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Abstract In this modest work, we present a numerical study of the phenomenon of laminar 

natural convection in a vertical plate, whose wall was maintained at a constant temperature. 

It was assumed that the boundary layer problem was initially given in a two-dimensional flow 

even though the physical properties of the fluid were considered to be constant except for the 

density change with the temperature.The governing equations of the model have been 

transformed and simplified into a non-linear system of ordinary differential equations (ODE) 

through the use of similarity variables which we were able to solve numerically using the 

Runge-Kutta method. This method has better opted for the numerical resolution of this system 

which was developed in FORTRAN code on the computer. The numerical results of the 

model were presented in tabular form and the velocity and temperature profiles for various 

Prandtl numbers were analyzed and depicted graphically. Also, the expressions of the mean 

heat transfer rate and the average Nusselt number for the whole plate were obtained in the 

analysis. The results were compared at the end with the numerical results obtained in the 

literature, showing that they were in good agreement. 

Keywords: Natural convective, laminar flow, Boussinesq approximation, vertical plate, 

similarity transformation, boundary layer, boundary layer, Runge-Kutta (RK04) technique 

 

1. Introduction 

 

The numerical simulation of heat transfer by natural convection in vertical pipes has aroused 

growing interest in recent decades.In everyday life and the field of industry, the phenomenon 

of natural convection is used in several industrial applications [1]. Bhuvaneswari et al.,[2] 

resorted to the use of the similarity variable in order to study on a convective flow the effects 

of viscous dissipation. Sepahi-Younsi et al.[3] investigated experimentally boundary layer 

problem for free flow. Saeidinezhada et al.[4] analyzed both, pressure distributions on the 

surface and the boundary layer. Golkar et al.[5] have experimentally studied on a horizontal 

flat plate, a heat transfer from a nanofluid.In the work done by Shakiba and Rahimi [6], the 

Boussinesq approximation was used to numerically analyze an unsteady flow problem in 

mixed convection. Lakshmi Devi et al.[7] used similarity transformations to analyze 

nanofluid flow while visualizing the effects of buoyancy force.A numerical analysis was 

conducted by Mokaddes Ali et al.[8] in order to study a mixed convective flow.Other 

numerical investigations were carried out in this field on fluid flows [9, 10]. 

Alomar et al.[11] numerically studied a natural convection problem in a bank carrying 

orthogonal and heating plates. Through a cylindrical tube, a fluid in viscous flow subjected to 

free convection has been examined by Shah et al.[12]. Awan et al. [13] performed a 

numerical simulation on thefree convectiveheat transfer of two vertical plates. Awan et al. 

[14] made a simulation of a ferrofluid subjected to a flow in free convection. Qasim et al.[15] 

examined in a vertical circular tube, an incompressible flowing fluid with a free convection 
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mechanism. Awan et al.[16] performed a study on convective flow through a vertical plate. 

Kim et al.[17] analyzed air in natural convection penetrating vertical and parallel plates. 

Another numerical study on natural convection was expressed by Kandaswamy et al.[18]. 

Ismaeel et al.[19] mathematically simulated a heat transport model using similarity variables. 

Hady et al.[20] numerically analyzed the natural convection in a vertical plate. 

The case of a natural convection flow generated by the presence of a boundary layer in a 

vertical plate configuration has been observed experimentally by Talluru et al.[21]. 

In the works given by Belhocine et al. [22, 23, 24, 25, 26], it has been interesting to involve 

the resolution of the heat equation by certain iterative numerical methods and other analytical 

procedures.A numerical study of natural convection in a vertical plate under laminar flow 

using the similarity approach has been reported by Jena and Mathur [27].The main goal of our 

study is to develop a purely numerical analysis in order to solve a two-dimensional boundary 

layer problem in laminar natural convection within a vertical flat plate which has several 

practical applications. 

The motivation of the research and the novelty here is to resort to the procedure of similarity 

of the variables associated with the Runge-Kutta method, which constitutes the most efficient 

solution to solve such a problem.The advantage of the RK04 method involved here is to give 

results in better acuity with more precise numericalvalues.TheNavier Stokes equations that 

describe the motion of fluids were first simplified using asymptotic boundary layer theories, 

and then they were reduced to a group of equations including the iterative Runge-Kutta 

method, written in FORTRAN is widely known for its resolution. 

