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Abstract    

Technological development has led to a diversification of loads in transmission and 

distribution systems. The rise of non-linear loads in the system is one of the biggest effects of 

this variation as semiconductor technology develops. Nonlinear loads are characterized by 

current and voltage characteristics that are not purely sinusoidal, also known as harmonics. 

Harmonics cause the system insulation to degrade and increase energy loss. Therefore, it's 

crucial to get rid of harmonics before they occur. This study intends to lower the risk of 

distribution system damage by employing complex harmonic forecasting methods. An RNN-

based forecasting algorithm has been created by using actual system power quality data 

obtained from the Organized Industrial Zone in Bandırma, Turkey. Parameters that are most 

likely to be neglected in simulation studies are also taken into account in the calculation by 

using actual data. Active power data, current harmonic data and calendar data were used 

together to design harmonic forecasting model. Graphs and calculations were used to discuss 

the results. The obtained minimum values of the RMSE, MAE, and MAPE are 2,116, 0,666 

and 11,619, respectively. The convergence as a result of these calculations has allowed high 

forecasting performance of power quality distortions.     

Keywords: Power Quality, Power System Protection, Harmonic Forecasting, Long-Short 

Term Memory, Power System Analysis. 

Nomenclature 

,  n n  : phase angle; tx : input vector; th : output vector; ˆ
th : activation vector; tz : update-

gate vector ; tr : reset-gate vector; ,W U : parameter matrices; b : vector 
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1 Introduction 

The transmission and distribution network operators' top priorities include providing 

continuous and uninterrupted energy as well as high-quality energy while avoiding any 

negative consequences from the facilities. In a precise alternating current power system, 

electrical energy is produced, transmitted, and distributed at specific voltage levels with a 

single constant frequency. Waveforms for voltage and current in these systems are fully 

sinusoidal. These requirements, however, cannot be entirely accomplished in practice. The 

term "harmonic" refers to fluctuations in alternating current and voltage brought on by 

abruptly switching loads or generators with non-sinusoidal voltage waveforms [1,2]. In order 

to reduce harmonics and assure compliance with power quality standards, harmonic analysis 

is required in power systems.  They should be detected and eliminated A.S.A.P. to keep 

system robust.  

A considerable amount of literature has been published on analysis, classification and 

elimination of power system harmonics [3–6] . Fast Fourier Transform (FFT) is the most 

known method for harmonic analysis, where the harmonics can be minimized or eliminated 

by using active - passive harmonic filters and other optimization-based methods, which were 

widely studied for years [7–9]. These devices are designed to eliminate harmonics to avoid 

their disruptive effects.   

Harmonics have traditionally been studied using signal processing methods that 

comprehensively reviewed in [10]. FFT has been widely used for analysis of harmonics due to 

its computational efficiency. In addition, other techniques including discrete wavelet 

transform (DWT) [11] and s-transform [12] have been used to analyze power system 

harmonics. On the other hand, in recent years, machine learning based approaches, in which 

allow researchers to process much more data and obtain more precise results, have been more 

popular with the rapid development of computing technologies [13].  Machine learning 

methods including artificial neural networks [14], support vector machines [15], and decision 

trees [16] have also been widely used. Even if outstanding results have been obtained in 

practical applications, accuracy and analysis speed still need to be increased to meet the 

demands of real-time applications [17]. 

Harmonic studies are evolved to prediction and estimation issues in recent years, as [18–20] 

are focused on the monitoring and prediction of harmonics. To mitigate the undesirable 

effects of   harmonics and their variations as sub-harmonics and inter-harmonics, a proper 
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prediction or estimation should be performed. Modern estimation/prediction techniques 

employ adaptive signal processing approaches [21].  

Although prediction and estimation studies include short-term estimations, new planning 

strategies have begun to be researched in recent years. Harmonic forecasting is one of the 

most significant current discussions in power system harmonic studies. 

Power system operators are able to proactively manage and mitigate harmonic-related issues, 

assess power quality, ensure compliance with standards and regulations, protect equipment, 

optimize system operation, make it easier to integrate renewable energy sources, and planning 

smart grids by using harmonic forecasting studies. [22–24].  

