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Abstract— Application of Kobayashi potentials (KP) is extended to the electromagnetic (EM) 

diffraction from the parallel-plate multiport. Standard integral identities are used for 

problem formulation, without the direct use of Weber-Schafheitlin (WS) integrals. The 

Fourier function space is exploited for the construction of the governing linear system of 

equations. A simple strategy is suggested for the evaluation of the required improper 

integrals. Two-dimensional T- and X-junctions are studied as special cases. Numerical results 

are validated through convergence test and asymptotic analysis. It is shown that whenever 

the wave number in the whole problem domain is positive, no real power transfers to the 

diffracted field in the horizontal section of the aforementioned structures. 
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1. INTRODUCTION 

HE method of Kobayashi potential (KP) is an interesting semi-analytical method that can handle a T 
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special class of mixed boundary value problems (BVPs) in electromagnetics (EM) [1-3]. In this modal 

method, by proper application of the Weber-Schafheitlin (WS) integrals, both the edge and the 

discontinuous Dirichlet boundary conditions (BCs) are automatically satisfied [4]. Hence, providing a 

unique solution is straightforward. This is in contrast to the modal approach introduced in [5] and 

the Wiener–Hopf method [6] wherein care should be taken to incorporate the edge condition. 

Especially, problem formulation by the latter is by no means simple. The KP method can also be 

considered as a spectral method, wherein the unknown field variable is expanded over a set of WS 

integrals as basis functions. As a result, the KP method is an excellent candidate to analyze structures 

with edges and corners and whenever applicable, it would be more efficient than full-wave methods 

such as the method of moments (MoM) [7] and the finite element method (FEM) [8]. Thus far, the KP 

method has been applied to specific geometries including flanged waveguides, rectangular strip and 

crack, and rectangular and circular plates and holes [9-17]. In many related works, the geometry of 

the structure has remained unchanged, and only the medium is varied [18-27]. Also, the presentation 

of the method and its numerical implementation is complicated and requires some knowledge of 

hypergeometric functions and Jacobi’s polynomials.  

This work extends the class of geometries which can be analyzed using the KP method, by 

generalizing one the earliest works on this topic [11]. A two-dimensional multiport consisting of an 

arbitrary number of vertical branches terminating in a common horizontal branch is analyzed. In 

contrast to almost all papers regarding KP, the method is presented without intricate mathematics. 

Specifically, some of the special cases of the WS integrals that can be found in standard handbooks 

are exploited [28]. This eliminates being involved with hypergeometric functions. Also, construction 

of the governing system of linear equations is performed using the Fourier function space, only [29]. 

This is in contrast to many related works that use Jacobi’s polynomials. Finally, a simple procedure is 

introduced to evaluate improper integrals, which naturally appears in the KP method. This is also in 

contrast to similar works wherein rather complicated strategies are suggested. The rest of the paper 
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is organized as follows: section two is devoted to problem formulation. In section three, the 

governing equations are derived. Section four describes a method for evaluation of the required 

integrals. In section five, numerical results are reported. Section six is devoted to a discussion on 

power flow through the structure. At last, an asymptotic analysis is performed in section seven. 

2. STATEMENT OF THE PROBLEM 

The cross section of the parallel-plate multiport to be analyzed is depicted in Fig. 1, wherein all the 

boundaries are perfect electric conductor (PEC). Known EM waves, either TE or TM to 𝑥, are incident 

to vertical branches. It is desired to determine the reflected and diffracted waves in each region. 