Under the angle of the numerical simulation, we obtained the essential results of fields of 

velocity, and temperatures, in terms of the number of Prandtl where they were schematized on 

figures and discussed carefully of which particular attention was given to the rate of heat 

transfer to the wall. In order to check the accuracy of the numerical results, the present results 

were compared with the available results of Jena and Mathur [27], Ostrach [28] and were 

found to be in excellent agreement which automatically leads to the validation of the results of 

our numerical simulation. 

2. General formulation of natural convection equations 

 

2.1. Naturalconvection on an inclined surface 

The governing equations of fluid dynamics—namely; the continuity, momentum, and energy 

equations aredefined as follows: 
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with Φ is called the dissipation function, defined by 
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By replacing p with the piezometric pressure, defined by the expression  p' = p + ρ0g, Eq.(2) 

will take the following form: 



3 
 

    2

0

1
  .

3

DV
g p V V

Dt
                                      (4) 

The schematic of the buoyancy force components used in the analysis is shown in Fig.1 

 

Fig.1. 

 

In order to facilitate the solution of the thermal problem, we took into account the following 

assumptions: the physical properties of the fluid are constant, the flow is considered 

incompressible, and at steady state in two dimensions, the dissipation Φ, and the heat source 

q" are negligible. 

According to the Boussinesq approximation, the buoyancy force can be given as: 

   0 0 1       g T T       

After applying the above, we obtain the following system of equations [29]: 

0
u v

x y

 
 

 
                                                        (5) 

 
2 2

12 2

1
cos  

u u p u u
u v g T T

x y x x y
  



     
       

     
               (6) 

 
2 2

12 2

1
sin

v v p v v
u v g T T

x y x x y
  



     
       

     
                (7) 

2 2

2 2

p

T T k T T
u v

x y c x y

     
          

                                    (8) 

Where T1 is the temperature in the undisturbed fluid far from the surfaceand the pressure,and 

φis the angle between the verticaland x-axis. 

 

3. Mathematical formulation of the problem 

 

3.1. Physical configuration 

 

The model we have treated is well illustrated in Figure.2. 

 

Fig.2. 

 

According to the assumptions of the boundary layer, our thermal problem consists in 

simultaneously solving the following system of equations: 
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With the following boundary conditions: 

        
At     0  :   0   ,   wy u v T T     
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1For large       :     0   ,  y u T T                                          (12) 

 

3.2. Numerical model based on the similarity solution 

 

If we suppose for all the values of x that the temperature and the velocity are kept similar 
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with δ and ur denoting respectively the thickness of the boundary layer and the reference 

velocity 

The Grashof number, Grx by definition is expressed as a function of x, like this: 
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The variable η can be considered as a function only of y/δ, so 
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For the flow, the velocity is simply written 
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The expression of the velocity and the temperature are then written like this 
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In order to make the previous dimensionless equations, they will be transformed by the 

following relations: 
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By involving the similarity variable, η, this equation will transform into: 
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The partial derivatives of η with respect to x and y yield us 
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Eq. (18) will take the following form, after replacing these terms 
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After calculation and simplification, we get: 
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The boundary condition in dimensionless form can be written as: 

At     0  :   0V    

Integrating Eq. (21) and applying the boundary conditions gives us: 
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By integrating by parts the first localized term between the square brackets, we will have the 

relation:  
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The momentum equation will become after the implication of the dimensionless variables 
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From where 
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The energy equation can be expressed as follows 
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Eqs. (23) and (24) constitute a system of simultaneousordinary differential equations for 

thevelocity Fand temperature functions G. 

 

Then the boundary conditions in the dimensional form are summarized as this 
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The rate of heat transfer to the wall is calculated as follows: 
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Which gives us 
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The term Nux of Eq. (27) is the local Nusselt number 

 

4. Results and discussion 

 

For the simulation by the similarity method of the laminar surface flow in free convection in a 

vertical flat plate, the numerical results are condensed in Table 1.Note here that we used the 

FORTRAN code to do our calculation. 

The results indicated in this table are obtained for values of Pr equal to 0.7, 1, 3,10, and 30, 

and they represent the function F(η) which varies with the similarity variable η, and its first 

and second derivative while the last column is reserved for the dimensionless temperature 

θ(η) in which,F(η) here denotes the stream function , F
’
(η)is the velocity profile andF

’’
(η)

 
is 

the variation of shear stress.. 
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Table 1. 