Harmonic forecasting helps in predicting the future behavior of harmonics, enabling power 

system operators to assess power quality and identify potential harmonic-related problems in 

advance. These studies can aid in grid planning and operation by providing insights into the 

potential impact of harmonics on the performance of the power grid. It allows for proactive 

mitigation measures to be taken to minimize the impact of harmonics on the grid, optimize 

system operation, and avoid costly corrective actions and also can help identify potential 

harmonic-related issues that could damage or degrade the performance of equipment, 

enabling timely measures to be taken to protect the equipment from harm and reduce 

maintenance costs. 

Power systems are subject to various standards and regulations related to power quality, 

including limits on harmonic distortion levels. Harmonic forecasting can assist in monitoring 

and predicting harmonic distortion levels in power grids, helping to ensure compliance with 

relevant standards and regulations. 

Harmonic forecasting can be useful in the context of smart grid applications, where real-time 

monitoring and control of power quality parameters are critical. Harmonic forecasting can 

provide inputs for advanced analytics, decision-making algorithms, and control strategies in 

smart grids, facilitating efficient and reliable operation of the grid [25]. 

This paper proposes a harmonic forecasting approach utilizing Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) architectures by using real-data obtained from an 

industrial feeder. Main motivation of the study is rapidly and accurately forecasting the 

harmonics before occurrence in accordance with the standards [26]. The main contribution of 

this article can be summarized as follows: 



4 

 

 While harmonic estimation and prediction studies are well-established and widely 

researched, harmonic forecasting studies are relatively less common and less mature in 

the field of power system engineering. Harmonic forecasting techniques are still an 

active area of research, and there is ongoing development of new methods and 

approaches for accurate and reliable harmonic forecasting in power grids. 

 In the literature, studies show a strong correlation between calendar data and loading 

values [27–29]. Therefore, in this study, current harmonic prediction was made by 

using calendar data, active power data, and harmonic data together to observe if a 

similar correlation exists on the harmonic side. 

 In this study, real-world one-year data with 10 minutes of resolution were used for 

analysis. This allows to take all parameters as unforeseen peak values into account 

which were possibly to be neglected in simulation studies and achieve more accurate 

results.  

 Two main forecasting models, LSTM and GRU, that widely used in power system 

studies were compared to obtain the best results.  

2 Definition of Power System Harmonics  

Sinusoidal waveform distortions occur in energy distribution systems when a sinusoidal 

voltage source is applied to a non-linear load. The current waveform, which should take the 

form of a sine wave, is distorted by waveforms that differs from main grid frequency. These 

additional sinusoidal currents that are distinct from the grid frequency and sourced from the 

non-linear loads are referred as harmonic currents. Certain mathematical models are used to 

determine harmonics and inter-harmonics which were summarized in Table 1.  

 

The amount of total harmonic distortion (THD) is determined by dividing the effective RMS 

values of the voltage harmonic components by the effective value of the main component. 

THD for voltage and current can be defined as given in Equation (1) and Equation (2) 

respectively: 
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The Fourier series can be used to express the instantaneous voltage and current values that 

have harmonic components in the power system as given in Equation (3) and Equation (4) 

respectively. 
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The DC terms have been deleted to simplify calculation. The instantaneous values of the n
th

 

harmonic current and voltage are in and vn. The effective harmonic values for voltage and 

current are Vn and In, ω1 is the fundamental frequency's angular frequency. θn and  φn  are 

phase angle of the n
th

 harmonic voltage and current. 

3 Harmonic Forecasting Methodology 

This study is concerned with developing an accurate and reliable model for harmonic 

forecasting in power systems. Artificial Neural Network (ANN) is the prominent method used 

for harmonic forecasting. In this context, two Recurrent Neural Network (RNN) based 

forecasting models with different architectures are proposed in this paper.  

RNNs are unsupervised learning techniques that perform remarkably well when used to 

classify time series data. Compared to other prediction models, RNNs perform significantly 

better [30]. RNNs use both the samples they are exposed to currently as shown in Figure 1 

and those they perceive over time, in contrast to standard feed-forward neural networks. 

 

The RNNs thus perform better while learning from the events they come across throughout 

time. RNNs benefit from this capability when anticipating electricity load [29]. The input 

sequence is supplied as Equation (5) where the value of k can change depending on the length 

of the sequence in the various samples. 

 1 2 3[ , , , , ]; d

n ix x x x x   (5) 
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A hidden state is formed in the array given in Equation (6) at each iteration of the RNN 

model. 