Even-odd decomposition of the total fields leads to [11]: 
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for TE and TM cases, respectively, wherein 
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In (2) and according to Fig. 1, A

  ’s are known and represent the amplitude of incident waves. The 

rest of the constants are to be determined which denote amplitudes of reflected waves ( B

 ’s) and 

diffracted fields (C 

  ’s and D

  ’s). In addition, 
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with 2 2

l l lk    . The condition on the imaginary part of 
,l nh  ensures that reflected waves satisfy the 

Sommerfeld radiation condition at infinity. However, both values of 
yk  are valid since corresponding 

expressions are even functions of 
yk . It is worth noting that all auxiliary conditions governing the 

problem, including null tangential electric field over the conducting boundaries and the required 

edge conditions, are automatically satisfied by virtue of a particular class of WS integrals (Appendix 

A) as represented by (2a), (2c), (2e), and (2g). The unknown constants can be computed by imposing 

the continuity of tangential EM fields at the junctions. In the KP method, this step is often carried out 

by limiting the number of modes to a finite number (N), expanding the fields over a suitable function 

space, and finally, solving the resulting linear system of equations. The formulation can be extended 

to incorporate a line source excitations that is a 2D analogue to the coaxial probe feed [11]. In 

addition, based on [16], extension to a rectangular waveguide multiport is, also, possible. 
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3. DERIVING THE GOVERNING EQUATIONS 

In this paper, all the resulting equations obtained from the imposition of continuity conditions are 

expanded over the Fourier function space (Appendix B). This approach is simple and efficient since it 

does not require being involved with Jacobi’s polynomials and hypergeometric functions. As well, 

Bessel function evaluations reduce and some of the resulting matrices diagonalize. Finally, assuming 

  as the integration variable, the integrands decay with 5/2  that is 1/2  order faster compared to 

those obtained using the Bessel function space. Specifically, when using Bessel function space, the 

integrand includes the product of two Bessel functions, each with the decaying rate of 1/2  , and a 

function with the decaying rate of 1   [11]. On the other hand, when using Fourier function space, 

one of the Bessel functions becomes substituted by a rational function with a decaying rate of 2  . 

3.1. TE case 

For TE-mode wave incidence, governing equations to unknown constants are: 
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r  denotes relative magnetic permeability of lR  and 

     
   

   
 2 1 1

, 2 20

cos
, 1 2 1 . . cot

2 1 / 2

n m x l x lTE

l e y y x x

x l

J k a k a
P m n n k k d k dk

n k a





    

   
p v                                           (5a) 

     
   

   
 2 1 1

, 2 20

cos
, 1 2 1 . . csc  

2 1 / 2

n m x l x lTE

l e y y x x

x l

J k a k a
Q m n n k k d k dk

n k a





    

   
p v                                         (5b) 

     
   

   
 2 2 1

, 2 20

sin
, 1 2 . . cot

n m x l x lTE

l o y y x x

x l

J k a k a
P m n k k d k dk

k a n





   


p v                                                          (5c) 

     
   

   
 2 2 1

, 2 20

sin
, 1 2 . . csc  

n m x l x lTE

l o y y x x

x l

J k a k a
Q m n k k d k dk

k a n





   


p v                                                        (5d) 

 In (5), the “p.v.” stands for the Cauchy principal value to consider singularities of the integrands. Eq. 

(4) contains 4L  equations, each of them is an N N  linear system and can be efficiently solved for 

the unknowns. Note that all matrices corresponding to the left-hand side of (4) are diagonal. This is 

not the case when the Bessel function space is used. 
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3.2. TM case 

For TM-mode wave incidence, governing equations to unknown constants are: 
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where l

r  denotes relative electric permittivity of lR  and 
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, 2 20

sin
, 2 1    . . cot

n m x l x lTM

l e y y x x

x l

J k a k a
P m n k k d k dk

k a n


  


p v                                                                  (7a) 

   
   

   
 2 1

, 2 20

sin
, 2 1 . . csc  

n m x l x lTM

l e y y x x

x l

J k a k a
Q m n k k d k dk

k a n


  


p v                                                                 (7b) 

   
   

   
 2 1

, 2 20

cos
, 2 1   . . cot

/ 2

n m x l x lTM

l o y y x x

x l

J k a k a
P m n k k d k dk

n k a


  


p v                                                                  (7c) 

   
   

   
 2 1

, 2 20

cos
, 2 1 . . csc . 