 

Velocity profiles by varying Pr values are shown in Figure 3.Following the no-slip condition 

and close to the surface, it is evident that the fluid flow is stationary.By examining these 

curves, we can also see a great influence of the Prandtl number Pr on the flow velocity, the 

more Pr increases, the more the dimensionless velocity decreases.The velocity in a boundary 

layer close to the surface tends to a zero value and then it increases at the entrance of the plate 

passes through a maximum then gradually decreases to satisfy the condition at the exit, 

andthis is due to the presence of strong viscous forces.The dimensionless velocity reaches 

maximum values and it has a tendency to move forward towards increasing values of η when 

Pr decreases. 

 

Fig.3. 

 

Figure 4 depicts the temperature profiles along η for values of Prandtl equal to, 0.7, 1, 3, 10, 

and 30.We can also see a great influence of Pr on the heat transfer rate, the more Pr increases, 

the more the thermal boundary layer decreases.ThePrandtl number quantifies the relative 

rapidity of a medium to transfer energy by convection or conduction; the higher it is, the more 

the movements of matter explain the temperature profiles of the medium.An increasing value 

of Pr indicates increasing viscous effects. 

 

Fig.4. 

 

We have depicted in Fig.5 a three-dimensional 3D model of the dimensionless temperature as 

a function of η and  F'(η) on the two axes. We can notice that the temperature of the fluid 

tends to become maximum then, it gradually decreases to zero value on the plate so as to 

ensure the boundary condition. 

 

Fig.5. 

 

The bundle of curves of the function F(η) shown in Fig.6for the different values of Pr 

indicates a strong influence on the behavior of the flow within the boundary layer. We notice 

that for low values of Pr, the function F(η) behaves gradually by developing a boundary layer 

at the entrance of the plate and stabilizing at the end towards a constant value. 

The Prandtl number physically characterizes the relative thickness of the thermal and kinetic 

boundary layers. When the thermal diffusivity decreases and the viscous force increases, this 

gives rise to Pr which causes the coefficient of friction to decrease. 

 

Fig.6. 

 

We have represented in Fig.7 the profiles of function F and its derivatives F' and F'' as a 

function of η but only at the value of Pr=0.7.We can distinguish that the evolution of the 

function F
’
 has the same behavior of the speed while that of the function F

’’
 also follows the 

behavior of the temperature. 

 

Fig.7. 
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We studied the effect of the Prandtl number involved in the parietal heat transfer. For this, we 

plotted in Fig.8 the profile of d
2
F/dη

2
 
with η by varying Pr. Since the velocity vector 

increases steadily over time in moving away from the plate to reach its maximum altitude at 

the level of the boundary layer then decreases from the hot wall and tends towards zero. This 

decrease in the maximum speed can directly come from the decrease in temperature on the 

heated vertical wall which leads to a reduction in the buoyancy forces.A robust shear stress 

gradient can be compromised through this mechanism.The graph shows that the temperature 

of the fluid flow is highest just near the plate and it decreases exponentially towards a value 

close to zero once the heat transfer is complete. 

 

Fig.8. 
 

Fig.9 represents the evolution of velocity profiles dF/dη following the variation of F(η) for the 

values of Pr =0, 7,1,3,10 and 30.It is evident that the shape of the velocity field disposed is 

well structured and elliptical and that the parameter of the Prandtl number has a lag effect on 

the fluid velocity.We observe that the speed F'(η) increases with the decrease of Pr and that 

its value is greater near Pr=0.7.This is due to the increase in the dynamic viscosity of the 

fluid. 
 

Fig.9. 
 

In Figure 10, we have presented in the boundary layer, the variation of the dimensionless 

temperature profile for different values of Pr and as a function of velocity.It can be seen that 

the increase in Pr leads to a decrease in both the velocity and temperature parameters and also 

in the thickness of the thermal boundary layer which rises in the direction of the flow. 

 

Fig.10. 

 

Table 2 below represents the values of A which were evaluated by varying the Prandtl number 

Pr. 

Table 2. 

