
1 

 

Reduced-Order Approximation of Bilinear Systems Using a New 

Hybrid Method based on Balanced Truncation and Iterative Rational 

Krylov Algorithms 

H. Nasiri Soloklo
a
 and N. Bigdeli

a,
*  

a
Department of Control Engineering, Imam Khomeini International University, Qazvin, 

Iran 

*Corresponding author: Tel: +989127870857; +982833901296 

Email Addresses: hasannasirisoloklo@edu.ikiu.ac.ir (H. Nasiri Soloklo); 

n.bigdeli@eng.ikiu.ac.ir (N. Bigdeli) 

Abstract: In this work, a hybrid approach is proposed for the reduced order 

approximation of the bilinear system by combining the Balanced Truncation (BT) and 

Bilinear Iterative Rational Krylov Algorithm (BIRKA). Bilinear BT (BBT) has low 

accuracy but guarantees stability, while BIRKA convergence suffers from sensitivity to 

initial choice of reduced-order system. To start, the proposed approach minimizes the 

Integral Square Error (ISE) index to specify the order of the reduced bilinear 

approximation. To assurance BIRKA convergence, two approaches, BBT and Linear 

BT (LBT), are applied to prepare the initial guess of the reduced-order approximation. 

Although BBT prepare a good stable initial guess for BIRKA, solving the generalized 

Lyapunov equations to find the solution is very computationally expensive. The initial 

guess is provided by LBT through solving the Lyapunov equations, which decreases 

computational complexity. Furthermore, the eigenvalues are replaced by the condition 

number in BIRKA to decrease complexity. To verify the efficiency of the proposed 

approach, three bilinear test systems are being examined. Finally, the performance of 

the proposed approach is compared with several classical approaches. The finding 
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indicate that the convergence probability of BIRKA increases. Also, the time for the 

determining the Model Order Reduction (MOR) decreases. 

Keywords: Model order reduction; Bilinear system; Balanced truncation; 

Iterative rational Krylov algorithm; Monte Carlo simulation. 

1. Introduction  

Bilinear systems are a significant type of nonlinear systems that connects linear and 

nonlinear systems. In the literature, bilinear systems are extensively utilized to model 

many engineering and real-world systems, such as power systems [1], heat transfer [2], 

and electrical circuits [3]. Bilinear systems are used to approximate weakly nonlinear 

systems through Carleman bilinearization, which is one of its most important 

applications [4, 5]. Although, the approximation of nonlinear systems by bilinearization 

methods frequently results in a high-order model. Therefore, Model Order Reduction 

(MOR) of bilinear systems has been studied by scientists for analysis and control 

purposes. Linear MOR techniques, such as Proper Orthogonal Decomposition (POD) 

[6], BT, Krylov subspace methods [7, 8], and swarm intelligence-based methods [9], are 

the foundation of most bilinear MOR methods.  

First, Hsu et al. used the BT method for MOR of bilinear systems [10]. In [10], the BT 

method applied earlier to linear systems was extended to bilinear systems. The main 

drawback of this method was the enormous computational load for computing the 

Gramians of controllability and the Gramians of observability. After that, many 

researchers focused on MOR of bilinear systems based on the BT method and improved 

it [11, 12]. However, the Bilinear BT (BBT) method still has disadvantages, such as 

high computational cost and relatively low accuracy. 

The Krylov subspace was originally used for MOR of linear systems, but [13] extended 
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its application to bilinear systems. Next, MOR of a Multi-Input Multi-Output (MIMO) 

bilinear system using the Krylov subspace was presented in [14, 15, 16]. There are 

several MOR methods based on projection techniques that have been proposed for 

bilinear systems [17, 18, 19]. In [17], a reduced bilinear system is formed to match the 

desired number of moments of multivariable transfer functions associated with the 

kernels of the Volterra series representation of the original system through one-sided 

projection. The efficiency and accuracy of the achieved reduced-order bilinear 

approximation based on a one-sided projection approach was increased by the two-sided 

projection method, which theoretically allows double the number of interpolated 

derivatives of the first two transfer functions [18]. In [19], the problem of full-state 

approximation by MOR for stochastic and bilinear systems is studied. It was proved that 

when dominant subspaces were identified based on reachability Gramians, the reduced-

order bilinear approximation can be find using Galerkin projection.  

In [20], the H2-optimal MOR problem for the bilinear system was presented. In this 

method, the necessary conditions for H2 optimality were achieved and then, the gradient 

flow technique was applied to optimize the H2 error. Benner and Breiten [21] have 

proposed two algorithms for minimizing the H2-error norm of MOR of bilinear systems. 

These algorithms are based on generalized Sylvester equations and the BIRKA. In [22], 

the new Volterra series interpolation framework was proposed and then the optimality 

conditions for H2 were determined. Moreover, MOR was introduced for bilinear 

systems by computing controllability and observability Gramians at pre-determined 

frequency intervals to minimize the H2 norm of the error [23]. The Truncated BIRKA 

(TBIRKA) is an improvement of the BIRKA method that uses the truncated Gramians 

to minimize the H2 norm of the error system in order to decrease the computational 

volume of the BIRKA [24]. The stability analysis of the BIRKA and TBIRKA 



4 

 

algorithms and the exactness of the reduced-order approximations obtained by these 

algorithms with three inexact solvers were studied [25-26]. The BIRKA demonstrated 

excellent performance in MOR of bilinear systems; however, there's no assurance of the 

algorithm's convergence [27].  

In this paper, Monte Carlo simulations are used to show that by randomly choosing the 

starting point for the BIRKA, the probability of convergence of the bilinear system is 

low. Motivated by this sensitivity analysis and in order to guarantee the convergence, a 

new method is proposed for MOR of the bilinear system based on a combination of BT 

and BIRKA. First, the order of the reduced bilinear approximation is specified by 

minimizing the integral square error index based on the eigenvalues of the system 

matrix. Then, in order to increase the probability of convergence of BIRKA, two 

approaches are proposed to obtain a proper starting point of the reduced-order system 

for BIRKA. These approaches include the BBT and Linear BT (LBT) methods. The 

reduced-order system obtained with BBT has low accuracy but is stable and provides a 

good initial guess for BIRKA. This choice has been studied to determine whether it can 

lead to convergence of the BIRKA method. However, the solution of the generalized 

Lyapunov equations involves a high computational cost. It is noted that although 

decreasing the computational volume is very important in MOR, still achieving lower 

order models with appropriate accuracy in approximating the original system, especially 

in order reduction of high order controllers and high order systems that need to be run 

multiple times, are more important. 