/ 2

n m x l x lTM

l o y y x x

x l

J k a k a
Q m n k k d k dk

n k a


  


p v                                                                (7d) 

4. EVALUATION OF INTEGRALS 

Each of the TE and TM wave incidences leads to four sets of integrals with similar mathematical 

structures. For brevity, two set for each case is studied here. Also, multiplicative constants are 

neglected. It is assumed that the wave number in the whole problem domain is a positive value. 

4.1. TE case 

Consider the semi-infinite integral of the form: 

 
0

. . ,      TE TE TE TE TE TE

J cI f d f g g g    


 p v                                                                                                                  

(8) 

wherein 

   1

2 1 ,         0,1  , 2, TE

J mg J m  

                                                                                                                            

(9a) 

 
 

22

cos
,         0,1  , 2, 

2 1 / 2

TE

cg n
n




 
  

   

                                                                                                               

(9b) 
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 
 

 

0

0

cot ,    

csc ,  

y y
TE

y y

d b
g

d u


  


  

 
 



                                                                                                                                   

(9c) 

 Note that TE

Jg  and TE

cg  are undefined at  0,  2 1 / 2n   . Since  J x  is zero at the origin, the 

singularity of the former is removable. By applying L’Hopital’s rule, it can be seen that singularities of 

TE

cg  are also removable and 1/ 2TE

cg  . Thus, singularities of (9) are not troublesome. To numerically 

evaluate (8), the corresponding integral is partitioned at the branch-point singularity of TEg  to 
,1

TEI  , 

,2

TEI  and 
,3

TEI , defined by: 

     
2

,1 ,1
0

. .TE TE TE TE

J cI g g g d


     p v                                                                                                                       

(10a) 

     
2

,2 ,2. .
TE

TE TE TE TE

J cI g g g d


 


    p v                                                                                                                  

(10b) 

     ,3 ,2. .
TE

TE TE TE TE

J cI g g g d


 


   


 p v                                                                                                                       

(10c) 

with 

 
 

 

2 2 2 2

2 0 2

,1
2 2 2 2

2 0 2

cot ,    

csc ,  

TE

d b

g

d u


    


    

 

 

   


 
   


                                                                                                              

(11a) 

 
 

 

2 2 2 2

2 0 2

,2
2 2 2 2

2 0 2

coth ,    

csch ,  

TE

d b

g

d u


    


    

 

 

   


 
   


                                                                                                       

(11b) 
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where the plus sign over the square root indicates its principal branch to ensure satisfying the 

radiation condition. The value of TE

  is not determined, yet. Again, using L’Hopital’s rule it can be 

seen that all singularities of 
,1

TEg  are removable. Due to the periodicity of the trigonometric functions, 

i.e., cotangent and cosecant, the number of such points may be more than one. On the other hand, the 

(real) hyperbolic functions have only one singularity at their center of symmetry which in the 

present case, removes by the corresponding coefficient functions. As a result, standard quadrature 

rules can handle evaluation of 
,1

TEI  and 
,2

TEI . The remained task is to find a proper value for TE

  and to 

develop a method to properly approximate 
,3

TEI ; i.e., the integral tail. For this purpose, note that 

hyperbolic functions are positive and monotonically decreasing when 2   with the limiting value 

of unity for hyperbolic cotangent and zero for hyperbolic cosecant. Also, it is well known that 

  1J x   for real arguments [30]. Thus, 

 
     

     

2

2

22 22 2
0

0 2 0 2

,2

22 22 2
0

0 2 0 2

1 coth
,  

/ 2 1 / 2

1 csch
,  

/ 2 1 / 2

TE
b

TE

TE
u

TE

v

v

TE

v

v

v v
dv b

d v d n v d

I
v v

dv u
d v d n v d




  


  








      
 
 
      





                                                                      