 1 2 3[ , , , , ]nh h h h  (6) 

The hidden state's activation at time t depending on the previous hidden state and the current 

input can be expressed as given in Equation (7). 

  1,t t th f x h   (7) 

The LSTM is a unique kind of deep learning neural network that has been reported to be state-

of-the-art in several time series challenges, including power system analysis issues. As an 

intelligent approach, LSTM structures are used in various research, including speech 

recognition, translation, language modeling, short term electricity demand estimation and the 

forecasting of power quality distortions, which is one of the primary issues with the power 

systems [31–33]. The internal structure of each module is made up of 4 distinct portions that 

interact with one another, unlike typical RNNs. There are three distinct gates with labels for 

forget, input, and output inside the LSTM module as shown in the block diagram of given in 

Figure 2.  

 

Mathematical expressions of forget, input, and output gates can be defined as given in 

Equations (8)-(10)  

   1= . ,  t f t t ff W h x b    (8) 

   1= . ,t i t t ii W h x b    (9) 

   1tanh . ,c t t cC W h x b   (10) 

After the determination of candidate values, new state information calculation process and the 

output of the system can be mathematically expressed as given between Equations (11)-(13):     

 1t t t t tC f C i C     (11) 

   1. ,t o t t oo W h x b    (12) 

  tanht t th o C    (13) 
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On the other hand, one of the most used alternative techniques for power system forecasting 

studies, called GRU which was introduced by Cho et.al.[34], is given in Figure 3.  

 

The GRU is similar to an LSTM with a forget gate, but because it lacks an output gate, it has 

fewer parameters than an LSTM. 

According to the block diagram, mathematical expressions of fully gated GRU are given 

between Equations (14)-(17):  

  1t z t z t zz W x U h b     (14) 

  1t r t r t rr W x U h b     (15) 

   1
ˆ
t h h t h t t hh W x U r h b      (16) 

   1
ˆ 1t t t t th z h z h       (17) 

LSTM and GRU are types of RNN architectures that are particularly useful for harmonic 

forecasting. Harmonic forecasting involves predicting patterns that repeat over fixed intervals, 

such as daily, weekly, or yearly cycles. 

LSTM and GRU models are helpful for harmonic forecasting as they have abilities capturing 

periodic patterns in harmonic data, adapt to the length of the input sequence, making them 

flexible for different forecasting scenarios, effectiveness at capturing the intricate 

relationships and cyclic patterns present in harmonic data, help smooth out noisy inputs and 

make more accurate predictions and generate forecasts for a desired number of time steps 

ahead. 

Overall, the ability of LSTM and GRU models to capture long-term dependencies, handle 

variable-length sequences, learn complex temporal patterns, handle noisy data, and support 

multi-step forecasting makes them well-suited for harmonic forecasting tasks. These models 

have been widely used in various time series prediction applications, including energy load 

forecasting, stock market prediction, and weather forecasting, where harmonic patterns are 

prevalent.  

Because they are specifically created to prevent long-term dependency issues, the LSTM and 

GRU models are widely used in time series forecasting. These models are effective machine 
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learning techniques that can reduce the negative consequences of harmonic forecasting long-

term dependency issues. 

In a comparison of LSTM and GRU networks for learning harmonic features, GRUs 

outperform LSTM networks on low-complexity sequences while LSTMs outperform GRUs 

on high-complexity sequences [35–37]  When Autoregressive Integrated Moving Average 

(ARIMA), LSTM, and GRU models were put side by side to predict time series, another 

study discovered that the GRU outperformed the LSTM in terms of harmonic forecasting 

[38]. The major issue is to determine either applying GRU or utilizing LSTM. The LSTM is 

more specialized and the GRU cell is more responsive to data due to the architecture. This 

may help to understand why GRUs occasionally perform better than LSTMs and vice versa 

[39]. Therefore, the purpose of this study is to compare GRU and LSTM models for 

forecasting the occurrence of current harmonics in a real power system and to examine 

sensitivity rates as well as accuracy rates.  

