear strain in the section is specified as (𝜃𝜃 −
 𝜑𝜑) based on TBT. 

The deformation gradient matrix for the preceding 
equations (Eqs. (4) and (5)) is [31]: 

𝐹𝐹 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� = �
1 + 𝑢𝑢΄0 − 𝑌𝑌𝜅𝜅𝜑𝜑 cos𝜑𝜑 − sin𝜑𝜑
𝑣𝑣΄0 − 𝑌𝑌𝜅𝜅𝜑𝜑 sin𝜑𝜑 cos𝜑𝜑 �,

(6) 

where the prime sign denotes a derivative with regard to 𝑋𝑋 and 
𝜅𝜅𝜑𝜑 represents the curvature (that is, the derivative of 𝜑𝜑). 

Utilizing the matrix of deformation gradient as shown 
below, it is possible to create the green strain matrix [31]: 

𝐸𝐸 =
1
2

(𝐹𝐹𝑇𝑇𝐹𝐹 − 𝐼𝐼) = �𝐸𝐸𝑋𝑋𝑋𝑋 𝐸𝐸𝑋𝑋𝑋𝑋
𝐸𝐸𝑌𝑌𝑌𝑌 𝐸𝐸𝑌𝑌𝑌𝑌

�, (7) 

that identity matrix is shown by 𝐼𝐼. 
Additionally, the non-zero elements of the Green strain 

matrix are defined as follows using consistent-linearization 
methods and small-strain assumptions [31]: 

𝐸𝐸𝑋𝑋𝑋𝑋 = 𝑒𝑒 − 𝑌𝑌𝜅𝜅𝜑𝜑 , 𝐸𝐸𝑋𝑋𝑋𝑋 = 𝐸𝐸𝑌𝑌𝑌𝑌 = 𝛾𝛾/2, (8) 

where Ref. [31] defines the average shear strain (𝛾𝛾) as well 
as the center axial strain (𝑒𝑒) as follows: 

𝑒𝑒 = (1 + 𝑢𝑢΄0) cos𝜑𝜑 + 𝑣𝑣΄0 sin𝜑𝜑 − 1, 

𝛾𝛾 = −(1 + 𝑢𝑢΄0) sin𝜑𝜑 + 𝑣𝑣΄0 cos𝜑𝜑. (9) 

The prior equations, i.e., Eq.  (9), showed the nonlinearity of 
the strains versus displacement functions. This nonlinearity 
is geometrical. If the small deflections are considered, it is 
logical that 𝜑𝜑 ≪ 1, and the equations convert to linear form, 
i.e., 𝑒𝑒 =  𝑢𝑢′0 and 𝛾𝛾 = −𝜑𝜑 +  𝑣𝑣′0.

The internal forces 𝑁𝑁 (resulting from axial force), 
𝑉𝑉 (resulting from transverse shear force), and 𝑀𝑀 (resulting 
from bending moment) are calculated by integrating the 
stress elements [31]: 

𝑁𝑁 = �  
𝐴𝐴0
𝑆𝑆𝑋𝑋𝑋𝑋 𝑑𝑑𝑑𝑑, 𝑉𝑉 = �  

𝐴𝐴0
𝑆𝑆𝑋𝑋𝑋𝑋 𝑑𝑑𝑑𝑑, 

𝑀𝑀 = −�  
𝐴𝐴0
𝑌𝑌𝑆𝑆𝑋𝑋𝑋𝑋 𝑑𝑑𝑑𝑑, 

(10) 

where 𝑆𝑆𝑋𝑋𝑋𝑋 represents the second Piola-Kirchhoff stress 
under normal conditions, and 𝑆𝑆𝑋𝑋𝑋𝑋 represents the stress under 
shear conditions. 