(12) 

where 2 2

0 2v d     with the corresponding integration limits. The “p.v.” symbol is omitted since, 

as discussed, singularities of the integrand can be removed. Let the below conditions meet: 

   
2 22

0 2/ 2 1 / 2TEv d n                                                                                                                                      

(13a) 

coth 1 10
TE
bpTE

bv


                                                                                                                                                             

(13b) 
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csch 1 10
TE
upTE

uv


                                                                                                                                                         

(13c) 

where TEp  is a positive control parameter. Then, the integrand of 
,3

TEI  becomes a monotonically 

decreasing function. Additionally, a sufficiently large TEp  ensures that TEv  is far from branch-point of 

the hyperbolic functions and consequently those can be replaced by their limiting value at infinity 

leading to 
,3 0TE

uI  . Nevertheless, a very large TEp  leads to a long tail that makes the numerical 

integration difficult and time-consuming. In the present work, by trial and error, the said control 

parameters are set equal to two. This completes determination of TE

 .To evaluated 
,3

TE

bI , the Bessel 

function in the corresponding integrand is replaced by its large-argument approximation [30]: 

    2 1 2 / cos 2 1 / 2 / 4mJ m                                                                                                             

(14) 

leading to 

 
 

   
1

2

m

TE TE TE

b o df f f
j

  



                                                                                                                                        

(15) 

for  , TE   , where 

  1 sin 2 cos2TE

of                                                                                                                                             

(16a) 

 
 
 

1/2
3/2 2 2

2

22 2 1 / 2

TE

df
n

  


 

 


   

                                                                                                                                            

(16b) 

 Applying the Binomial expansion to (16b) results in 
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      25/2 2 2 2

21 / 2 1 2 1 / 2 /TE

df n                                                                                                       

(17) 

which has a known antiderivative. Noting (16a) and inspired by the Riemann-Lebesgue lemma [31], 

,3

TE

bI  can be approximated by,  

 
 

1

,3

1

2
TE
b

m

TE TE

b dI f
j 







                                                                                                                                                 

(18) 

which can be computed analytically. 

4.2. TM case 

Consider the semi-infinite integral of the form: 

 
0

. . ,      TM TM TM TM TM TM

J cI f d f g g g    


 p v                                                                                                              

(19) 

wherein: 

   2 ,           0,1  , 2, TM

J mg J m                                                                                                                             

(20a) 

 
 

22

sin
,         0,1  , 2, TM

cg n
n

 


 
  


                                                                                                                        

(20b) 

   1

0cotTM

y yg d                                                                                                                                                            

(20c) 

Similar to the previous case, there is no concern with TM

Jg  and TM

cg  . Additionally, it can be seen 

that 1/ 2TM

cg   which occurs at n  . To numerically evaluate (19), the corresponding integral is 
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partitioned at the branch- point singularity of TEg  to 
,1

TEI  , 
,2

TEI  and 
,3

TEI , defined by: 

     
2

,1 ,1
0

. .TM TM TM TM

J cI g g g d


     p v                                                                                                                     

(21a)  

     
2

,2 ,2. .
TM

TM TM TM TM

J cI g g g d


 


    p v                                                                                                                 

(21b) 

     ,3 ,2. .
TM

TM TM TM TM

J cI g g g d


 


   


 p v                                                                                                              (21c) 

with 

 
 

 

2 2 2 2

0 2 2

,1
2 2 2 2

0 2 2

cot / ,    

csc / ,  

TE

d b

g

d u


    


    

 

 

   


 
   


                                                                                                        

(22a) 

 
 

 

2 2 2 2

0 2 2

,2
2 2 2 2

0 2 2

coth / ,    

csch / ,  

TE

d b

g

d u


    


    

 

 

   


 
   


                                                                                                       

(22b) 

The value of TM

  is to be determined. In contrast to the TE case, singularities of 
,1

TEg  and 
,2

TEg  are 

not removable and thus, the integrand of (19) is not Riemann integrable. Nevertheless, since all of the 

involved trigonometric and hyperbolic functions have odd symmetry about their branch points, the 