On the other hand, LBT provides a suitable starting point but proposes solving the 

Lyapunov equations for a solution that requires less computation. Using the reduced-

order approximation achieved in the previous stage as the initial guess, BIRKA is 

implemented to achieve the final reduced-order bilinear system. Instead of eigenvalues, 
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the condition number concept is utilized to further decrease the complexity of BIRKA. 

To demonstrate its capability, the proposed hybrid method have been used to 

approximate three test systems. These test systems are the model of Burgers’ equation 

and the transmission line circuit model. Finally, the achieved results are compared with 

some famous MOR methods such as BBT, Bilinear POD (BPOD), and BIRKA to 

illustrate the proposed method's performance and capability. Moreover, the convergence 

rate and the order reduction duration time are evaluated.  

The major contributions of this paper with regard to the relevant literature can be 

outlined as follows:  

 Analyzing the properties and order reduction of the bilinear system model. 

 Introducing a hybrid order reduction approach for bilinear systems using the 

combination of BBT and BIRKA to take advantages of both approaches. 

 Studying of convergence conditions for BIRKA and the impact of the 

proposed method on the convergence of BIRKA.  

 Increasing the chance of convergence of BIRKA by providing a suitable 

initial guess. 

 Decreasing computational complexity or order reduction time by using 

condition number instead of eigenvalue vector and LBT instead of BBT.  

This paper is divided into the following sections: Section 2 introduces MOR of bilinear 

systems as a general problem. Sections 3 and 4 present the basics of the BBT and 

BIRKA methods, respectively. Section 5 describes the proposed MOR method for 

bilinear systems. In section 6, the proposed MOR method reduces three high-order 

bilinear systems. The results show that the proposed MOR method outperforms other 

MOR methods such as BBT, BIRKA, and BPOD. Finally, section 7 concludes the 

paper.  
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2. MOR of Bilinear Systems  

Below is a description of the Single-Input, Single-Output (SISO) bilinear system:  

         

   
:

x t Ax t Nx t u t Bu t

y t Cx t


  



 (1) 

where , , ,n n T nA N R B C R  are the matrices of the bilinear system,   nx t R is the 

state vector, and    u t R  and  y t R  are the input and output of the bilinear 

system, respectively. Also, n represents the order of the original bilinear system.  

Suppose that the Eq. (1) is of high order. MOR aims to create a system where both the 

original bilinear system and the reduced-order approximation have similar responses 

such that  y t  almost equals  ry t  for all allowable inputs. Also, the reduced-order 

approximation has same form to Eq. (1). The representation shown below is for the 

reduced-order bilinear approximation:   

         

   
:

r r r r r r

r

r r r

x t A x t N x t u t B u t

y t C x t


  



 (2) 

The unknown matrices , , ,r r T r

r r r rA N R B C R   must be determined to achieve the 

reduced-order bilinear approximation. Also, the state vector is represented by 

  r

rx t R , while    ,  ru t y t R  correspond to the input and output of reduced-order 

approximation of bilinear system, respectively. Also, the order of the reduced-order 

bilinear approximation is r, and it's smaller than n.  If the original bilinear system is 

stable, then the reduced-order bilinear approximation must also be stable.  

3. Balanced Truncation For Bilinear Systems 

The Gramians of controllability for the bilinear system of Eq. (1) is given by [28]:  
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1

1 0 0

T

i i i

i

P P P dt dt

 



  (3) 

where  

   1

1 1 1 1,   , , iAt At

i i iP t e B P t t e NP    (4) 

Also, the Gramians of observability for the bilinear system of Eq. (1) is provided as 

follows:  

1

1 0 0

T

i i i

i

Q Q Q dt dt

 



   (5) 

where  

   1

1 1 1 1,   , , iAt At

i i iQ t Ce Q t t Q Ne   (6) 

Theorem 1 [20]. Consider the bilinear system of Eq. (1) with a stable matrix A. If the 

controllability Gramian P of the system is defined as in Eq. (3) exists, then the Gramian 

P satisfies the generalized Lyapunov equation, given by  

0T T TAP PA NPN BB     (7) 

Theorem 1 can be extended to apply to the observability Gramian, leading to the 

conclusion that solving the following generalized Lyapunov equation yields the 

observability Gramian:  

0T T TA Q AQ N QN C C     (8) 

The generalized Lyapunov equations of Eq. (7) and Eq. (8) can be solved by the 

following iterative method [29]. 

First, the bilinear term is removed from Eq. (7). Consequently, the generalized 

Lyapunov equation is transformed into the subsequent Lyapunov equation:  

1 1 0ˆ ˆ T TAP P A BB    (9) 

An initial solution for the generalized Lyapunov equation is obtained by solving the 

Lyapunov equation of Eq. (9). Then, the following iterative formula is used to 
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determine the controllability Gramian in each iteration:  

1 0ˆ ˆ ˆ ,   2,3,T T T

i i iAP P A NP N BB i      (10) 

The Gramian of controllability is finally specified in the following manner: 

m ˆli i
i

P P


  (11) 

The Gramian of observability can also be determined, similar to the Gramian of 

controllability. After computing the controllability and observability Gramians, similar 

to the standard BT method, the following stages can be performed to obtain the 

reduced-bilinear approximation:   

Stage 1. Determine low-rank approximation of Gramians: TP RR and TQ SS ;  

Stage 2. Compute SVD of TS R  as follows:  

   1

1 2 1 2

2

Σ 0
Σ

0 Σ

TTS R U V U U V V
 

   
 

 (12) 

The Σ1 contains the r largest singular values of TS R . 

Stage 3. Construct the transformation matrices 1T  and 2T  as follows:  

1

2
1 1 1ΣT SU



  (13) 

1

2
2 1 1ΣT RV



  (14) 

Stage 3. Multiplying the transformation matrices to the system of Eq. (1) to determine 

the reduced-order bilinear approximation:  

2 1 2 1 2 ,   ,   , T T T

r r r rA T AT N T NT B T B C CT     (15) 

4. Interpolation-Based 𝑯𝟐-Optimal Model Reduction of Bilinear 

System 

A different approach for MOR is to computing models that satisfy 2H  optimality 



9 

 

conditions. 

