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Abstract. The presented work aims to develop a novel technique for obtaining the
solution of linear and nonlinear Partial Di�erential Equations (PDEs). This technique is
based on applying a collocation method with the aid of Bernoulli polynomials and the use
of such an algorithm to solve di�erent types of PDEs. The method applies the regular �nite
di�erence scheme to the main problem and transforms it into an algebraic system. The
obtained system is then solved, the unknown coe�cient is acquired, and an approximate
solution for the problems is achieved. Some test results of famous equations, including the
telegraph, viscous Burger, and modi�ed Burger equations, are tested to ensure that the
provided algorithm is e�ective and robust. In addition, a comparison is provided with other
recent techniques from the literature. The current technique proves to have high accuracy
concerning the error measure and through graphical representation of the solution.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Partial Di�erential Equations (PDEs) are at the heart
of many, if not all, the applications and analysis or sim-
ulation of multiple physical systems with applications
in real-life phenomena, including 
uid, electrodynam-
ics, and other related models. These equations have
many applications in modeling the vibration of struc-
tures such as buildings and beams and are considered
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the backbone for atomic physics equations. During the
last few years, an increasing interest in the development
and analysis of the dynamics of PDEs has been noticed
due to their particular interest. An unconditionally
stable �nite di�erence method has been used to solve
the one-dimensional hyperbolic PDE [1]. Applications
of PDE in the �eld of the electromagnetic waveguide
are displayed in [2]. Forward and inverse problems in
the form of nonlinear PDE are discussed in [3] with
application in neural networks. Zang et al. [4] inves-
tigated a novel approach for solving high-dimensional
PDE, which has a wide range of applications in science.
Other models involving PDE can be found in [5,6] with
di�erent numerical and analytical methods for solving
these types of problems.

In this study, we are concerned with studying a
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general form of PDE in the following form:

@�u
@t�

+ (�� 1)' (x; t)
@u
@t

=
@2u
@x2

+ � (x; t)
@u
@x

+ � (x; t)u
@u
@x

+K (x; t)u2 + ! (x; t)u+  (x; t) ; (1)

with the boundary conditions:

u (a; t) = �1 (t) ; u (b; t) = �2 (t) ; (2)

and with one of the following initial conditions:

u (x; 0) = g1 (x) ; ut (x; 0) = g2 (t) ; (3)

where � = 1 or 2, and all of the parameters ', �, �, K,
and ! are �nite constants or continuous functions. The
general form represented in Eq. (1) possesses a di�erent
form of known PDE, including the telegraph, Burger,
and modi�ed Burger equations by assigning di�erent
values of the parameters in these equations. Setting
� = 2, �(x; t) = 0, and K(x; t) = 0 into Eq. (1) will lead
to a hyperbolic form of PDE known as the telegraph
equation. On the other hand, setting � = 1 into
Eq. (1) will lead to either a form of nonlinear Burger
or modi�ed Burger equations having wide application
in di�erent domains.

Burger equation was �rst derived by Bateman [7]
back in 1915 and was then used to simulate turbulence
in 
uid mechanics [8]. Also, this equation is a basic
form of the famous Navier Stocks equation used for
the modeling of gas dynamics [9] with the presence of
the convection and viscosity terms [10]. With a variety
of applications of the Burger equation, several math-
ematicians and researchers try di�erent approaches,
both numerical and analytical, to gain more knowledge
of the dynamics and behavior of the model and its
extended form known as the modi�ed Burger equation.
This modi�ed form of the model has been used multiple
times for simulating real-life problems such as pollutant
transport and shock waves [11]. Due to the above-
proposed application, many scientists strived to �nd
di�erent e�ective approaches for solving Burger and
modi�ed Burger equations. For example, Korkmaz
and Dag [12] used a Sinc di�erential quadrature-
based method for solving the one-dimensional BE. The
quintic B-spline method has been utilized for solving
the same problem by Korkmaz et al. in [13] numerically.
Also, Korkmaz and Dag [14] applied the polynomial
di�erential quadrature method for solving nonlinear
Burger's equation. In addition, a fractional form of the
Burger equation has been introduced and solved using
several techniques. For example, Wang et al. [15] in-
vestigated the solution of a fractal coupled Boussinesq-
Burger equation having an important application in