Cauchy principal value of (19) exists.  For numerical implementation, a small neighborhood around 

such singularities is eliminated from the integration domain. Theoretically, the value for the radii of 

the excluded domains must approach zero, which its numerical implementation is not possible. Yet, a 

suitable small value can be considered to neither perturb the convergence of numerical quadrature 

nor the final solution. Here, by trial and error, this value is found to be 2

210  . Similar to the TE case, 
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a proper value for TM

  satisfies the below conditions: 

   
2 22

0 2/TMv d n                                                                                                                                                (23a) 

coth 1 10
TM
bpTM

bv


                                                                                                                                                        

(23b) 

csch 1 10
TM
upTM

uv


                                                                                                                                                          

(23c) 

where TMp  is a positive control parameter leading to, 
,3 0TM

uI  . Additionally, it is straightforward to 

show that 

 
 3

1

2
TM
b

m

TM TM

dI f
j 





                                                                                                                                                        

(24) 

where  

      25/2 2 2 2

21 / 2 1 / .TM

df n                                                                                                                      

(25) 

5. NUMERICAL RESULTS 

In this section, numerical results regarding to two special cases of the parallel-plate multiport are 

reported; i.e., air-filled parallel-pate T- and X-junctions. For each case, the structure is excited from 

the bottom vertical branch by the first mode for each polarization; i.e., 

 ˆ cos / 2TE

i x aE z                                                                                                                                                             

(26a) 

 ˆTM

i H z                                                                                                                                                                              

(26b) 
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wherein a  denotes the width of the vertical branch. It is assumed that 4 a  and 10d   to ensure 

the applicability of the method and validity of formulation for relatively large structures. Numerical 

integrations are performed using MATLAB® integral function which can, automatically, handle weak 

singularities. Validation is carried out based on the convergence analysis [32]. The second norm of the 

electric (magnetic) field over the junction is used as the convergence measure for TE (TM) 

polarization. All magnitude distributions are normalized to the corresponding maximum value. For 

clarity, magnitudes of surface field distributions are reported on the logarithmic scale. Curves 

including the CPU time are not included for brevity. To provide an estimate for computational cost, 

analysis with 4 modes lasts about 0.2 seconds. Simulations has been accomplished using a personal 

computer with an Intel® Core™ i7-4790K processor. 

Based on Fig. 2, two-digit precision achieves with three modes and thus, the method is fast 

converging. Representative singular fields over the junctions are reported in Figs. 3 and 4 which 

validates the satisfying of continuity and edge conditions over the junctions [33]. In the 

aforementioned figures, mag. and ang. stands for, respectively, magnitude (in the corresponding 

unit) and angle (in radians). Note that singular fields are better followed in the horizontal section due 

to the presence of a continuous spectrum of eigenvalues in the WS integrals. Based on the results 

above, it can be claimed that the solutions are valid. Lastly, surface field distributions are reported in 

Figs. 5 to 8. In the T-junction, the diffracted field is transmissive-like in the horizontal branch. 

However, as will be discussed in the next section, there is no transmission of energy. This fact is 

verified numerically but not reported due to almost null field distributions. In the X-junction, note 

how the field pattern in the vertical branches changes after passing through the junction due to EM 

diffraction.  
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6. DISCUSSION 

As mentioned in the previous section, despite what appears from the graphical representation of 

the reported field distributions, there is no energy transfer in the T-junction. Here, this fact is 

justified for the TM case. A similar analysis can be performed for the TE case. Again, it is assumed 

that the wave number in the whole problem domain is positive. Therefore, the manner in which EM 

fields are represented in section two is in accordance with the said situation, since field variation in 

both the longitudinal and transverse directions become sinusoidal, leading to standing waves in both 

dimensions. Furthermore, the magnetic field in the region (2) can be, equivalently, expressed as: 

           2 2 2
, , ,z z zH x y H x y H x y

 
                                                                                                                           