4.1. 𝑯𝟐 Norm For Bilinear Systems 

The 2H  norm of the original bilinear system of Eq. (1) is described as follows:  

 
2

1

22

1 1 1
0, 01

sup , ,
k

k k k kH F
x xk

G x iy x iy dy dy
 

   

      (16) 

Where kG  is the transfer function representation of Eq. (1). In [20], it was proved that 

the 2H  norm of the bilinear system based on Gramians of Eq. (1) could be calculated as 

follows:  

   
2

2 T T

H
trace CPC trace B QB    (17) 

As mentioned in section 2, both the original bilinear system and the reduced-order 

bilinear approximation have almost same responses. In other words, when the following 

error index is minimized, the original bilinear system and the reduced-order bilinear 

system responses are equivalent: 

   
2

2

r H
E y t y t   (18) 

To avoid the time-consuming simulation of the original bilinear system, the error 

criterion below is used as an alternative to minimizing Eq. (18) [30]:  

2 2

2 2

err rH H
E       (19) 

To create 𝜁𝑒𝑟𝑟, following formulation of the error-system is constructed:  

        

   
:

err err err err err err

err

err err err

x t A x t N x t B u t

y t C x t


   




 (20) 

Where  

 
0 0

, , , ,
0 0

err err err err r err

r r r r

A N B x
A N B C C C x

A N B x

       
            
       

 (21) 

According to Eq. (17), the 2H  norm of the error-system can be determined as follows:  
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   
2

2 T T

err err err err err err errH
E tr C P C tr B Q B    (22) 

Where errP  and errQ  are the Gramians of the error-system, respectively.  

The 2H  optimality conditions of a bilinear system are determined by the following 

theorem [25]:  

Theorem 2. Let   and r  be the original system (1) and a reduced-order system (2), 

respectively. Then, the 2H -norm of the error system (20) can be given by  

    

 

2

1

2

0 0 0 00 0

0 0 0 00 Λ 0

T

r

n n

r r r r

r

E vec I C C C C

I I A NA N

I I A NN

BB
vec I

BB



      

           
                 
           

   
   

    

 
(23) 

Where ⊗ denotes the Kronecker product, vec is vectorized operator, I is identity matrix, 

A , B , C  and N  are the initial guesses for the reduced-order bilinear system. Also, 

1ΛR R   is the spectral decomposition of rA , 1

rB R B , C CR  and 1

rN R N R .   

Theorem 3. [31] Let   be a bilinear system of order n. Let r  be a 2H −optimal 

approximation of order r. Then, r  satisfies the following multi-point Volterra series 

interpolation conditions: 

 
1 2 1 2

1

, , ,

1 1 1

, , ,
k k

k

r r

l l l k l l l

k l l

G   


  

      

 
1 2 1 2

1

, , ,

1 1 1

, , ,  and
k k k

k

r r

l l l r l l l

k l l

G   


  

     

 
1 2 1 2

1

, , ,

1 1 1 1

, , ,
k k

k

r r k

l l l k l l l

k l l j j

G
s

   


   

 
      

    

(24) 
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 
1 2 1 2

1

, , ,

1 1 1 1

, , ,
k k

k

r r k

l l l rk l l l

k l l j j

G
s

   


   

 
     

    

 Where 
1 2, , , kl l l  and 

1 2
, , ,

kl l l    are residues and poles of the transfer function rkG  

associated with r , respectively. It is impossible to obtain the poles and residues of 

the reduced 2H  model because this model is unknown. However, in [21], a new 

algorithm was proposed, which ensures the 2H  optimality conditions of theorem 3 are 

satisfied, provided that the algorithm is converging. This algorithm is called BIRKA. It 

should be noted that the BIRKA obtains the locally 2H  reduced model [27].  

5. Proposed MOR Method  

Consider the bilinear SISO system indicated by Eq. (1). It is assumed that this system is 

stable. The aim is to get a reduced-order bilinear approximation that has the identical 

structure as the original bilinear system in Eq. (2). For this purpose, a hybrid method 

based on the BBT method and the 2H -optimal model reduction is proposed. As 

mentioned earlier, the BBT method has some drawbacks, such as low accuracy and high 

computational cost, while the BBT ensures stability. On the other hand, the convergence 

of BIRKA is a major problem, while the reduced-order approximation achieved by 

BIRKA is accurate. Therefore, by combining these two methods, the advantages of both 

methods can be used and their disadvantages can be eliminated.  

The desired order for the reduced-bilinear approximation of Eq. (1) is determined in the 

first step. To do this, the number of modes with the largest energy should be identified. 

Evaluating high-energy modes can be achieved through the use of dominant poles and 

Hankel singular values methods. The number of high energy modes is equal to the order 

of the reduced-model. Taking into account the real part of the eigenvalues of Eq. (1) is 

the first step in choosing an initial guess as an order for the reduced bilinear 
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approximation. This approach determines the reduced-model order by finding the 

number of eigenvalues with the closest real part to the origin. The Choice of the initial 

order should be conservative. A bilinear MOR method such as BPOD [32] is used to 

decrease the one by one the initial order. A major challenge in the POD method is the 

selection of the snapshot data. To create a POD basis, snapshot data is typically 

collected from one or several runs of high-fidelity numerical simulations of the original 

system. The POD basis from snapshots can be generated more efficiently using a new 

partitioned method introduced in [33], which takes advantage of parallelism for 

computation.  

Until the ISE index significantly increases, this procedure would be iteratively repeated. 

Therefore, the lowest order with negligible error is the most appropriate. It can be noted 

that to avoid the solution of the original systems in the ISE criterion, the response of the 

original system can be replaced by the response of the approximated system with the 

conservative order determined by the Hankel singular value.  

The second step is to determine a suitable starting point for the BIRKA. It has already 

been mentioned, and will be shown in the next section using simulations that the 

convergence of BIRKA is sensitive to the initial guess for the reduced-order 

approximation. New conditions for the convergence of BIRKA are also addressed. 