simulating shallow-water waves. Also, the multidi-
mensional fractional Burger equation has been studied
by Usman et al. [16] using a new �nite di�erence
method with a new de�nition of the di�erentiation
matrix. Hashmi et al. [17] derived some accurate
solutions using the B-spline method for simulating the
fractional Burger equation. A Homotopy perturbation
approach has been proposed by Ahmad et al. in [18] to
solve the fractional Burger and KdV Burger equations.
A local discontinuous Galerkin technique has been
utilized for obtaining solutions for the modi�ed form of
the Burger equation by Zhang et al. in [19]. Bratsos and
Abdul [20] adapted an exponential time di�erencing
scheme for simulating the Burger and modi�ed the
Burger equation. Seydao�glu [21] employed an algo-
rithm based on the combination of implicit-explicit �-
nite di�erence schemes for solving the Burger equation.
Mohamed [22] investigated the solution of the Burger
equation through a fully implicit scheme. Arora and
Varun in [23] examined the multi-dimensional Burger
equation using the extended B-spline method. Aswin
et al. [24] applied the di�erential quadrature method
in obtaining a highly accurate solution to the Buerger
equations successfully. A reproducing kernel approach
is introduced in [25] by Du et al. to solve Burger's
equation while emphasizing its application in di�usive
waves in 
uid dynamics. Finally, a high-order implicit
weighted compact nonlinear scheme is illustrated in [26]
to solve the coupled viscous Burger equation.

In this paper, we are concerned with applying a
novel and e�ective collocation method using Bernoulli
bases. The use of such a method, in general, using
di�erent forms of basis functions has been an e�cient
numerical tool for solving di�erent forms of application
problems. The ability to provide accurate approximate
solutions for these types of models was the motivation
for scientists to adapt this technique using di�erent
types of bases. Chebyshev, Jacobi, Legendre, Bessel,
Genouci, and Bernoulli bases are only a few of these
types of bases that have been used in combination with
the collocation technique for solving models of di�erent
behaviors. Bernoulli polynomials, for instance, are
one of the bases that have been used extensively in
recent years for solving di�erent problems with high
accuracy, and this is what motivates us to adapt these
polynomials. The main advantage of using these types
of bases is that they are simple to represent and easy to
use. In addition, the use of a fewer number of Bernoulli
bases will guarantee e�cient results for complex mod-
els. Many researchers applied di�erent techniques for
simulating real-life problems in di�erent areas. For
example, El-Gamel et al. [27] adopted a new technique
for solving the Bratu equation. Also, one-dimensional
heat and wave equations were simulated using a similar
approach [28]. In addition, Adel and Sabir [29] utilized
a collocation technique for solving the general form of
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the Lane-Emden type equation with delay. Finally,
Bazm and Hosseini [30] employed a new approach to
solving the two-dimensional integral equation. The
operational matrix of Bernoulli polynomials has been
studied in [31] by Zeghdane and then used to solve the
stochastic integral equations. Also, Adel et al. [32,33]
employed the collocation method for solving the Emden
Fowler and MHD Je�ery-Hamel 
ow problems. All of
these attempts prove that this method is e�ective with
high accuracy.

The novelty of the proposed technique is indicated
through the main steps for solving the presented
models. The new method is based on discretizing the
time domain using the usual �nite di�erence method,
and the use of Bernoulli functions as a basis for the
spatial variable.