In light of this, the vector 𝒛𝒛, also known as the general 
stress resultant vector [31]: 

𝒛𝒛 = [𝑁𝑁 𝑉𝑉 𝑀𝑀]𝑇𝑇 . (11) 

The general strain vector, in contrast, 𝒉𝒉 is described as [31]: 

𝒉𝒉 = [𝑒𝑒 𝛾𝛾 𝜅𝜅𝜑𝜑]𝑇𝑇 . (12) 
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Figure 4. Schematic of FG nanobeam and properties 
gradient. 

To establish the relationship between the general strain 
vector 𝒉𝒉 and the stress resultant vector 𝒛𝒛, the next equation 
is used [31]: 

𝒛𝒛 = 𝑪𝑪 𝒉𝒉. (13) 

The non-zero components of the constitutive matrix 𝑪𝑪 are 
obtained as: 

𝑪𝑪11 = 𝑏𝑏� 𝐸𝐸(𝑦𝑦)𝑑𝑑𝑑𝑑
ℎ−𝑦𝑦0

−ℎ−𝑦𝑦0
, 𝑪𝑪22 =

5
6

𝐶𝐶11
(2 + 2𝑣𝑣), 

𝑪𝑪33 = 𝑏𝑏� 𝑦𝑦2𝐸𝐸(𝑦𝑦)𝑑𝑑𝑑𝑑
ℎ−𝑦𝑦0

−ℎ−𝑦𝑦0
, (14) 

where ℎ, 𝑏𝑏, and 𝑣𝑣 represent the structure's half-height, width, 
and Poisson's ratio. Furthermore, as previously mentioned, 
the structure's characteristics (that is, Young's elasticity 
modulus) are FG along its thickness direction, as illustrated 
in Figure 4, and the next power-law function is taken into 
account for its fluctuations [32]: 

𝐸𝐸(𝑦𝑦) = (𝐸𝐸2 − 𝐸𝐸1) �
𝑦𝑦
2ℎ

+
1
2
�
𝑛𝑛

+ 𝐸𝐸1, (15) 

here, 𝑛𝑛 is referred to as the material gradient index of FG 
materials, which depicts how the material is distributed 
across the thickness of the construction. Additionally, the 
structure's top and bottom surfaces' Young's elasticity moduli 
are 𝐸𝐸1  and 𝐸𝐸2, respectively. 

The following relation may be used to produce the 
applied uniform distributed load 𝑞𝑞: 

𝑞𝑞 = 𝑄𝑄
𝐶𝐶33
𝜓𝜓𝑙𝑙3

, (16) 

where 𝑄𝑄 stands for the dimensionless evenly distributed 
load, and 𝑙𝑙 stands for the nanobeam's length. Also: 

𝜓𝜓 = 1 +
3 �𝐸𝐸2𝐸𝐸1

− 1� (𝑛𝑛2 + 𝑛𝑛 + 2)

(𝑛𝑛 + 1)(𝑛𝑛 + 2)(𝑛𝑛 + 3) . (17) 

3. Total lagrangian FE formulation
The prismatic beam element by two end nodes is regarded as 
having six Degrees of Freedom (DOF) overall and three 
DOF at each node in the FE formulation (see Figure 5). The 
following kinds of assembly are used for this DOF and the 
associated nodal forces [31]: 

𝒖𝒖 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑢𝑢1
𝑣𝑣1
𝜑𝜑1
𝑢𝑢2
𝑣𝑣2
𝜑𝜑2⎦
⎥
⎥
⎥
⎥
⎤

, 𝒇𝒇 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑓𝑓𝑋𝑋1
𝑓𝑓𝑌𝑌1
𝑀𝑀1
𝑓𝑓𝑋𝑋2
𝑓𝑓𝑌𝑌2
𝑀𝑀2⎦

⎥
⎥
⎥
⎥
⎤

 , (18) 

Figure 5. The original and current arrangements of the six degrees 
of freedom straight linear beam element.  

here, the nodal displacement is 𝒖𝒖, and the force vector is 𝒇𝒇. 
Additionally, subscripts 1 and 2 indicate the values of 𝑢𝑢0(𝑋𝑋), 
𝑣𝑣0(𝑋𝑋), and 𝜑𝜑(𝑋𝑋) at the first and second nodes, respectively. 
Additionally, the values of the 𝑋𝑋-component, 𝑌𝑌-component, 
and external bending moment at first (i.e., subscript 1) and 
second (i.e., subscript 2) nodes are indicated by the variables 
𝑓𝑓𝑥𝑥𝑥𝑥, 𝑓𝑓𝑦𝑦𝑦𝑦, and 𝑀𝑀𝑖𝑖(𝑖𝑖 = 1, 2). 