Therefore, it is crucial for BIRKA to provide an appropriate initial guess of the reduced-

order approximation. To this end, two method are proposed to determine the proper 

initial guess of the reduced-order approximation.  

In the first approach, the BBT is used to the original bilinear system of Eq. (1). The 

reduced-order system obtained by BBT is relatively accurate, but its computational 

volume is high since it must solve the generalized Lyapunov equations to find its 

solution.  
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In the second approach, it is possible to use the LBT method instead of the BBT 

reduced model, since the initial guess for BIRKA is an approximate system. In this case, 

the bilinear term is eliminated. The advantage of this method over the previous method 

is the reduction in computational volume. That is, instead of solving the generalized 

Lyapunov equation, the Lyapunov equation is solved. Therefore, the computational 

complexity is decreased significantly.  

Discussion: Determining the controllability and observability Gramians leads to an 

increase in the computational volume in BT method. In practice, low rank approximate 

Gramians can be used to decrease the volume of calculations. However, these Gramians 

do not guarantee the stability of the system. To solve this problem, the modified 

frequency limited BT method can be applied, which, in addition to using low-rank 

approximate Gramians to decrease the volume of computing, also makes the reduced-

order approximation asymptotically stable under some mild conditions [34].  

According to the characteristics of the reduced-order approximation achieved by BBT 

and LBT methods, a new suitable initial guess for the BIRKA algorithm is provided, 

which improve the convergence of BIRKA.  

After determining the starting point in the previous stage, BIRKA is used to find the 

reduced-order bilinear approximation. In BIRKA, instead of the eigenvalues of rA , the 

condition number of rA  is used to decrease the time of order reduction. The condition 

number is determined by dividing the largest singular value by the smallest singular 

value. 

Thus, the proposed method can be summarized as below:  

Step 1: In a conservative manner, consider the initial order based on the real part 

of the eigenvalues of Eq. (1). Decreasing each order sequentially and applying BPOD to 

each is done until a significant increase in the ISE index is observed. An appropriate 
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order is the lowest with negligible error.  

Step 2: Determine the initial guess of the reduced-order approximation for the 

BIRKA using one of the following proposed methods:  

First approach: Apply the BBT method to reduce the original bilinear system as an 

initial reduced-order approximation in BIRKA. 

Second approach: Apply the LBT method to reduce the original bilinear system as an 

initial reduced-order model in BIRKA. In this approach, the bilinear term is considered 

as a zero matrix with compatible size.  

Step 3: Apply the BIRKA with the initial guess of step 2 to find the reduced-

order approximation. To decrease the computational complexity of BIRKA, utilize 

condition numbers in place of eigenvalues.  

Step 4: Simulate the obtained reduced-order approximation and examine its 

properties. 

In the following section, simulations are utilized to exhibit the performance and 

properties of the proposed method.  

The pseudocode of the proposed method is outlined in Table 1.  

5.1. Convergence of proposed method 

In [35] it is shown that BIRKA is convergent if the following relation holds: 

    
1

2

Λ 1T

rI A I N N


      (25) 

Since the dimension of  Λ rn rn

rI A I       is large, it might not be feasible to 

directly calculate the inverse matrix due to memory limitations. Therefore, the 

Kronecker product calculation should be avoided. For this purpose, the estimation of 

Eq. (25) is introduced [35]:  

   
1

2

Λ T

rI A I N N


      (26) 
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   
1

22

              Λ T

rI A I N N


       

     
1

222

              Λ T

rI A I N N


      

Therefore, if      
1

222

Λ 1T

rI A I N N


     , BIRKA is usable. 

The following Lemma has been used to calculate  
1

2

ΛrI A I


     without 

explicit inversion of the matrix [35].  

Lemma 1. For a normal matrix 𝑀:  

 
1

2
1

1

i n i

M
min M



 

  (27) 

 By using Lemma 1, the following proposition has been obtained for calculation of 

 
1

2

ΛrI A I


    .  

 Proposition 1. For n nA  , symmetric,  1Λ Λ , ,Λrdiag :  

 
1

2

1
ΛrI A I




      (28) 

where  

 1 Λ     Λk r min k kmin A I for       (29) 

Eq. (28) shows that with increasing  ,  
1

2

ΛrI A I


    decreases. Therefore, it 

should determine the upper and lower bounds of  .  

   1, , 1, ,θ   Λ   Λk r min k k r max kmin A I min A I          (30) 

     1, ,

1

θ   Λ Λ Λ
n

k r max k i k k

i

min A I A I tr A I  



       (31) 

     1, ,θ   Λ   Λk r max k kmin A I tr A tr I      (32) 
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Theorem 4. [36]    
1

A tr A
m

  .   

In theorem 4, m is rank of A and 𝜌(𝐴) is spectral radius of an arbitrary real matrix A 

which defined as follows:  

   A max 


  (33) 

Based on theorem 4 and the spectral radius of a matrix, the lower bound of 𝜃 is 

determined as follows:  

   

     

1, , 1, ,θ   Λ   Λ

1 1
                   Λ Λ

k r max k k r k

k k

min A I min A I

tr A I tr A tr I
m m

       

   
 (34) 

Therefore, it can conclude that 𝜃 will be in the following range.  

      
1

) (Λ θ Λk ktr A tr I tr A tr I
m

     (35) 

Theorem 5. [20] The Volterra series of bilinear system uniformly convergence on the 

interval 0, )  for all bounded input if (i) A is stable, (ii) /N Z  , where 𝛼 and    

are two positive scalar such that         0exp At exp t t     holds and  Z u t .  

The BIBO stability of the bilinear system in Eq. (1) can be considered by theorem 5, 

which requires that A is stable and N is bounded.  

Because the reduced-order bilinear approximation achieved by the BBT is stable, it can 

conclude that rN  is sufficiently bounded. Also, if   ) (Λktr A tr I m  , then 

 
1

2

Λ 1rI A I


     . On the other hand, due to stability reasons, Λ 0k  . 

According to the BBT concept, the elements of Λk are the most important modes. Since 

the dimension of  Λ  is very small compared to the original system, and the elements of 

Λ  are the most important eigenvalues of the original system, it can conclude that 
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  ) (Λktr A tr I m   holds. Therefore, by choosing the initial reduced-order 

approximation by the BBT method, Eq. (26) is held, and the BIRKA is converged.   