The new method possesses some lead while simu-
lating such problems in terms of simplicity and robust-
ness compared to other similar techniques. This can
be witnessed through the use of fewer bases, which is
accompanied by high accuracy and less computational
cost. It is worth mentioning that this is the �rst
time that he presented techniques used for solving such
models. The paper has multiple novelty sides that can
be summarized in the following points:

1. The new method is designed based on the use
of Bernoulli polynomials as bases for solving the
described model;

2. The method is tested for both linear and nonlinear
cases for various models with great importance and
impact;

3. The method shows good approximation for the
solution of the problems and can be extended to
a more complex problem.

The organization of the paper is: in Section 2, we
present some preliminaries of the Bernoulli polynomi-
als. Section 3 provides the main steps for the proposed
technique based on matrix relations. Section 4 provides
the steps for solving Eq. (1) based on the di�erentiation
matrices of Bernoulli polynomials. In Section 5,
numerical simulations are dissipated through tables
and �gures and with several examples of linear and
nonlinear type problems. The last stage, Section 6,
summarized the conclusion of the study and some
extended future work.

2. Basic de�nitions

We shall provide all the main relations regarding
the used Bernoulli basis. We �rst present the main
relations for the Bernoulli matrix and the application
of these matrix relations for solving the given problem.
Bernoulli polynomials gain increasing interest in solv-
ing di�erent types of equations due to their simplicity

and the ability to provide accurate solutions.We de-
�ned Bernoulli polynomials according to the following
relation [27{29]:

zexz

ez � 1
=
1X
n=0

Bn (x)
n!

zn: (4)

The derivative of such polynomials can be in the form

d
dx
Bn (x) =

1X
n=0

�
n
k

�
(n� k)Bkxn�k�1

= nBn�1 (x) : (5)

To explain the use of our novel technique, consider the
approximate solution to the main problem in the form
of a Bernoulli series:

u (x) �= uN (x) =
NX
n=0

anBn (x) ; (6)

where n = 0; 1; 2; � � � ; N are the unknowns. Next, we
shall illustrate the main relations and the applications
to Eq. (1).

3. Matrix relation and solution procedure

Here, we will introduce a form for Bernoulli's di�eren-
tiation matrices and the principle procedure. First, the
matrix form of Eq. (6) is in the form:

u (x)�=uN (x)=B (x)A; A=[a0; a1; :::; aN ]T : (7)

Also, with the aid of Eq. (5) for n = 0; 1; 2; � � � ; N , the
kth derivative of B(x) is in the form:

B(k) (x) = B (x)(�)k; k = 0; 1; : : : ;m; (8)

where � is the matrix of di�erentiation using Bernoulli
polynomials and takes the form:

� =

266666664
0 1 0 0 � � � 0
0 0 2 0 � � � 0
0 0 0 3 � � � 0

: : : : : : : : : : : :
. . . : : :

0 0 0 0 0 N
0 0 0 0 0 0

377777775 :
Then, we acquire the matrix form for u(k)(x) with the
help of Eqs. (7) and (8) as:

u(k) (x) �= u(k)
N (x) = B(x)(�)kA: (9)

Next, we need to obtain the matrix form of the nonlin-
ear part in Eq. (1) through the following theorem:

Theorem 1. The multiple nonlinear terms in Eq. (1)
in the form u(xj)u(1)(xj),u� (xj)u(1)(xj),j = 0; 1; 2; : : :
can be approximated using the following form:
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u (xj)u(1) (xj) = B (x) �( ~B(x) ~A);

u�(xj)u(1)(xj) = B (x)��
�

~B (x) ~� ~A
�
; (10)

where:

~B =

0BBB@
B (x0) 0 � � � 0

0 B (x1) � � � 0
...

...
. . .

...
0 0 � � � B (xN)

1CCCA
(N+1)�(N+1)2

~A =

0BBB@
a 0 � � � 0
0 a � � � 0
...

...
. . .

...
0 0 � � � a

1CCCA
(N+1)�(N+1)

~� =

0BBB@
� 0 � � � 0
0 � � � � 0
...