The following relation may be used to represent 
fluctuations in internal energy with regard to nodal 
displacements [31]: 

𝛿𝛿𝛿𝛿 = 𝒑𝒑𝑇𝑇𝛿𝛿𝒖𝒖, (19) 

where 𝒑𝒑 is the internal force vector with the following 
definition [31]: 

𝒑𝒑 = � 𝑩𝑩𝑇𝑇𝒛𝒛 𝑑𝑑𝑋̄𝑋
𝐿𝐿0

. (20) 

By using the nodal displacement vector 𝒖𝒖 together with 
Lagrangian shape functions, considering the partial 
derivatives of 𝑒𝑒, 𝛾𝛾, and 𝜅𝜅𝜑𝜑, and then rewriting 𝑢𝑢0(𝑋𝑋), 𝑣𝑣0(𝑋𝑋), 
and 𝜑𝜑(𝑋𝑋), we may derive 𝑩𝑩 as follows [31]: 

( ) ( )
0 1 0 2

0 1 0 2
0

cos    sin   cos sin
1 cos cos     1     cos     cos     1 ,

0 0 1 0 0 1

L N L N
L N e L N e

L

ϕ ϕ γ ϕ ϕ γ
ϕ ϕ ϕ ϕ

− − 
 = − − + − − + 
 − 

B

 

(21) 

where 𝐿𝐿0 in Eq. (21) represents the element's original length 
before deformation and: 

𝑁𝑁1 =
(1 − 𝜉𝜉)

2
,  𝑁𝑁2 =

(1 + 𝜉𝜉)
2

, 
(22) 

here, 𝜉𝜉 is the element's natural coordinate, which is between 
−1 and +1, and is denoted by the symbol. The generalized 
displacement vector's increment, denoted by the symbol 𝛿𝛿𝒖𝒖, 
is determined for each iteration as follows [31]: 

𝛿𝛿𝒖𝒖 = 𝑲𝑲−1𝛿𝛿𝒑𝒑, (23) 

𝛿𝛿𝒉𝒉 = 𝑩𝑩 𝛿𝛿𝒖𝒖 is taken into consideration, the initial variants of 
𝒛𝒛 and 𝑩𝑩 are used, and 𝑲𝑲 is the tangent stiffness matrix whose 
components may be calculated employing Eqs. (12) and 
(13). As a result, incremental Eq. (23) may be represented 
using the iteration form below [22]: 

𝒖𝒖(𝑟𝑟+1) = 𝒖𝒖(𝑟𝑟) + �𝑲𝑲(𝑟𝑟)�
−1
�𝒑𝒑(𝑟𝑟+1) − 𝒑𝒑(𝑟𝑟)�, (24) 
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Figure 6. Contrasting macro beam's dimensionless deflection with 
those of Li et al. [7]. 

that 𝑟𝑟 displays the number of iterations. The loads are exerted 
in a series of steps as [22]: 

𝒑𝒑(𝑟𝑟+1) = 𝒇𝒇𝑒𝑒
(𝑟𝑟) + 𝒇𝒇𝑠𝑠

(𝑟𝑟), (25) 

In Eq. (25), the force vector 𝒇𝒇𝑒𝑒
(𝑟𝑟) that results from the external 

loads and the force vector 𝒇𝒇𝑠𝑠
(𝑟𝑟) resulting from the dispersed 

load (i.e., 𝑞𝑞𝑠𝑠)) are both stated. 
In each phase, 𝒇𝒇𝑒𝑒

(𝑟𝑟) is also determined based on the 
external loads, and it is important to highlight that it is a 
conservative load. It should be noted that there have been no 
modifications to any of the steps' iterations. 