 

The values of G were estimated approximately from which LeFevre [30] was able to evaluate 

this shape taken from the numerical approximation: 
1/4
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The average rate of heat transfer along plate L is calculated as follows: 
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Using the Eq.(26) , we get 
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With GrL is the estimated Grashof number along a flat plate of length L. 

We can then express the average Nusselt numberNuLon the entire plate: 

0.25 0 

4

3

L

L

Nu
G

Gr 
                                                               (30) 

 

5. Comparison and validation of results 

 

To illustrate the accuracy of the solution of our numerical model obtained by the similarity 

method, and to do this, we conducted bibliographic research in a methodical and well-founded 

way to be effective and to know the investigations that were carried out and related to the 

subject of this work. 

We were able to discover there the work of numerical simulations which were made by Jena 

and Mathur [27] and Ostraque [28] to carry out more the comparison.We have thus 

summarized in Table 3 the numerical simulation results of our study with those of previous 

research published by these authors. 

We found that our results are almost similar to those presented by the other authors with 

respect to dimensionless temperature, which means that the comparison gives better good 

certainty to our model and shows good agreement. 

 

Table.3. 

 

We have plotted graphically in Fig.11, the three above-mentioned digital models from which 

we have found that the temperature profiles for the three speeds are practically coincident. It 

turned out that the model developed by Ostrach [28] represents a remarkable convergence 

excellence when compared to that of our work. Finally, we conclude that the results of the 

simulation performed in this work show a very good agreement with those found in the 

literature. 

Fig.11. 

 

6. Conclusion 

 

The predictive analysis of heat transfer of a laminar flow of natural convection on avertical 

flat plate was carried out here from similarity variables made numerically. 

In the studied configuration, we needed some assumptions to reduce the solution of the 

Navier-Stokes equations describing the laminar flow of the fluid into a simple model, placed 

in a stable two-dimensional state. For this, the properties of the fluid were considered constant 

except the variation of the density is mainly dependent on the temperature while neglecting 

the effect of viscous dissipation. 

After having introduced the assumptions which make it possible to reduce the study of a 

complex flow to the study of a simple problem, and to apply the boundary conditions, we 

resorted to the adimensionalization of the variables associated with the method of similarity to 

bring the governing partial differential equations back to the ordinary equations on which we 

have integrated them by the Runge-Kutta method of order 04. 

We have developed a program in FORTRAN allowing us to solve these equations whose 

initial data introduced there, were in terms of Prandtl number, and varied each time in 

thecompilation. 

The emerging results of this study are summarized as follows: 
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 The increase in the Prandtl number leads to a decrease in the thickness of the thermal 

boundary layer. 

 The greater the temperature gradient, the higher the Prandtl number and 

thisisevidentfrom the physicalsignificance of the Pr numberwhich compares motion 

diffusivity and thermal diffusivity. 

 When the value of the viscosity of the fluid increases, the number of PrandtlPr also 

increases. 

 The viscous forces are proportional to the speed gradient, and when these increase, the 

maximum speed decreases for high Pr. 

 The position of the maximum value of the dimensionless velocity has a tendency to 

move towards increasing η when the value of Pr decreases. 

 The dimensionless maximum temperature coordinate has a tendency to move towards 

high η when Pr increases. 

 The thickness of the velocity boundary layer reaches high values when Pr decreases. 

 The numerical results of the simulation obtained by the computer code have been 

validated and reveal that they are in good agreement with those already published in 

the literature. 

Although the main results presented in this work form a coherent whole, other topics for 

further research should be carried out in order to elucidate, especially the verification of the 

resultsobtainedexperimentally. 
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Nomenclature  

Cp specific heat at constant pressure, [J kg
-1 

K
-1

] 

D distance, [m]  

F dimensionless stream function  

G dimensionless temperature 

Gr Grashof number 

GrL Grashof number based on the plate length, L 

Grx Grashof number based on x 

g gravitational acceleration, [ms
–2

]  

  g  gravity vector, [ms
–2

] 

k thermal conductivity, [Wm
–1

K
–1

]  

L  length, [m]  

Nu Nusselt number 

Nux local Nusselt number 

p pressure [kg m s
-2

]   

p' piezometric pressure [kg m s
-2

]   