...
. . .

...
0 0 � � � �

1CCCA
(N+1)2�(N+1)2

B =

0BBBBB@
B0 (x0) B1 (x0)
B0 (x1) B1 (x1)

: : : BN (x0)
: : : BN (x1)

B0 (x2) B1 (x2)
...

...

: : : BN (x2)
...

...
B0 (xN ) B1 (xN ) : : : BN (xN )

1CCCCCA :

It should be noted that other nonlinear terms in the
form of exponential, for example, can be approximated
with the same previous method after expansion in the
Taylor series expansion. Next, we will de�ne the basic
steps for solving Eq. (1) with the proposed algorithm
and with the aid of Eq. (3).

4. Proposed collocation method

In this section, we will illustrate the technique used for
�nding the solution of Eq. (1). We need �rst to apply
an extension of the regular �nite di�erence scheme
where uj = u (j�t) and we reach:

@�u
@t�

=
(�� 1)ui+1 � �ui + ui�1

(��t)�
: (11)

By substituting the �nite di�erence scheme represented
in Eq. (11) into the main equation, Eq. (1) may be
reduced to the following form:

(��1)ui+1��ui+ui�1

(��t)�
+(��1)' (x; ti+1)

ui�ui�1

�t
=

u00i+1 + � (x; ti+1)u0i+1 + � (x; ti+1)ui+1u0i+1

+K (x; ti+1)u2
i+1 + ! (x; ti+1)ui+1 +  (x; ti+1) : (12)

After some simpli�cations for Eq. (12), we reach the
following form:

d2ui+1

dx2 + � (x; ti+1)
dui+1

dx
+ � (x; ti+1)ui+1

dui+1

dx

+K (x; ti+1)u2
i+1+

�
! (x; ti+1)� (��1)

(��t)�
�
ui+1

= � (x; ti+1) ;! (13)

where:

� (x; ti+1) =  (x; ti+1)

+
�

(�� 1)
�t

' (x; ti+1)� �
(��t)�

�
ui

+
�

1
(��t)�

� (�� 1)
�t

' (x; ti+1)
�
ui�1: (14)

After applying the above simpli�cation, we reach the
next theorem.

Theorem 2. If the solution to the model (1) is
through the Eqs. (13) and (14), then the discrete
Bernoulli series can be in the form:

u00 (xk; ti+1) + � (xk; ti+1)u0 (xk; ti+1)

+ � (xk; ti+1)u (xk; ti+1)u0 (xk; ti+1)

+K (xk; ti+1)u2 (xk; ti+1)

+
�
! (xk; ti+1)� (�� 1)

(��t)�
�

u (xk; ti+1) = � (xk; ti+1) ; (15)

where xk; k = 0; 1; 2; : : : ; N is the used equal colloca-
tion method with the following form:

xk =
k
N
: (16)

The fundamental matrix representation of Eq. (15) can
be in the following form:

	A = �; (17)

where:

	=B�2+�B�+�
�

~B ~A
�
B�+K

�
~B ~A
�
B+JB:

Each term in the above equation is in the form by
equation is shown in Box I. The matrix form of the
boundary condition represented in Eq. (2) can take the
form:

B (a)A = �1 (ti+1) ; B (b)A = �2 (ti+1) ; (18)

and can be written in the form:

�A = �1 (ti+1) ; �A = �1 (ti+1) : (19)

Replacing the �rst row of the augmented matrix [	; �]
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� =

0BBB@
� (x0; ti+1) 0 � � � 0

0 � (x1; ti+1) � � � 0
...

...
. . .

...
0 0 � � � � (xN ; ti+1)

1CCCA ; � =

0BBB@
� (x0; ti+1)
� (x1; ti+1)

...
� (xN ; ti+1)

1CCCA ;
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0BBB@
� (x0; ti+1) 0 � � � 0

0 � (x1; ti+1) � � � 0
...

...
. . .