4 System Setup 

This study was focused on forecasting the current harmonics occur in electrical energy 

systems. In this context, Janitza UMG 512 energy analyzer that measure up to 63 odd and 

even harmonics, inter-harmonics, positive, negative, and zero components, imbalance, flicker, 

voltage peak factor, voltage, current, active power, reactive power, and frequency half-wave 

effective values concurrently, which was located in the Bandırma Organized Industrial Zone 

distribution center used to obtain the data. Installation was given in Figure 4. It also has 

crucial features like active energy measurement accuracy class 0.2, A-class certified 

measurement accuracy, continuous sampling of voltage and current measurement inputs at 

25,600 Hz, 512 sampling points per period, and recording of more than 2000 measurement 

values per cycle. The pertinent analyzer logs the electrical characteristics of the local facilities 

as iron-steel, food, textile, etc.  
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Data were collected thus analysis was performed separately for L1, L2 and L3. Current 

waveform for L1 was given in  

 

Figure 5 for a better understanding of distortions, where experimental setup block diagram 

was shown in Figure 6. 

 

 

Relevant dataset was created from recorded data between January 6, 2020, and January 1, 

2021. Harmonic value, active power value, year, month, day, weekdays and day of the week 

data for each line were prepared in the dataset in the appropriate .csv format. 90% of the 

dataset is reserved for training where 10% is used for testing. There are 45716 total data 

points during a period of 10 minutes. Active power and current harmonic data for each line 

were obtained in excel format from the analyzer.  

Evaluation metrics are approaches that used to measure the quality of the intelligent models. 

As there are many different types of evaluation metrics available to test a model, in this paper, 

Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) metrics were used to evaluate forecasting performance. MAPE, RMSE 
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and MAE values are widely used as error comparison metrics in forecast studies of time series 

data. The quality of forecasted values has been assessed by statistical measures including 

MAPE, RMSE and MAE [29]. The forecasting results were evaluated using the MAPE, 

RMSE and MAE as given in Equation (18), Equation (19) and Equation (20) respectively.  
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In these equations, n denotes sample size, et is the difference between actual value and the 

forecasted value and At is the total number of forecasting points. 

5 Experimental Evaluation and THDI Forecasting 

The main goal of this study is to prevent harmonic-based failures that may occur in the future. 

Therefore, the short-term harmonic forecasting approach has been applied, and the time-step 

was set to 1 as target point of forecasting is 10-min ahead. 

Artificial neural network models, in which the collected and normalized data were applied, 

consist of three layers. These sections can be defined as input layer, LSTM or GRU 

algorithms and output layer. The data contain harmonic value, active power value, year, 

month, day, weekdays, and day of the week. In this study, active power data, current 

harmonic data and calendar data were used together for harmonic forecasting. 

The model was initially trained using random weights. The forecasting results were recorded 

after the training process was initiated with various random weights. Because neural network-

based methods are so intuitive, different initial values can provide various outcomes. 

Layer statement represents the hidden layers in Artificial Neural Networks. The model 

architecture used for forecasting consists of three layers: input, LSTM or GRU and output. 

Harmonic data are applied to the input layer with 10 minutes resolution. Various models were 

tried to obtain best results. Therefore, proposed model includes LSTM and GRU layers 

consisting of [25-200] nodes with one or two hidden layers after the input. Finally, the 
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forecasted results are obtained from the output layer that formed by one fully-connected 

neuron. 

The study was carried out on a computer with 2 Intel Xeon Gold 6354 processors with a base 

frequency of 3 GHz and a maximum turbo frequency of 3.6 GHz. The total number of cores 

of the processors is 36 and the total number of threads is 72. The device is equipped with a 

total of 128 GB of RAM. It also has a 2TB M2 SSD. In addition to these, there is an Nvidia 

RTX 3090 graphics card on the computer. Ubuntu 22.04 version is used as the operating 

system. Python 3.7 version was used together with Anaconda distribution as the programming 

language in the study. TensorFlow 2.10.0 version is preferred for training machine learning 

models. 

The "epoch" value, which indicates the number of iterations of the training, was applied as a 

constant 200. These values have been tested separately as single and double layer in LSTM 

and GRU networks and all test structures with results were summarized in Table 2.   

 RMSE, MAE, MAPE scatter plots of L1, L2 and L3 for both LSTM and GRU were given in 

Figure 7, Figure 8 and Figure 9  respectively. 