Pr Prandtl number 

q heat transfer rate per unit area, [Wm
-2

] 

qw local heat transfer rate per unit area at wall, [Wm
-2

] 

wq  mean heat transfer rate, [Wm
-2

] 

q  internal heat generation,[Wm
-3

] 

t time, [s] 

T  temperature , [K]  
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T1 fluid temperature, [K]  

Tw wall temperature,  [K]  

U dimensionless velocity 

u velocity component,  [ms
–1

]  

ur fluid velocity, [ms
–1

]  

V dimensionless velocity 

V  velocity vector 

v velocity component, [ms
–1

]  

w velocity component, [ms
–1

]  

x distance, [m]  

x coordinate direction, [m]  

y coordinate direction, [m]  

z coordinate direction, [m]  

 

Greek letters  

β thermal expansion, [K
−1

] 

δ velocity boundary layer thickness, [m] 

δth thermal boundary layer thickness, [m] 

η similarity variable, [m]  

θ dimensionless temperature 

µ dynamic viscosity, [kgm
-1

s
–1

] 

υ kinematic viscosity, [m
2
s

–1
]  

ρ density, [kgm
–3

]  

ρ density, [kgm
–3

]  

ρ0 initial density, [kgm
–3

]  

φ angular coordinate, [
°
] 

Φ dissipation function 

D

Dt
 material derivative operator 

  Nabla operator 
2  Laplace operator 

∂ partial derivative operator 
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Table 1. 

a) Pr=0.7 

 

η F dF/dη d
2
F/d η

2 
G= θ 

0.000000 0.000000 0.000000 0.958222 1.000000 

0.030000 0.000427 0.028298 0.928382 0.989401 

0.060000 0.001689 0.055706 0.898867 0.978802 

0.120000 0.006614 0.107890 0.840832 0.957607 

0.180000 0.014567 0.156633 0.784168 0.936416 

0.300000 0.038744 0.244133 0.675141 0.894071 

 0.600000 0.138533 0.408852 0.429688 0.788871 

0.900000 0.277311 0.506161 0.226292 0.685990 

0.990000 0.323710 0.524137 0.173836 0.655887 

1.005000 0.331591 0.526682 0.165481 0.650912 

2.010000 0.870945 0.492243 -0.162656 0.359019 

3.000000 1.267433 0.305737 -0.184709 0.173699 

4.005000 1.491734 0.152027 -0.118203 0.075239 

5.010000 1.595554 0.064257 -0.060586 0.029944 

6.000000 1.635738 0.022342 -0.027574 0.010510 

 7.005000 1.647628 0.004109 -0.010770 0.002109 

7.485000 1.648548 0.000084 -0.006277 0.000046 

 

b) Pr=1 

 

η F dF/dη d
2
F/d η

2 
G= θ 

0.000000 0.000000 0.000000 0.907472 1.000000 

0.030000 0.000404 0.026776 0.877654 0.987974 

0.060000 0.001598 0.052663 0.848201 0.975948 

0.120000 0.006249 0.101814 0.790418 0.951898 

0.180000 0.013747 0.147544 0.734166 0.927855 

0.300000 0.036476 0.229114 0.626424 0.879824 

0.600000 0.129639 0.379981 0.386588 0.760755 

0.900000 0.257933 0.465553 0.191516 0.645177 

0.990000 0.300540 0.480527 0.141927 0.611637 

1.005000 0.307763 0.482597 0.134062 0.606110 

2.010000 0.792700 0.433639 -0.161205 0.294568 

3.000000 1.135384 0.258312 -0.167030 0.120571 

4.005000 1.321415 0.123241 -0.100607 0.043239 

5.010000 1.404281 0.050348 -0.048838 0.014265 

6.000000 1.435495 0.017225 -0.021310 0.004229 

7.005000 1.444688 0.003224 -0.008315 0.000735 

7.485000 1.445416 0.000068 -0.005059 0.000015 
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c) Pr=3 

 