...
0 0 � � � � (xN ; ti+1)

1CCCA ;

K =

0BBB@
K (x0; ti+1) 0 � � � 0

0 K (x1; ti+1) � � � 0
...

...
. . .

...
0 0 � � � K (xN ; ti+1)

1CCCA ;

J =

0BBBB@
! (x0; ti+1)� (��1)

(��t)� 0 � � � 0
0 ! (x1; ti+1)� (��1)

(��t)� � � � 0
...

...
. . .

...
0 0 � � � ! (xN ; ti+1)� (��1)

(��t)�

1CCCCA :

Box I

Algorithm 1. Solving the nonlinear system
h

~	; ~�
i
.

by [�; �1 (ti)] and the last row with [�; �2 (ti)], a new
augmented matrix can be acquired having the following
form:

~	A = ~�: (20)

This new augmented matrix will result in a nonlinear
system of an algebraic equation. A novel iterative
algorithm that will be used is Algorithm 1.

5. Numerical simulation

Here, the results of the proposed method are presented
to prove the e�ectiveness of the proposed method.
We solve di�erent forms of linear and nonlinear PDEs
named the telegraph, Burger, and modi�ed Burger
equations in di�erent forms. The results are obtained
using Matlab 2015. The absolute error is calculated
according to the following equation:

eN (xi) = juApproximate (xi)� uExact (xi)j ;
i = 0; 1; 2; : : : ; N:

Problem 1. In this example, consider the Telegraph
equation by assigning � = 2; ' (x; t) = ! (x; t) = 1 and
� (x; t) = � (x; t) = 0 which gives:

@2u
@t2

+
@u
@t

+ u� @2u
@x2 = x2 + t� 1;

0 < x < 1; 0 < t < 1: (21)

With the initial and boundary conditions:

u(x; 0) = x2; ut(x; 0) = 0;

u(0; t) = t; u(1; t) = 1 + t:

Whose exact solution is:

u(x; t) = x2 + t:

Table 1 provides the error measure of the proposed
technique for t = 1:0 and t = 10 with di�erent step
sizes. Figure 1 graphs the approximate solution for the
problem for x 2 [0; 1] and t 2 [0; 1]. As can be seen
from the table and �gure, the method gives almost the
exact solution to the problem with high accuracy.
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Table 1. Absolute error for Problem 1 for di�erent values
of t.

xi t = 1:0, �t = 0:1 t = 10, �t = 1

0 2.35E-14 1.85E-13
0.1 1.98E-14 1.49E-13
0.2 4.89E-15 5.86E-14
0.3 1.11E-14 5.68E-14
0.4 1.31E-14 1.49E-13
0.5 2.93E-14 7.11E-14
0.6 2.46E-14 1.49E-13
0.7 1.021E-14 5.68E-14
0.8 2.91E-14 5.68E-14
0.9 3.98E-14 1.49E-13
1.0 2.35E-14 7.28E-14

Figure 1. Solution behavior for t and � = 1 for
Problem 1.

Problem 2. Second, we present the �rst form of the
viscous Burger equation while assigning � = 2 and
� (x; t) = 1 in the form:

@u
@t

+ u
@u
@x
� �

2
@2u
@x2 = 0; x 2 (0; 1) : (22)

With the initial and boundary conditions:

u(x; 0) = sin(x); u(0; t) = u(1; t) = 0;

with the analytic solution in the form:

u (x; t) =
2��

P1
n=1 Cn exp

��n2�2�t
�
n sin (n�x)

C0 +
P1
n=1 Cn exp (�n2�2�t)n cos (n�x)

;

where:

C0 =
1s
0

exp
�
� 1

2��
[1� cos (�x)]

�
dx;

Cn
1s
0

exp
�
� 1

2��
[1� cos (�x)]

�
cos (n�x) dx:

Table 2 presents the solution and error measure with
the value � = 1, t = 0:1 among Table 3. which gives
the same at � = 10, t = 0:01. A comparison between
the approximate solution of our method and the �nite
di�erence method in [31] with the absolute error for
both is illustrated in Table 4 for � = 10 with several
time and space values. Our method produces more
accurate results compared to the method presented
in [31]. Figures 2{4 gives the approximate solution for

Figure 2. Solution pro�le at t and � = 1 for Problem 2.