However, since 𝒇𝒇𝑠𝑠
(𝑟𝑟) is caused by a non-conservative 

load (𝑞𝑞𝑠𝑠), its specifications (i.e., direction and magnitude) are 
altered by a change in the elements of the nodal displacement 
vector. 

Thus, 𝒇𝒇𝑠𝑠
(𝑟𝑟) is modified after each repetition. In the first 

iteration of the first load step, 𝒖𝒖1 is set to be a zero vector, 
leading to the production of 𝒑𝒑1 and 𝒇𝒇𝑠𝑠1. The subsequent 
repetitions are repeated until each load step has the required 
precision [22]. 

4. Results and discussion
4.1. Validation study 

To assure the trustworthiness and correctness of the findings, 
a comparison between the most recent results and those that 
have already been published is made before the results are 
shown. To this goal, the authors omitted several criteria to 
make the findings compared to other works since the current 
study is the first analysis with the requirements mentioned 
above, and there is not a similar one in the literature to 
compare the results with. 

Accordingly, the dimensionless deflections are produced 
for various 𝑙𝑙/ℎ ratios and compared with the present ones in 
Figure 6 with respect to Li et al. [7], which is about an FG 
macro beam with both ends clamped condition. Without 
surface effects and with 𝑛𝑛 = 2, the findings in Figure 6 were 
achieved. Additionally, in this scenario, the beam is under a 
uniformly distributed load (𝑄𝑄 = 1). Additionally, the top and 
bottom surfaces' Young's elasticity moduli are estimated to  

Figure 7. Effects of surface tension and length-to-thickness ratio on 
the deflection of a nanobeam clamped at both ends. 

Figure 8. Nanobeam was just supported by the length-to-thickness 
ratio and surface effects on the deflection of both ends. 

be 70 GPa and 380 GPa, respectively, with a Poisson's ratio 
of 0.23. 

It can be shown that the findings for various length-to-
thickness ratios (i.e., 𝑙𝑙/ℎ) are in excellent agreement with 
one another, with a small amount of variation perhaps arising 
from the use of different beam theories in Li et al. [7] 
investigation or alternative approaches to problem-solving. 
As a result, it is guaranteed that the formulations, solution 
process, and programmed code are correct. The findings of 
this investigation are therefore described in the paragraphs 
that follow. 
4.2. Case study 
The findings of the current effort are now shown by 
guaranteeing their dependability in a more straightforward 
form. Thus, the results are derived for various boundary 
conditions using the aforementioned material characteristics 
and taking surface effects into account. The beam has a 
rectangular cross-sectional area that is 100 nanometers wide 
and 1000 nanometers long. 

Figures 7 and 8 show, in the contexts of both ends, 
clamped and simply supported, respectively, how surface 
stresses affect the dimensionless deflection of the nanobeam. 
As shown in Figure 7, the impact of surface stresses on the 
deflection of the nanobeam may vary depending on the value 
of τ0 (i.e., residual surface stress, which can be either positive 
or negative). 
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Figure 9. Surface effects and length-to-thickness ratio on cantilever 
nanobeam deflection. 

Considered to be 0.28 nN/nm and 1.52 nN/nm for the 
top and bottom surfaces, respectively, in Figure 7, it can be 
observed that accounting for surface effects causes the 
deflection to decrease. Additionally, it can be inferred that 
when negative values for 𝜏𝜏0 are taken into account, the 
dimensionless deflection of the nanobeam behaves 
differently, i.e., taking into account surface effects increased 
the deflection of the structures. 