η F dF/dη d
2
F/d η

2 
G= θ 

0.000000 0.000000 0.000000 0.750420 1.000000 

0.030000 0.000333 0.022065 0.720680 0.982710 

0.060000 0.001315 0.043246 0.691462 0.965421 

0.120000 0.005120 0.083018 0.634610 0.930850 

0.180000 0.011210 0.119442 0.579891 0.896303 

0.300000 0.029466 0.182766 0.476959 0.827406 

0.600000 0.102271 0.291671 0.258358 0.658609 

 0.900000 0.198743 0.343303 0.094841 0.501223 

 0.990000 0.229971 0.350059 0.056050 0.457521 

 1.005000 0.235228 0.350855 0.050023 0.450426 

 2.010000 0.566211 0.278395 -0.131940 0.120970 

3.000000 0.778396 0.155236 -0.104720 0.021783 

4.005000 0.890041 0.074910 -0.057546 0.002970 

5.010000 0.941896 0.033106 -0.028648 0.000356 

6.000000 0.963440 0.012810 -0.014035 0.000040 

7.005000 0.970677 0.002801 -0.006758 0.000003 

7.485000 0.971327 0.000064 -0.004764 0.000000 

 

 

d) Pr=10 

 

η F dF/dη d
2
F/d η

2 
G= θ 

0.000000 0.000000 0.000000 0.592177 1.000000 

0.030000 0.000262 0.017319 0.562549 0.975221 

0.060000 0.001030 0.033760 0.533667 0.950444 

0.120000 0.003983 0.064100 0.478148 0.900915 

0.180000 0.008658 0.091198 0.425636 0.851477 

0.300000 0.022428 0.136395 0.329660 0.753323 

0.600000 0.075088 0.205277 0.141710 0.519991 

0.900000 0.141017 0.228272 0.021986 0.323021 

0.990000 0.161615 0.229110 -0.002574 0.273921 

1.005000 0.165052 0.229044 -0.006223 0.266229 

2.010000 0.368975 0.166113 -0.078143 0.021041 

3.000000 0.498698 0.100083 -0.054033 0.000639 

4.005000 0.575785 0.056733 -0.033668 0.000010 

5.010000 0.618238 0.029912 -0.020724 0.000000 

6.000000 0.639145 0.013626 -0.012807 0.000000 

7.005000 0.647309 0.003446 -0.007854 0.000000 

7.485000 0.648125 0.000084 -0.006220 0.000000 
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e) Pr=30 

η F dF/dη d
2
F/d η

2 
G= θ 

0.000000 0.000000 0.000000 0.467453 1.000000 

0.030000 0.000206 0.013579 0.437958 0.966347 

0.060000 0.000806 0.026288 0.409474 0.932700 

0.120000 0.003087 0.049218 0.355543 0.865483 

0.180000 0.006650 0.069034 0.305660 0.798556 

0.300000 0.016915 0.100291 0.217954 0.666926 

0.600000 0.054177 0.140501 0.065138 0.372451 

0.900000 0.097886 0.147147 -0.010338 0.167114 

0.990000 0.111070 0.145647 -0.022358 0.125544 

1.005000 0.113252 0.145299 -0.024007 0.119452 

2.010000 0.239589 0.104334 -0.040657 0.001182 

3.000000 0.324821 0.069656 -0.029776 0.000001 

4.005000 0.381309 0.044159 -0.021398 -0.000001 

5.010000 0.415992 0.025880 -0.015311 -0.000001 

6.000000 0.434872 0.012973 -0.011000 -0.000001 

7.005000 0.442927 0.003581 -0.007867 -0.000001 

7.485000 0.443786 0.000091 -0.006705 -0.000001 

Table 2. 

Pr 0
A G


    0.25

0
/G Pr


  

0.01 0.0570 0.1802 

0.03 0.0962 0.2312 

0.09 0.1549 0.28287 

0.72 0.3568 0.3873 

1 0.4010 0.4010 

2 0.5066 0.4260 

5 0.6746 0.4511 

10 0.8259 0.4644 

100 1.549 0.4898 

1000 2.807 0.4992 

 

Table.3. 

 

η 
θ (η) present 

work 

θ (η)  Similarity 

analysis by Jena 

and Mathur 

[27] 

θ (η)  Similarity 

analysis by 

Ostrach [28] 

0 1.0000 1.0000 1.0000 

1 0.6509 0.6435 0.6526 

2 0.3590 0.3745 0.3615 

3 0.1737 0.1992 0.1741 

4 0.0752 0.0978 0.0767 

5 0.0299 0.0448 0.0284 

6 0.0105 0.0193 0.0102 

7 0.0021 0.0078 0.0015 
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Fig.9. 
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