(27) 

where 

     
 

 
2

0

cos
,

sin

x
y jk x

z x x

y y

k y d
H x y V k e dk

k k d

 
                                                                                                          

(28) 

are, respectively, forward and backward traveling waves in the x  direction. It is simple to show that: 

     2 2 10

1

2
x m m x m m xm

V k C J k a jD J k a



                                                                                                          

(29) 

Consequently, exciting a pure traveling wave in either of the longitudinal directions requires mC  

and mD  to be proportional; i.e., removing either forward or backward waves, necessitates 

   2 1 2/m m m x m xC jD J k a J k a  . This eliminates one degree of freedom in the solution step and 

prohibits the imposition of the continuity condition at the junction. One may wonder since the 

incident power from the vertical section cannot enter to the horizontal part, irrespective to the 

dimensions of the structure. Numerical study of the T-junction shows that the incident power is 
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either zero  1 / 2ak   or totally reflects  1 / 2ak  . The former can be concluded by noting (2f) 

and (2h) and is valid for the X-junction, also. At the first look, this result is in contradiction with 

various works on the parallel-plate T-junction which confirm real power transfer between its 

different branches [34-39]. It is worth noting that there are two fundamental differences between 

those works and the present solution. In none of the above-mentioned works, the edge condition has 

been discussed. As well, in the above-mentioned papers, the T-junction has been viewed as a 

microwave component with an emphasis on power transmission and the problem has been solved 

for EM modes containing a pure traveling wave in the vertical branch. On the contrary, here, EM 

diffraction is studied, without any matching constraint. Thus, previous and present solutions differ in 

the sense of EM modes which the problem is solved for. Note that the S-parameter measurement 

which has been validated in the aforementioned works defines under matched conditions [40]. 

Especially, [39] has validated analytical results of [35] using the finite-difference finite-frequency 

(FDFD) method wherein perfectly matched layer absorbing boundary conditions are used at all 

boundaries. This is equivalent to terminate the branches of the structure by matched loads. 

Nonetheless, in the KP method, imposing any additional condition in the longitudinal direction is 

equivalent to changing the functional form of the sine or cosine argument in the WS integrals, which 

destroys the edge condition at the desired location. Thus, as long as the wave number in the whole 

problem domain is positive and, as long as considering the edge condition is of interest and, as long 

as the branches of the T-junction are of an infinite extend and, as long as no matching condition is 

imposed, there is no real power transfer from the vertical section to the horizontal part. The above-

mentioned situation can be verified by considering power flow in the X-junction which shows that a 

part of the incident wave to the lower section of the vertical branch reflects and the rest of it enters 

the upper one (Fig. 9). 

As the final note, since the KP method is based on modal expansion, its efficiency decreases as the 
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junction width increases due to a large number of modes which is required for the construction of 

the solution. The aforementioned shortcoming mainly stems from numerical error concerning the 

evaluation of the required integrals, which leads to a slower convergence rate and an increase in 

computational cost (Fig. 10). It is well-known that in such situations, either full-wave or high-

frequency methods are wise choices for performing EM analysis. 

7. ASYMPTOTIC ANALYSIS 

To the best of the knowledge of the author, no solution to the problem at hand is reported yet, 

either analytical or numerical. Especially, no commercial software is capable to solve the problem, 

mainly due to its infinite extent in both dimensions and no matching constrain. Yet, in two limiting 

cases, the solution of the T-junction is known by which the presented method can be further 

validated. Specifically, when 0d  , the structure becomes a short-circuited parallel-plate waveguide 

leading to zero boundary electric field, and when d  , it becomes a flanged parallel-plate 

waveguide which has a semi-analytical solution [11]. Fig. 11 demonstrates how the KP results 

approach to the known solutions for the TE case, wherein d   corresponds to the KP solution for 

the flanged parallel-plate waveguide. When d  , it is assumed that ' ''

y y yk k jk   with positive '

yk  

and ''

yk  to satisfy the radiation condition at  y  . Regarding the complex 
yk  are two points to be 

mentioned. First, the evaluation of the required integrals simplifies due to shifting the singularities of 

the cotangent function from the real axis into the complex plane. Second, in this case, real power 

transfers into the diffracted field. The same analysis can be performed for the TM case, which is not 

included for brevity. 