6. Simulation Results  

In this section, three test systems are considered as high-order bilinear systems that 

should be approximated by the proposed method. The first test system is the Burgers' 

equation which is widely used in numerous fields of applied mathematics, such as fluid 

mechanics [37], heat transfer [38], and traffic flow problems [39]. The second test 

system is a nonlinear transmission line circuit.  

6.1. Test system 1: Burgers' Equation 

 The one-dimensional viscid Burgers' equation is presented as follows [40]:  

            , 0, 0,
w w w

w for x t L T
t x x x


    

    
    

 

(36) 
     ,0     for  0,w x p x x L   

     0,     for  0,w t u t t T   

     ,     for  0,w L t q x t T   

where 𝑤 is the spatial coordinate, t is the temporal coordinate,  ,w x t  is the speed of 

the fluid at the indicated spatial and temporal coordinates. Also, 0   is the viscosity of 

the fluid. The viscosity of the fluid is a physical property that remains constant.  

Applying an equidistant step size, a spatial discretization is applied to Eq. (36). Then, 

the spatial discretization of Burgers' equations of Eq. (36) has been approximated as a 

nonlinear state-space control system as follows:  
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 

   

   

 

1 2
2 12

1
1 22

3 1 3 2 12
2

1 1 1 12

1
12

2
2

22
2 0

02
2

0

2
2

i i
i i i i i

k

N N
k k

w w
w w

h h w
w w

h hw w w w w
w h h

d
u

w wdt
w w w w w

h h

w

w w
w w

h h










   




 
   

                                                     
    
 

 (37) 

Where k is the number of interior points of the interval  0,L , and h is step size 

considered as 
1

L
h

N



.  

As a typical choice, the number of interior points and the fluid viscosity for 

approximating of Burgers' equation with a nonlinear control system are considered to be 

30 and 3, respectively, resulting in a nonlinear system of order 30. The complexity of 

high-order nonlinear control systems makes their analysis and design challenging. 

Hence, Carleman bilinearization is applied to Eq. (37) to achieve a bilinear form of 

Burgers' equations. In this case, with the choice mentioned earlier of the number of 

interior points, the order of the bilinear approximation is 2 930k k  . As seen, the 

bilinear model acquired from Carleman bilinearization is high-order and requires order 

reduction.  

6.1.1. Sensitivity Analysis of BIRKA 

Although BIRKA is one of the powerful approaches for MOR of bilinear systems, in 

some cases, BIRKA does not roughly converge to the desired answer. This section 

shows that proper selection of the initial guess for BIRKA can significantly affect the 

convergence. To this end, the bilinear model of Burgers' equation is reduced for several 

initial guesses using BIRKA. Fig. 1 shows the BIRKA results for the three different 
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randomly selected initial guesses. Also, Fig. 2 presents the absolute error for three 

different initial guesses of BIRKA. In this analysis, the input of the bilinear Burgers' 

equation is    expu t t  . According to Figs. 1 and 2, it is clear that the convergence 

and accuracy of the BIRKA depend on the initial guess. 

For further analysis, Monte Carlo simulations have been used to evaluate the success 

rate of the BT method instead of the random values of the initial value. The simulation 

was performed for 500 runs. The mean of generalized Sylvester equation solutions is 

shown in Fig. 3. In this figure, two bounds of responses are distinguished. The lower 

bound corresponds to the convergent responses, while the upper bound is dedicated to 

the non-converging ones. Based on the Monte Carlo simulation, the algorithm's success 

rate is 41%. It means, in MOR of the bilinear system of Burgers’ model by the BIRKA, 

there is a 41% chance of selecting the initial values that will lead to the convergence of 

the BIRKA.  

6.1.2. Approximation of Test system 1 

In the subsequent steps, the bilinear model of Burgers' would be reduced using the 

proposed method:  

Step 1: In this step, the suitable order of the reduced bilinear model is specified. To do 

this, it should specify an initial order. It should be emphasized that the system's crucial 

modes are those whose real eigenvalues are near the origin. These are some effective 

eigenvalues of the system: -7.41, -66.69, -185.25, -363.09, and -600.21. As a 

pessimistic choice, the initial order for the reduced-order approximation was 10. Then, 

the reduced-order bilinear approximation with orders 10, 9, …, 1 are determined by the 

bilinear proper orthogonal decomposition method. Then, for each reduced-order system 

with a different order, the ISE criteria are calculated. Fig. 4 shows the ISE index values 

that change with the order of the system. The results show that order 2 is acceptable.  
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Step 2: The initial guess for the reduced-order system is determined by both approaches 

proposed in the previous section, based on the obtained order of the reduced bilinear 

model. 

In the first approach, the BBT method is used to order reduction of the bilinear form of 

Burgers' equation as follows: 

 
6 5

1 1 15 4

4

5

7.4672 2.7663 8.6100 10 2.2408 10

1.3793 77.7916 9.4358 10 2.4557 10

3.0383 10
              

3.3297 10

r r rx t x x u

u

 

 

     
    

      

 
 

 

 

(38) 

  4 4

1 14.4136 10 2.46 10  r ry t x        

In the second approach, the bilinear term of Burgers’ model is considered as zero. Also, 

the bilinear term of the initial guess of the reduced-system is considered as a zero 

matrix. Then, the standard LBT is applied to the linear system of Burgers’ equation as 

follows:  

 1 1 1

3.909 11.06 0 0 2.134

11.06 34.23 0 0 2.534
r r rx t x x u u

     
       

      
 

(39) 

   1 12.134 2.534  r ry t x   

Step 3: The reduced-order approximation acquired by any proposed approaches is 

applied to BIRKA as a starting point. Then, the BIRKA is used to obtain the reduced-

order approximation of the bilinear system of Burgers' equation as follows: 

 2 2 2

40.9143 14.2829 0.0292 0.0164 904.2622

12.2869 2.6459 0.0033 0.0019 103.6879
r r rx t x x u u

      
       

       
 

(40) 

   2 20.0020 0.0398  r ry t x   

It can be noted that, because the main basis of the MOR method is the BIRKA and only 

the initial value of the reduced-order model changes, the obtained model is the same in 
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both approaches. The only element that changes is the order reduction time and the 

convergence rate of the method.  