Table 2. Solutions pro�le and error for Problem 2 for � = 1, t = 0:1.

xi uExact uApproximate eN
0.1 0.109538151270508 0.109590183005071 5.20E-05

0.2 0.209792148910037 0.209893662453422 1.02E-04

0.3 0.291896350825530 0.292038301042883 1.42E-04

0.4 0.347923912365550 0.348093234391569 1.69E-04

0.5 0.371577476146793 0.371758017544956 1.81E-04

0.6 0.359045579984961 0.359219480845147 1.74E-04

0.7 0.309905000631104 0.310054385169234 1.49E-04

0.8 0.227817406627376 0.227926338549254 1.09E-04

0.9 0.120686691089409 0.120743056037676 5.64E-05
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Table 3. Solutions pro�le and error for Problem 2 for � = 10, t = 0:01.

xi uExact uApproximate eN
0.1 0.114612984191918 0.115169956659254 5.60E-04
0.2 0.218164263714681 0.219223949428971 1.06E-03
0.3 0.300615471737520 0.302075046467647 1.46E-03
0.4 0.353896911467088 0.355614403091422 1.71E-03
0.5 0.372696489356191 0.374504343571767 1.80E-03
0.6 0.355015826846423 0.356737085848952 1.72E-03
0.7 0.302425928419229 0.303891544645087 1.46E-03
0.8 0.219974737166914 0.221040334833527 1.07E-03
0.9 0.115731926706530 0.116292271087520 5.62E-04

Table 4. Comparison of solutions and error for Problem 2 for � = 0:02 and di�erent values of t.

ti xi uApproximate eN
Finite di�erence

method [31]
Absolute

error

t = 0:4
0.25 0.3411118 8.03E-04 0.34267 7.60E-04
0.5 0.6609855 2.75E-04 0.67588 1.52E-02
0.75 0.9052738 4.99E-03 0.95424 4.40E-02

t = 0:6
0.25 0.269281 3.16E-04 0.26908 1.20E-04
0.5 0.530127 7.09E-04 0.53678 7.36E-03
0.75 0.765658 1.59E-03 0.79252 2.53E-02

t = 1:0
0.25 0.188138 5.60E-05 0.18806 1.30E-04
0.5 0.37507 6.50E-04 0.37671 2.29E-03
0.75 0.55596 9.07E-05 0.56535 9.30E-03

Figure 3. Solution pro�le at t and � = 0:1 for Problem 2.

di�erent values of �. From these �gures, the methods
provide accurate results, which also prove the physical
behavior of the solution.

Problem 3. Next, we present another form of viscous
Burger equation represented in Eq. (22) with another
form of initial conditions and boundary conditions in
the form:

Figure 4. An approximate solution for t = 3; 4; 6; 8 and
� = 0:01 for Problem 2.

u(x; 0) = 4x(1� x);

with the conditions:

u(0; t) = u(1; t) = 0:

Results are dissipated in Tables 5 and 6 of the solutions
of the model with � = 10 and a comparison with the
�nite di�erence method in [34].
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Table 5. Approximate solution and absolute error for � = 10 and di�erent values of t for Problem 3.

xi uExact uApproximate eN

0.1 0.112892245268291 0.112945548267831 5.55E-05

0.2 0.216252142417222 0.216356779291488 1.07E-04

0.3 0.300965859903397 0.3011128362621s22 1.43E-04

0.4 0.358863061468998 0.359039247340337 1.79E-04

0.5 0.383422416438965 0.383611374946737 1.91E-04

0.6 0.370657835501244 0.370841069190758 1.81E-04

0.7 0.320065690908233 0.320224221869215 1.54E-04

0.8 0.235371149338849 0.235487545002479 1.18E-04

0.9 0.124718046630702 0.124778661126234 5.87E-05

Table 6. Solution and error pro�les for Problem 3 for � = 2, t = 0:1.