Figure 8 depicts a distinct outcome, but for both ends, a 
straightforward supported nanobeam. As can be observed, 
capturing surface effects, with a positive value for 𝜏𝜏0, causes 
the dimensionless deflection to decrease, and raising the 𝑙𝑙/ℎ 
ratio causes the nanobeam's deflection to decrease. This 
figure is presented for two values of 𝑙𝑙/ℎ, which is a criterion 
of nanobeam thickness. 

The dimensionless deflection of a cantilever nanobeam 
with a positive value for 𝜏𝜏0 is shown in Figure 9. As is seen 
from Figure 9, incorporating surface effects with negative 
values of 𝜏𝜏0 leads to an increase in the structure's deflection. 
In other words, the direction of the distributed loads caused 
by surface effects and the direction of the distributed external 
load is aligned in this picture, increasing the deflection. 

Figure 10 shows the impact of the material gradient index 
𝑛𝑛 on the dimensionless deflection of the FG nanobeam. The 
stiffness of the whole structure decreases when the material 
gradient index is raised because the characteristics of the 
nanobeam vary from stiffer to softer places. As a result, the 
nanobeam's deflection improves. Positive residual surface 
stress levels are shown at Figure 10, which causes the 
findings to decrease when surface effects are taken into 
account. 

The power-law distribution, which complies with Eq. 
(15), is contrasted with the exponential kind of property 
distribution, which complies with the following function, to 
assess how the two types of material properties distribution 
affect the outcomes. 

𝐸𝐸(𝑦𝑦) = 𝐸𝐸2𝑒𝑒
� 12ℎ�ln�𝐸𝐸1𝐸𝐸2

�(𝑦𝑦+ℎ). (26)

The two forms of distribution are compared in Figure 11, and 

Figure 10. Dimensionless deflection of the nanobeam and the 
material gradient index of FG materials. 

Figure 11. Comparing the outcomes for FG materials with power-
law and exponential distribution types. 

it is clear that although the overall behavior of the structure 
in both types is similar, the results based on the power-law 
function are fewer than those based on the exponential 
function. It should be mentioned that 𝑛𝑛 = 2 and a cantilever 
nanobeam were used to get the findings in Figure 11. 

5. Conclusions

The current study presents a large deflection analysis of a 
Functionally Graded (FG) nanobeam, taking surface effects 
into account. A power-law distribution governs how the 
Young's elasticity modulus changes with thickness of the 
nanobeam. The generalized Young-Laplace equation 
accounts for the surface effects, and the displacement 
elements are added founded on Timoshenko Beam Theory 
(TBT), which also accounts for the shear deformation 
effects. The nonlinear differential equations are cracked 
using the total Lagrangian Finite Element (FE) formulation, 
and the outcomes are confirmed using earlier published 
research in the simpler state [22]. The impact of various 
factors on the results is taken into account for various 
boundary conditions to ensure the accuracy of the findings, 
and it is seen that the sign of residual surface stress plays a 
significant influence on the deflection of the nanobeam. In 
other words, aimed at simply supported conditions, for 
residual surface stress values that are positive, considering 
surface effects causes the deflection to decrease, but for 
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residual surface stress values that are negative, including 
surface effects causes the deflection to increase, and vice 
versa aimed at clamped supported conditions. Additionally, 
when the 𝑙𝑙/ℎ ratio rises, which is a need for nanobeam 
thickness in all boundary types taken into consideration, the 
deflection decreases, and the stiffness of the nanobeam 
increases. Increasing the material gradient index n, which 
depicts the material distribution in the thickness direction, 
results in a softer structure and, as a result, increases 
deflection. A comparison between the power-law and 
exponential forms of FG distribution is conducted to 
reinforce the originality and thoroughness of this work. 
According to the findings of contrasting the deflection of 
power-law and exponential distributions of material kinds, it 
can be concluded that generally speaking, under the same 
loading and boundary circumstances, the exponential FG 
type exhibits a greater deflection than the power-law type. 
Additionally, power-law models are more helpful since 
surface effects on the deflection of this FG distribution type 
are less significant. 
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