8. COMPARISON WITH ANALYTICAL SERIES SOLUTION 

It would be informative to compare the KP solution with another analytical solution for the problem 

at hand. For this purpose, the analytical series solution (SS) developed in [35] and [ 36] is selected, 
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and the corresponding results are reported in Figs. 12 and 13 for TE and TM polarization, 

respectively. It should be noted that the SS method does not consider the edge condition. The result 

of such a lack can be clearly seen in Fig. 12(b) and Fig. 13(a) wherein the singular component of the 

EM field over the aperture is demonstrated. Specifically, the SS prediction is incapable of tracking the 

corresponding singularity. In addition to making the solution non-physical, the aforementioned 

deficiency decreases the convergence rate of the SS, compared to the KP solution. Noting that the 

computational cost of both methods is essentially the same, it can be stated that KP supersedes SS.  

9. CONCLUSION 

The problem of EM diffraction from the parallel-plate multiport can be solved using the KP method 

without intricate mathematics. There is no need to directly be involved with the WS integrals and, 

thus, hypergeometric functions for the formulation of the problem. Construction of the governing 

linear system of equations is possible using the Fourier function space and thus, there is no need to 

be involved with Jacobi’s polynomials. Evaluation of required improper integrals does not need 

complicated mathematics and can be properly carried out using standard quadrature rules and 

available mathematical packages. The next step can be generalization of the analysis to three dimensions. 

APPENDIX A 

There is no need for the direct application of the WS integrals. The following integral identities are 

sufficient to formulate many problems using the KP method [28].  
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wherein m = 0, 1, 2, … and Π  stands to the rect function. 

APPENDIX B 

Projecting the governing continuity conditions over Fourier functional space is carried out using:  
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Fig. 1. Cross section of the parallel-plate multiport. 

Fig. 2. Convergence analysis. 

Fig. 3. Singular fields over the T-junction: (a)  
0

  /TE

x y
A m


H , (b)  

0
/TM

x y
V m


E . 

Fig. 4. Singular fields over the X-junction: (a)  
0

  /TE

x y
A m


H , (b)    /TE

x y d
A m


H , (c)  

0
/TM

x y
V m


E , (d) 

 /TM

x y d
V m


E . 

Fig. 5. TE field over the cross section for the T-junction: (a) TE

zE  (normalized), (b)  arg radTE

zE . 

Fig. 6. TE field over the cross section for the X-junction: (a) TE

zE  (normalized), (b)  arg radTE

zE . 

Fig. 7. TM field the cross section for the T-junction: (a) TM

zH  (normalized), (b)  arg radTM

zH . 

Fig. 8. TM field the cross section for the X-junction: (a) TM

zH  (normalized), (b)  arg radTM

zH . 

Fig. 9. Power ratios vs. width of the horizontal section for the X-junction at TM incidence wherein iP (

)rP  represents the incident(reflected) power at 0y  , and tP  represents the transmitted power 

at y d . 

Fig. 10. Performance of the KP method for different junction size assuming TM polarization: (a) 

convergence, (b) computational cost in logarithmic scale. 

Fig. 11. Asymptotic analysis for the TE case for: (a) 0d   with 1 2 0    , (b) d   with 1 0   

and  2 01 0.001j   . 

Fig. 12. KP vs. SS for TE polarization: (a) aperture electric field, (b) aperture magnetic field, (c) 

convergence, (d) computational cost. 

Fig. 13 KP vs. SS for TM polarization: (a) junction electric field, (b) junction magnetic field, (c) 

convergence curve, (d) computational cost. 
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