xi=ti xi uApproximate
Finite di�erence

method [31]
eN

t = 0:4
0.25 0.317522880346768 0.31735 6.32E-04
0.5 0.584537259423137 0.58441 2.47E-05
0.75 0.645615507508048 0.6457 2.70E-03

t = 0:6
0.25 0.246138455741545 0.24603 1.85E-05
0.5 0.457976404556937 0.45786 1.92E-04
0.75 0.502675751374800 0.50265 3.66E-03

t = 1:0
0.25 0.165598631696975 0.16554 3.06E-05
0.5 0.298343106946419 0.29826 1.29E-05
0.75 0.295856684503934 0.2958 7.37E-04

Problem 4. Next, we shall illustrate the proposed
algorithm for solving the same Eq. (22) with di�erent
conditions:

u (x; 0) =
2��sin (�x)
�+ cos (�x)

;

u(0; t) = u(1; t) = 0;

with the analytic solution in the form:

u (x; t) =
2��e��2�tsin (�x)
�+ e��2�t cos (�x)

:

Table 7 provides a comparison between our method and
the di�erential quadrature method in [35] at N = 40,
and Table 8 illustrates the compassion of the maximum
absolute error for the same problem at t = 1:0. Our
method proves to acquire e�ective results and is more
accurate compared to the method in [35]. Figures 5
and 6 give the approximate solution for the problem
with di�erent t and �.

Figure 5. Solution pro�le for di�erent values of t and
� = 1 for Problem 4.

Problem 5. In our last example, we propose the
modi�ed Burger equation in the following form with
initial and boundary conditions:
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Table 7. Comparison of approximate solution and absolute error for � = 0:01 and di�erent values of t for Problem 4.

xi=ti xi
Approximate

solution
Di�erential

quadrature [35]
Absolute

error

t = 0:5
0.25 0.015798965412203 0.01581 1.74E-06
0.5 0.029903285191579 0.02991 4.16E-08
0.75 0.031883379375741 0.03197 1.47E-06

t = 1:0
0.25 0.015221504528403 0.01523 7.27E-06
0.5 0.028463574864973 0.02848 1.78E-07
0.75 0.028890546098028 0.02977 6.03E-06

t = 2:0
0.25 0.014109059269918 0.01411 1.52Ee-05
0.5 0.025789606632468 0.02584 1.26E-06
0.75 0.025086608119237 0.02590 8.39E-06

t = 3:0
0.25 0.013051241736336 0.01305 1.66E-05
0.5 0.023368093511267 0.02343 3.38E-06
0.75 0.021913102090887 0.02263 3.15E-06

Figure 6. Solution pro�le for di�erent values of t and
� = 0:1 for Problem 4.

@u
@t

+ u2 @u
@x
� � @2u

@x2 = 0; x 2 (0; 1)� t � t0; (23)

with boundary conditions:

u (a; t) = �1; u (b; t) = �2;

and exact solution in the form:

u (x; t) =
x=t

1 +
p
t=c0 exp (x2=4�t)

:

Tables 9 and 10 give the absolute error for the problem
with � = 0:01; 0:001; and at di�erent times. Also,
Figures 7 and 8 give the approximate solution for the
same values of � with di�erent t values.

Table 8. Comparison of maximum absolute error for
Problem 4.