  

Actual and forecasting THDI graphs obtained in accordance with RMSE, MAE and MAPE 

values of L1, L2 and L3 are shown in Figure 10, Figure 11 and Figure 12 respectively 

 

The peak values appearing in the current harmonics graph of each line, originate from the arc 

furnace that fed by distribution transformer unit. These changes, which occur depending on 

the working process of the facility during certain periods of production, can be considered as 

an important indicator in terms of observing the performance of the model proposed within 

the scope of this study. When the relevant points in the graphics are examined, it can be seen 

that the proposed model shows a good forecasting performance at these extreme change 

points. 

It was mentioned in the previous sections that harmonic forecasting studies are a relatively 

new topic. As a result, it was difficult to find many researches in the literature to compare. In 

[40], average RMSE indexes obtained from similar studies are given as 5,84; 6,91; 10,06 and 

22,53, where the best RMSE value for proposed methodology is 2,116. Considering these 
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results, it is concluded that the error rate in the results obtained in the article is lower than 

similar studies in the literature, and in this case, the results can be considered acceptable. 

6 Conclusion 

The financial losses associated with low PQ and harmonics are considerable in both small and 

large power systems. This situation reveals the importance of detecting the harmonics. Prior 

knowledge of the harmonics can enable the system-specific actions to be planned from the 

outset. Although estimation and prediction studies are frequently encountered in the literature 

within the scope of power systems analysis, harmonic forecasting has been studied less 

frequently. Harmonic forecasting plays a key role in preventing breakdowns and delivering 

high-quality electricity. Additionally, forecasting enables the use of harmonic filters as 

necessary, which helps to increase equipment longevity. In this context, this study was 

focused on forecasting the THDI using the LSTM and GRU models.  

Studies in the literature show that relatively high performance can be achieved with LSTM 

and GRU in the forecasting of power quality problems. Therefore, this study was based on 

these two models. The studied dataset consists of a total 45716 data that collected between 

January 6, 2020, and January 1, 2021 in 10-minute intervals, and 4572 which was 10% out of 

total were used for test. This dataset was used to conduct tests on the forecasting of THDI 

using 8 different models, including LSTM and GRU networks for each line separately, and 

the results were compared to select the best forecasting approach. The models were revised in 

accordance with various scenarios in order to attain the best performance. Following the 

analyses, the best forecasting values were obtained for the L1, L2 and L3 with 2 layers - 100 

nodes, 2 layers- 50 nodes and 2 layers - 25 nodes LSTM models respectively.  

The fact that power systems have various characteristics in actual operating conditions has led 

to obtaining the best results with models that consist of different node and layer structures for 

each line. This situation can be defined as proof that the proposed model yield results through 

learning, without memorization. 

The dataset contains the data obtained directly from the analyzer, and a cleaning process has 

been applied only by removing points with zero values that occur due to problems in data 

transfer. In order to see the performance of the proposed model in different operating 

conditions the distortions reaching very high levels because of various reasons (fault, sudden 

loading, etc.) were not removed from dataset during the cleaning process. As a result, it is 
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clear that the model has a high forecasting performance not only in stable operation but also 

in extreme conditions. 

Declarations 

Conflict of interest: The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence the work reported in 

this paper.  

7 References 

1.  Efe, S. B., Ozbay, H., and Ozer, I. “Experimental Design and Analysis of Adaptive 

LED Illumination System”, Light & Engineering, 30(4), pp. 63–70 (2022). 

2.  Özer, İ., Efe, S. B., and Özbay, H. “CNN / Bi-LSTM-based deep learning algorithm for 

classification of power quality disturbances by using spectrogram images”, 

International Transactions on Electrical Energy Systems, 31(12), pp. 1–16 (2021). 

3.  Clement Veliz, F., Varricchio, S. L., and de Oliveira Costa, C. “Determination of 

harmonic contributions using active filter: Theoretical and experimental results”, 

International Journal of Electrical Power and Energy Systems, 137 (2022). 

4.  Melo, I. D., Pereira, J. L. R., Variz, A. M., et al. “Allocation and sizing of single tuned 

passive filters in three-phase distribution systems for power quality improvement”, 

Electric Power Systems Research, 180 (2020). 

5.  Pomalis C.S., M., Chouhy Leborgne, R., Herrera-Orozco, A. R., et al. “NSGAII 

optimization for single phase passive filter allocation in distribution systems”, Electric 

Power Systems Research, 176 (2019). 

6.  Beck, Y. and Machlev, R. “Harmonic loads classification by means of currents’ 

physical components”, Energies (Basel), 12(21) (2019). 