For further analysis, the convergence conditions have been checked for this test system 

numerically. In the Burgers’ test system, the trace of A is 94.8339 10  , the norm of the 

bilinear term is 931, and 2 930 1860m rn    . Also, using the BBT as an initial 

guess for the BIRKA, the trace of Λ is −85.2587, and the norm of the reduced-order 

bilinear term is 42.6417 10 . It can be shown that the proposed convergence 

conditions, i.e.,   ) (Λktr A tr I m   and sufficiently bounded of N  and 
r

N , are 

validated.  

Fig. 5 depicts the response of the obtained reduced bilinear approximation to input 

   u t exp t  , which has been compared with several famous MOR methods such as 

BBT, BIRKA, and BPOD methods. Furthermore, the time evaluation of the absolute 

error is also depicted in Fig. 6. Compared to other methods, the proposed method's 

results satisfactorily match the original system's response, with a smaller error than the 

others.  

In addition, the response's significant characteristics, such as order reduction time, peak 

value, steady-state value, and ISE index, are compared for quantitative and numerical 

evaluation between the obtained results and the mentioned MOR approaches. These 

characteristics are investigated in Table 2. Figs. 5-6 and Table 2 confirm that the 

reduced-order bilinear approximation is the most accurate approximation among the 

other approaches. Hence, the proposed approximation maintains almost all the features 

of the original bilinear system, while its convergence is significantly faster than that of 

BIRKA. Besides, according to Table 2, a combination of LBT+BIRKA is used in the 

proposed method. The total time for order reduction has been significantly reduced, 
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while the properties of the reduced model have remained the same. It is expected that 

the time of order reduction for BBT+BIRKA will be relatively long because of the need 

to solve generalized Lyapunov equations. On the other hand, LBT+BIRKA has a faster 

convergence than the BBT-BIRKA, since the Lyapunov equations are solved instead of 

the generalized Lyapunov equations.  

Another enhancement in this paper is the utilization of the condition number instead of 

eigenvalues in BIRKA in the proposed approach. This change decreases the 

computational cost, as reported in Table 3. In this table, the computational properties of 

the proposed method have been brought into more detail. As can be seen in BBT+ 

BIRKA, the total elapsed time is higher due to the need to solve the generalized 

Lyapunov equation. On the other hand, employing LBT in conjunction with the 

condition number instead of the eigenvalues in the BIRKA reduces the total order 

reduction time and its number of iterations to 26.5274 and 22, respectively.  

For further investigation, the input of the Burgers' equation is changed to 

     1.5 sin 10t costu t e t . Figs. 7 and 8 illustrate an evaluation between the responses 

of the reduced-order bilinear model and the classical approaches. It can be observed that 

the proposed approximations are closer to the original model of the Burgers’ equation 

than other methods when the input is changed.  

It can be deduced from the results that BIRKA's convergence rate improved from 41% 

to 100%. In other words, when the initial guess in the BIRKA algorithm comes from the 

BT methods, the convergence probability is 59% higher than when the initial guess is 

chosen randomly. On the other hand, Table 2 illustrates that the simulation time 

increases notably in cases where the BIRKA algorithm fails to converge. Thus, the 

proposed method decreases the order reduction time as an index of computational 

complexity compared to BIRKA when it does not converge. 
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6.2. Test System 2: Nonlinear Transmission Line Circuit 

 The nonlinear transmission line circuit is another standard test system used to evaluate 

MOR methods [17]. The following is a presentation to the state-space form of the 

nonlinear transmission line circuit:  

 

   

   

   

 

 

     

1 1 2

1 2 2 3

1 1

1

1

0
 

0

1 0 0  

k k k k

v v

g x g x x

g x x g x x

x t u t
g x x g x x

g x x

y t x t

 



   
 

      
  
   
     
  
 

 
   



        (41) 

where 1vx R   is the state variables, vf R is nonlinear state evolution function, 

1vb R   and 1 vc R  are input and output, respectively. For the transmission line 

circuit, v is equal to 20, which represents the number of nonlinear resistors. Also, the 

voltage and current of each resistor depend on each other as follows:  

    1g x exp x x           (42) 

The nonlinear transmission line model is converted into the bilinear model using the 

Carleman bilinearization method. The acquired bilinear model has an order of 

2 420v v  . The bilinear model obtained through Carleman bilinearization has a high 

order and requires order reduction.  

6.2.1. Sensitivity Analysis of BIRKA 

In this subsection, to reduce the order of the high-order bilinear model of the 

transmission line circuit, the BIRKA method is used. Similar to the proposed procedure 

in test system 1, the order of the reduced approximation is considered as 3. It has been 

observed that the BIRKA for MOR of the bilinear transmission line system has a 

convergence rate of 82% when the initial guesses of the reduced-model for the BIRKA 



24 

 

are randomly chosen, and the simulation is repeated 50 times. Therefore, an increase in 

the convergence rate of BIRKA has been achieved by implementing the proposed 

method.  

6.2.2. Approximation of the Test system 2 

In this subsection, the proposed approach is applied to the bilinear model of the 

transmission line circuit. The reduced-order bilinear approximation obtained by the 

proposed approach is given by 

 

106.3575 36.1771 3.2816

75.7145 91.0158 36.8621

24.5642 45.0254 52.8670

0.6687 1.4783 0.6278 0.2396

            0.2579 0.5673 0.2630 1.0467

0.0530 0.2633 0.2414 0.1906

r r

r

x t x

x u

 
 

  
 
   

     
   

  
   
       

 u



        

(43) 

   0.2967 0.5946 0.3389  r ry t x    

Similar to test system 1, the achieved reduced-order approximation is compared with 

some well-known MOR methods such as BPOD, BBT, and BIRKA. In Fig. 9, 

responses of reduced-order bilinear approximations to input      1.5 sin 10t costu t e t  

are depicted. Also, Fig. 10 illustrates the absolute error as it varies with time.  

Table 4 presents a comparison of characteristics of responses, including final value, ISE 

index, peak value, and order reduction time.  

The proposed methods and BIRKA results are similar to the high-order bilinear model 

of the transmission line circuit, as shown in Figs 9 and 10 and Table 4.  