� Maximum absolute
error, t = 1:0

Bernstein
DQM [35]

1.0 8.2977E-06 9.6E-06

0.1 1.4535E-04 1.5E-03

0.01 3.6471E-05 1.6E-04

0.001 7.03406E-07 3.3E-06

0.0001 7.015412e-09 2.7E-08

0.00001 6.981044e-11 5.5E-10

Table 9. Absolute error for Problem 5 at di�erent values
of t and � = 0:01.

x=t 2.0 4.0 6.0 8.0 10

0 1.38E-14 1.47E-14 1.40E-14 1.40E-14 1.30E-14

0.1 4.20E-04 1.57E-04 9.63E-06 5.82E-05 8.03E-05

0.2 3.44E-04 2.76E-06 7.13E-05 1.09E-04 1.42E-04

0.3 8.99E-04 3.74E-04 2.40E-04 2.21E-04 2.48E-04

0.4 6.93E-04 6.38E-04 4.25E-04 3.68E-04 3.97E-04

0.5 2.68E-04 6.26E-04 5.38E-04 5.23E-04 5.84E-04

0.6 6.61E-05 4.44E-04 5.66E-04 6.77E-04 8.10E-04

0.7 3.92E-05 2.70E-04 5.85E-04 8.67E-04 1.09E-03

0.8 7.04E-05 2.21E-04 7.18E-04 1.16E-03 1.44E-03

0.9 2.57E-06 3.51E-04 1.03E-03 1.55E-03 1.83E-03

1 6.59E-07 1.21E-04 5.26E-04 9.63E-04 1.28E-03
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Table 10. Absolute error for Problem 5 at di�erent
values of t and � = 0:001.

x=t 2.0 4.0 6.0 8.0 10

0 4.97E-14 4.97E-14 4.97E-14 4.97E-14 4.97E-14

0.1 4.95E-04 4.95E-04 4.95E-04 4.95E-04 4.95E-04

0.2 1.42E-04 1.42E-04 1.42E-04 1.42E-04 1.42E-04

0.3 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05

0.4 2.89E-06 2.89E-06 2.89E-06 2.89E-06 2.89E-06

0.5 5.95E-07 5.95E-07 5.95E-07 5.95E-07 5.95E-07

0.6 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07

0.7 2.75E-06 2.75E-06 2.75E-06 2.75E-06 2.75E-06

0.8 1.77E-05 1.77E-05 1.77E-05 1.77E-05 1.77E-05

0.9 9.71E-07 9.71E-07 9.71E-07 9.71E-07 9.71E-07

1 5.40E-17 5.40E-17 5.40E-17 5.40E-17 5.40E-17

Figure 7. Solution pro�le for di�erent values of t and
� = 0:01 for Problem 5.

6. Conclusion

In this research work, a novel technique based on the
use of Bernoulli bases is introduced for simulating a
general form of a partial di�erential equation. The
method utilizes a general form of the �nite di�erence
formula to discretize the time domain and the Bernoulli
collocation approach for the spatial domain. Thus, the
resulting system is worked out for �nding the unknown
coe�cients and, hence, the approximate solution. The
use of the Bernoulli collocation approach, along with
the novel iterative approach, proved to achieve highly
accurate results. Five test problems are solved using
this innovative technique of Burger, telegraph, and vis-
cous Burger-type models to test the e�ectiveness of the
new approach. These models have great signi�cance in
di�erent domains. The results presented through tables

Figure 8. Solution pro�le for di�erent values of t and
� = 0:001 for Problem 5.

and graphs indicate that the method provides good re-
sults and through a comparison made with other meth-
ods. In addition, using a small number of bases is one
of the advantages of the proposed technique. This may
allow us to solve other complex models having potential
applications in di�erent areas of science using the pro-
posed technique. Thus, we are interested to see how the
method can handle more complex problem geometry.
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Nomenclature

 (x; t) Source term
Bn (x) Bernoulli polynomials
an Unknown coe�cients
uN (x) Approximate solution
� Bernoulli di�erentation matrix
�t Temporal step size
xk Equal collocation points
[	; �] Augmented matrix form
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h
~	; ~�

i
New augmented matrix

eN (xi) Absolute error
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