7.  Rüstemli, S. and Cengiz, M. S. “Active filter solutions in energy systems”, Turkish 

Journal of Electrical Engineering & Computer Sciences, 23, pp. 1587–1607 (2015). 

8.  Tan, A., Bayındır, K. Ç., Cuma, M. U., et al. “Multiple harmonic elimination-based 

feedback controller for Shunt Hybrid Active Power Filter”, IET Power Electronics, 

10(8), pp. 945–956 (2017). 

9.  Perin, D., Karaoglan, A., and Yilmaz, K. “Using Grey Wolf Optimizer to Minimize 

Voltage Total Harmonic Distortion of a Salient-Pole Synchronous Generator”, Scientia 

Iranica, 30(2), pp. 592–604 (2023). 

10.  Mishra, M. “Power quality disturbance detection and classification using signal 

processing and soft computing techniques: A comprehensive review”, International 

Transactions on Electrical Energy Systems, 29(8), pp. 1–42 (2019). 

11.  Khokhar, S., Mohd Zin, A. A., Memon, A. P., et al. “A new optimal feature selection 

algorithm for classification of power quality disturbances using discrete wavelet 



14 

 

transform and probabilistic neural network”, Measurement (Lond), 95, pp. 246–259 

(2017). 

12.  Wang, H., Wang, P., and Liu, T. “Power quality disturbance classification using the S-

transform and probabilistic neural network”, Energies (Basel), 10, pp. 1–19 (2017). 

13.  Eslami, A., Negnevitsky, M., Franklin, E., et al. “Review of AI applications in 

harmonic analysis in power systems”, Renewable and Sustainable Energy Reviews, 

154, pp. 1–26 (2022). 

14.  Beltran-Carbajal, F. and Tapia-Olvera, R. “An adaptive neural online estimation 

approach of harmonic components”, Electric Power Systems Research, 186 (2020). 

15.  Saxena, A., Alshamrani, A. M., Alrasheedi, A. F., et al. “A Hybrid Approach Based on 

Principal Component Analysis for Power Quality Event Classification Using Support 

Vector Machines”, Mathematics, 10(15) (2022). 

16.  Zhao, W., Shang, L., and Sun, J. “Power quality disturbance classification based on 

time-frequency domain multi-feature and decision tree”, Protection and Control of 

Modern Power Systems, 4(1), pp. 1–6 (2019). 

17.  Severoglu, N. and Salor, O. “Statistical Models of EAF Harmonics Developed for 

Harmonic Estimation Directly from Waveform Samples Using Deep Learning 

Framework”, IEEE Trans Ind Appl, 57(6), pp. 6730–6740 (2021). 

18.  Yang, J., Ma, H., Dou, J., et al. “Harmonic characteristics data-driven THD prediction 

method for LEDs using MEA-GRNN and improved-Adaboost algorithm”, IEEE 

Access, 9, pp. 31297–31308 (2021). 

19.  Yasin, Z. M., Ashida Salim, N., and Ab Aziz, N. F. “Harmonic Distortion Prediction 

Model of a Grid -Connected Photovoltaic Using Grey Wolf Optimizer - Least Square 

Support Vector Machine”, 2019 9th International Conference on Power and Energy 

Systems, ICPES 2019, Institute of Electrical and Electronics Engineers Inc., pp. 1–6 

(2019). 

20.  Panoiu, M., Panoiu, C., Mezinescu, S., et al. “Machine Learning Techniques Applied to 

the Harmonic Analysis of Railway Power Supply”, Mathematics, 11(6), p. 1381 

(2023). 

21.  Nefabas, G. and Zhao, H. “Power System Harmonics Estimation using Generalized 

Least Mean Mixed Norm Adaptive Algorithm”, ACM International Conference 

Proceeding Series, pp. 249–254 (2021). 

22.  Yuan, W., Yuan, X., Xu, L., et al. “Harmonic Loss Analysis of Low-Voltage 

Distribution Network Integrated with Distributed Photovoltaic”, Sustainability 

(Switzerland), 15(5) (2023). 

23.  Kuyunani, E. M., Hasan, A. N., and Shongwe, T. “Improving voltage harmonics 

forecasting at a wind farm using deep learning techniques”, IEEE International 

Symposium on Industrial Electronics, Institute of Electrical and Electronics Engineers 

Inc. (2021). 