It can be concluded that the probability of BIRKA convergence rate increases from 82% 

to 100% success by the proposed methods. In other words, the probability of 

convergence of BIRKA by the proposed method has increased by 18% compared to the 

original BIRKA. 
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Again, similar to test system 1, the convergence conditions have been numerically 

evaluated for this system. In this example, the trace of A is 46.5559 10  , the norm of 

the bilinear term is 2, and 2 420 840m rn    . Also, using the BBT as an initial 

guess for the BIRKA, the trace of Λ is −4.0769, and the norm of the reduced-order 

bilinear term is 0.2409. It can be shown that the proposed convergence conditions, i.e., 

  ) (Λktr A tr I m   and sufficiently bounded of N  and 
r

N  are validated.  

It can be noted that because the proposed methods are based on BIRKA, the reduced-

order model determined by BBT+BIRKA and LBT+BIRKA are identical. The 

convergence and success rates of the algorithm are the only distinguishing factors 

between the methods. In Fig. 11, the norm of the solution of the generalized Sylvester 

equations for the proposed methods and 50 times runs of BIRKA are demonstrated.  

It is seen that the proposed methods lead to a fast and reliable determination of the 

generalized Sylvester equations rather than random initial guesses.  

Finally, the impact of the condition number concept instead of eigenvalues in BIRKA 

for test system 2 is presented in Table 5.  

Similar to test system 1, it can be seen that condition number increases the convergence 

rate of the BIRKA. Also, the proposed methods led to the convergence of the BIRKA.  

Remark: It should be noted that sometimes the MOR methods such as BT, BIRKA, and 

BPOD may be longer than the simulation time of the original system. However, in order 

reduction of controllers and reduced-order approximation of the high-order system 

which requires several runs, the accuracy of the lowest-order model is more important. 

It should be also noted that the MOR is commonly an offline procedure and once the 

reduced-order approximation is obtained, the simulation time is drastically reduced. 

6.3. Test System 3 
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To illustrate the effect of condition number instead eigenvalues on BIRKA, the 

following bilinear system is considered [41]:  

         1 1

2 1

0 0 0

0 0 0

A B
x t x t x t u t u t

A N

     
       

    
 

     20y t C x t  

 

(44) 

Where 100 100

1A R  , 100 100

2A R  , 100 1

1B R   and 1 100

2C R   

1 2

10 2 5 2

7 10 2 2 5 2
,

7 10 2 5

A A

    
   

 
    
   
   

    

 

(45) 

   1 1 2

2 1

1 2 1
, 1 1 , 0 0 1

1 2

T
N B C

 
 

   
 
 

 

 

To fair comparison, the initial guess for both methods should be identical. The reduced-

order bilinear approximation as a starting point for the BIRKA which determined by 

both methods is:  

 
15 13

15 26 13

12

1.0124 4.12 10 2.16 10 2.0052

4.13 10 1.0505 2.34 10 2.16 10

1.08 10
            

10.0004

r r rx t x x u

u

 

  



      
     

         

  
 
 

 

  129.9336 1.07 10r ry t x      

(46) 

Simulation times for achieving the reduced-order bilinear model for original BIRKA 

and BIRKA equipped with condition number are 0.5596 and 0.2868, respectively. 

Therefore, it can be concluded that when the condition number is used instead of 

eigenvalues, the simulation time is decreased. 

It should be noted that the responses of reduced-order bilinear system for test system 3 

for original BIRKA and BIRKA equipped with condition number are identical.  
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For further analysis, responses of high-order bilinear test system 3 and their reduced-

order approximation which determined by proposed method and some classical methods 

such as BT and BPOD to input    expu t t  is shown in Fig. 12. Similar to the 

previous examples, the time evolution of the absolute error is illustrated in Fig. 13. 

Table 6 provides a comparison of some response features for numerical evaluation. 

Because the reduced-order bilinear approximation achieved by both methods is the 

same, the presented results are presented only for one of the methods. 

According to Figs. 12-13 and Table 6 it can be confirmed that the proposed method is 

highest match to the bilinear test system 3.   

7. Conclusions 

A new approach for MOR of bilinear systems has been proposed in the paper, which is 

a hybrid approach combining BT and BIRKA. First, the ISE index and BPOD are 

applied to determine the appropriate order for the reduced-order approximation. Since 

BIRKA is very sensitive to the initial guess of the reduced-order approximation, two 

approaches have been proposed to determine the suitable initial guess for BIRKA. 

These are the BBT method and the LBT method. The initial guess of the reduced-order 

approximation proposed by these approaches ensures the convergence of BIRKA. It has 

been studied and confirmed that the algorithm converges when the BBT method's 

reduced-order approximation is used as the initial guess for BIRKA. As a result, the 

convergence rate of the proposed method compared to BIRKA has increased. In 

addition, by employing the LBT+ BIRKA, the overall reduction time has been 

decreased drastically. As a further improvement, the eigenvalues in BIRKA has been 

replaced by condition number. As a result, the time of order reduction decreased and the 

convergence rate increased significantly again. Three bilinear test systems were 
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approximated and evaluated with well-known MOR approaches such as BBT, BIRKA, 

and BPOD to verify the efficiency and capability of the proposed approach. The results 

indicate a significant improvement in the BIRKA's convergence rate and probability of 

success.  
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Figure and Table Captions 

Fig. 1. Comparison of responses of the bilinear model of Burgers' equation for three 

different initial guesses for BIRKA. 
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Fig. 2. Time evolution of absolute error of different initial guesses for Burgers' equation 

approximations by BIRKA. 

Fig. 3. Mean of generalized Sylvester equation solutions for 500 independent runs. 

Fig. 4. Varying the ISE index according to order of reduced bilinear model of Burgers' 

equation 

Fig. 5. Comparison of responses of the bilinear model of Burgers' equation and their 

reduced-order model approximations.  