15 

 

24.  Li, Y., Sun, Y., Wang, Q., et al. “Probabilistic harmonic forecasting of the distribution 

system considering time-varying uncertainties of the distributed energy resources and 

electrical loads”, Appl Energy, 329 (2023). 

25.  Rodríguez-Pajarón, P., Hernández Bayo, A., and Milanović, J. V. “Forecasting voltage 

harmonic distortion in residential distribution networks using smart meter data”, 

International Journal of Electrical Power and Energy Systems, 136 (2022). 

26.  Altintasi, C. “Sine Cosine Algorithm Approaches for Directly Estimation of Power 

System Harmonics Interharmonics Parameters”, IEEE Access, 9, pp. 73169–73181 

(2021). 

27.  Hatata, A. Y. and Eladawy, M. “Prediction of the true harmonic current contribution of 

nonlinear loads using NARX neural network”, Alexandria Engineering Journal, 57(3), 

pp. 1509–1518 (2018). 

28.  Kuyumani, E. M., Hasan, A. N., and Shongwe, T. “A Hybrid Model Based on CNN-

LSTM to Detect and Forecast Harmonics: A Case Study of an Eskom Substation in 

South Africa”, Electric Power Components and Systems (2023). 

29.  Ozer, I., Efe, S. B., and Ozbay, H. “A combined deep learning application for short 

term load forecasting”, Alexandria Engineering Journal, 60(4), pp. 3807–3818 (2021). 

30.  Özbay, H. and Dalcali, A. “Effects of COVID-19 on electric energy consumption in 

Turkey and ANN-based short-term forecasting”, Turkish Journal of Electrical 

Engineering and Computer Sciences, 29(1), pp. 78–97 (2021). 

31.  Bedi, J. and Toshniwal, D. “Deep learning framework to forecast electricity demand”, 

Appl Energy, 238(July 2018), pp. 1312–1326 (2019). 

32.  Kocaman, B. and Tümen, V. “Detection of electricity theft using data processing and 

LSTM method in distribution systems”, Sadhana - Academy Proceedings in 

Engineering Sciences, 45(1) (2020). 

33.  Ma, J., Cheng, J. C. P., Jiang, F., et al. “A bi-directional missing data imputation 

scheme based on LSTM and transfer learning for building energy data”, Energy Build, 

216, pp. 1–9 (2020). 

34.  Cho, K., Van Merriënboer, B., Gulcehre, C., et al. “Learning phrase representations 

using RNN encoder-decoder for statistical machine translation”, 2014 Conference on 

Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014). 

35.  Jozefowicz, R., Zaremba, W., and Sutskever, I. “An empirical exploration of Recurrent 

Network architectures”, 32nd International Conference on Machine Learning, ICML 

2015, pp. 2332–2340 (2015). 

36.  Amodei, D., Ananthanarayanan, S., Anubhai, R., et al. “Deep Speech 2  : End-to-End 

Speech Recognition in English and Mandarin”, International Conference on Machine 

Learning, New York, pp. 1–10 (2016). 

37.  Cahuantzi, R., Chen, X., and Güttel, S. “A comparison of LSTM and GRU networks 

for learning symbolic sequences”, arXiv:2107.02248v3 (2021). 



16 

 

38.  Yamak, P. T., Yujian, L., and Gadosey, P. K. “A comparison between ARIMA, LSTM, 

and GRU for time series forecasting”, ACM International Conference Proceeding 

Series, Association for Computing Machinery, pp. 49–55 (2019). 

39.  Yiǧ it, E., Özkaya, U., Öztürk, Ş., et al. “Automatic Detection of Power Quality 

Disturbance Using Convolutional Neural Network Structure with Gated Recurrent 

Unit”, Mobile Information Systems, 2021(Ml) (2021). 

40.  Dong, Y., Zhang, F., Li, X., et al. “Nonlinear Load Harmonic Prediction Method Based 

on Power Distribution Internet of Things”, Sci Program, 2021 (2021). 

 

 

Biographies 

 

İsmail BOZDAG works as an Electrical and Electronics Engineer in Bandırma Organized 

Industrial Zone. He received his BSc and MSc degrees in Electrical and Electronics 

Engineering in 2017 and 2022, respectively. His research interests include electrical power 

quality and power system analysis. 