Fig. 6. Time evolution of absolute error of various methods for Burgers' equation 

approximations 

Fig. 7. Comparison of responses of the bilinear system of Burgers' equation and their 

reduced-order models approximations for another input 

Fig. 8. Time evolution of absolute error of various methods for Burgers' equation 

approximations for another input 

Fig. 9. Comparison of responses of the bilinear model of transmission line circuit and 

their reduced-order model approximations 

Fig. 10. Time evolution of absolute error of various methods for bilinear transmission 

line circuit approximations  

Fig. 11. Convergence of norm of solution of generalized Sylvester equation for 

BBT+BIRKA, LBT+BIRKA and 50 times BIRKA runs with random initial reduced-

order system for test system 2 

Fig. 12. Comparison of response of the bilinear test system 3 and their reduced-order 

model approximations 

Fig. 13. Time evolution of absolute error of various methods for test system 

approximations 

Table 1. Pseudocode of the proposed method 



34 

 

Table 2. Comparison of methods for Burgers' equation approximations. 

Table 3. Comparison of order reduction time and convergence rate of proposed 

methods and condition number effect for Burgers' equation approximations 

Table 4. Comparison of methods for approximations of test system 2  

Table 5. Comparison of order reduction time and convergence rate of proposed 

methods and condition number effect for approximations of test system 2  

Table 6. Comparison of methods for approximations of test system 3 
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Fig. 12  

 

Fig. 13 

Tables 

Table 1 

Input: The system matrices: 𝐴, 𝑁, 𝐵, 𝐶, tol1, tol2 

   Determine the order of reduced-model, r 

Make an initial guess for order of reduced model based on HSV of original system, �́� 

while error criteria <tol1 convergence do 

     Obtain reduced-order model by BPOD with order of �́� 
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        �́� = �́� − 1 

     achieve the order of reduced-order model, 𝑟 

end while 

Make an initial guess of 𝛬, �̃�, �̃� and �̃� by BT method 

Determine low-rank approximation of Gramians 

𝑃 ≈ 𝑅𝑅𝑇and 𝑄 ≈ 𝑆𝑆𝑇 

Compute SVD of 𝑆𝑇𝑅 as follows: 

𝑆𝑇𝑅 = 𝑈𝛴𝑉 = [𝑈1 𝑈2] [
𝛴1 0
0 𝛴2

] [𝑉1 𝑉2]𝑇 

The 𝛴1 contains the r largest singular values of 𝑆𝑇𝑅 

Construct the transformation matrices 𝑇1 and 𝑇2: 

𝑇1 = 𝑆𝑈1𝛴1

−
1
2, 𝑇2 = 𝑅𝑉1𝛴1

−
1
2 

Determine the reduced-order bilinear model as an initial guess for the BIRKA 

𝐴𝑟1 = 𝑇2
𝑇𝐴𝑇1 , 𝑁𝑟1 = 𝑇2

𝑇𝑁𝑇1 , 𝐵𝑟1 = 𝑇2
𝑇𝐵 , 𝐶𝑟1 = 𝐶𝑇 

𝐴𝑟1 =∶ 𝑅𝛬𝑅−1,  �̃� = 𝑅−1𝐵𝑟1, �̃� =  𝐶𝑟1𝑅, �̃� = 𝑅−1𝑁𝑟1𝑅 

  while relative change in {𝜅𝑖} > 𝑡𝑜𝑙2 convergence do 

       Solve for V and W: 

         𝑉(−Λ) + 𝐴𝑊 + 𝑁𝑉�̃�𝑇 + 𝐵�̃�𝑇 = 0 

       𝑊(−Λ) + 𝐴𝑇𝑊 + 𝑁𝑇𝑊�̃� + 𝐶𝑇�̃� = 0 

       Perform:  

          𝑉 = 𝑜𝑟𝑡ℎ(𝑉) and 𝑊 = 𝑜𝑟𝑡ℎ(𝑉) 

       Compute the reduced matrices: 

         𝐴𝑟 = (𝑊𝑇𝑉)−1𝑊𝑇𝐴𝑉,  𝑁𝑟 = (𝑊𝑇𝑉)−1𝑊𝑇𝑁𝑉 

        𝐵𝑟 = (𝑊𝑇𝑉)−1𝑊𝑇𝐵,     𝐶𝑟 = 𝐶𝑉 

  Determine the spectral decomposition of 𝐴𝑟 =∶ 𝑅Λ𝑅−1 

  Define �̃�, �̃� and �̃� are defined as 𝑅−1𝐵𝑟, 𝐶𝑅 and 𝑅−1𝑁𝑟𝑅, respectively 

end while 

    Output: Ar, Nr, Br, Cr 

 

Table 2 

 Order Final value ISE Order reduction time Peak 

Original system 930 5.42e-05 - - 0.7310 

Proposed Method 2 5.33e-05 5.61e-05 

(BBT+ BIRKA) 88.2872 

0.7323 (LBT+ BIRKA) 

28.3370 

BBT Method 2 9.56e-06 0.4168 84.86 0.6623 

BPOD Method 2 3.09e-05 0.0641 8.4804 0.5185 

BIRKA 2 9.33e-06 0.2854 180.85 0.2035 
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Table 3 

Method 
Total Order Reduction Time 

(sec) 

BIRKA Convergence 

Rate (iteration) 

BBT+ Original BIRKA 88.2872 25 

LBT+ Original BIRKA 28.3370 25 

BBT+BIRKA with Condition number 87.5815 27 

LBT+BIRKA with Condition number 26.5274 22 

 

Table 4 

 Order Final value ISE Order reduction time  Peak 

Original system 420 4.10e-06  - 0.0111 

Proposed Method 3 5.33e-05 1.53e-07 

(BBT+ BIRKA)  

515.00 
0.0111 

(LBT+ BIRKA) 

458.45 

BBT Method 3 3.64e-06 2.69e-05 6.73 1.60e-04 

BPOD Method 3 2.16e-07 1.31e-08 31.26 0.0110 

BIRKA 3 5.33e-05 1.53e-07 481.04 0.0111 

 

Table 5 

Method 
Total Order Reduction 

Time (sec) 

BIRKA Convergence Rate 

(iteration) 

BBT+ Original BIRKA 515.00 31 

LBT+ Original BIRKA 458.97 26 

BBT+BIRKA with Condition number 479.47 29 

LBT+BIRKA with Condition number 410.55 26 

 

Table 6 

 Order Final value ISE Peak 

Original system 200 0  19.7680 

Proposed Method 2 7.0206e-04 5.6585e-04 19.6208 

BBT Method 2 0.0141 59.1178 23.9674 

BPOD Method 2 0.0065 546.1963 1.5442 
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