 

Serhat Berat EFE is currently Associate Professor in Electrical Engineering Department at 

Bandirma Onyedi Eylul University, Türkiye. He received his BSc, MSc and PhD degrees in 

2003, 2007 and 2014 respectively, all in Electrical and Electronics Engineering. His research 

interests include illumination, electrical power quality and electrical power system analysis. 

 

İlyas OZER is currently Associate Professor in Computer Engineering Department at 

Bandirma Onyedi Eylul University, Türkiye. He received his BSc degree in 2010 in Electrical 

and Electronics Engineering, MSc and PhD degrees in 2013, 2018 respectively in Computer 

Engineering. His current research interests include signal processing, evolutionary 

computation, machine learning, big data, deep neural networks and their industrial 

applications. 

 

Table 1. Mathematical definitions of harmonics 

Table 2. Test results for L1, L2, and L3 

 

Figure 1. RNN Architecture 

Figure 2. Block diagram of LSTM 

Figure 3. Fully gated version of GRU 



17 

 

Figure 4. Installation of data collecting unit 

Figure 5. L1 current waveform 

Figure 6. Experimental Setup 

Figure 7. RMSE scatter plots  

Figure 8. MAE scatter plots  

Figure 9. MAPE scatter plots  

Figure 10. Actual and forecasting values for L1 

Figure 11. Actual and forecasting values for L2 

Figure 12. Actual and forecasting values for L3 

 

 

Table 1. Mathematical definitions of harmonics 

DC Component fω = nf1 ; n=0  

Harmonic fω = nf1 n>0  

fω : spectral component 

frequency 

f1 :fundamental frequency 

Inter- harmonic fω ≠ nf1 

Sub- 

harmonic 

 

fω > 0 Hz and fω < f1 

 

Table 2. Test results for L1, L2, and L3 

Line Layer Nodes 

LSTM GRU 

Metric Errors Metric Errors 

RMSE MAE MAPE RMSE MAE MAPE 

L1 
1 

25 2,286 0,734 11,735 2,253 0,698 10,820 

50 2,411 0,760 13,615 2,571 0,963 15,762 

100 2,459 0,804 14,486 2,487 0,780 12,288 

200 2,413 0,739 13,178 2,902 1,599 30,065 

*2 25 2,534 0,654 10,424 2,334 0,916 17,065 
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50 2,582 1,455 24,281 2,246 0,962 17,698 

*100 *2,193 *0,694 *12,111 2,501 0,844 13,202 

200 2,310 0,787 13,953 2,784 1,432 27,572 

L2 

1 

25 2,382 0,680 10,074 2,768 1,460 27,921 

50 2,432 0,765 13,548 2,695 1,104 20,709 

100 2,363 0,792 14,268 2,640 0,610 9,976 

200 2,610 1,292 24,501 2,778 1,526 29,213 

*2 

25 2,700 1,261 23,484 2,489 0,715 11,264 

*50 *2,354 *0,759 *12,329 2,762 1,372 26,210 

100 2,952 1,717 32,897 2,460 0,944 17,218 

200 2,497 0,838 14,350 2,973 1,553 29,614 

L3 

1 

25 2,277 0,672 12,915 2,527 0,863 15,234 

50 2,548 1,089 23,665 2,872 1,157 24,834 

100 2,648 1,068 22,884 2,520 1,045 22,603 

200 2,515 0,793 16,219 2,508 1,074 23,321 

*2 

*25 *2,116 *0,666 *11,619 2,173 0,776 13,486 

50 2,326 1,153 25,337 2,503 1,417 27,640 

100 2,447 1,104 21,394 2,159 0,782 15,860 

200 2,639 1,300 27,998 3,064 1,311 28,071 

 

 

 

Figure 1. RNN Architecture 
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Figure 2. Block diagram of LSTM 

 

Figure 3. Fully gated version of GRU 
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Figure 4. Installation of data collecting unit 

 

Figure 5. L1 current waveform 
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Figure 6. Experimental Setup 

 

Figure 7. RMSE scatter plots  
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Figure 8. MAE scatter plots  
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Figure 9. MAPE scatter plots 

.

 

Figure 10. Actual and forecasting values for L1 
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 Figure 11. Actual and forecasting values for L2 

 

Figure 12. Actual and forecasting values for L3 


