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Abstract. In the last decade, several Automated Program Repair (APR) techniques have
been proposed. Most of these techniques produce candidate patches using repair operators
that apply changes to buggy programs. Therefore, to repair more bugs, a more extensive set
of repair operators is required. However, more repair operators lead to longer repair times
and more over�tted patches. To address the above-mentioned issues, we present Doctor
Code, a new APR technique that chooses repair operators by systematically learning from
the features of the most common bugs in di�erent programs based on machine learning.
We compare our technique against Mutation repair by the Siemens suite. The experiment
results indicate that our technique can �x 41 bugs while the baseline only repairs 22. In
addition, Doctor Code can produce patches that do not exist in the search space of SPR,
Prophet, and SemFix. We also tested Doctor Code utilizing three buggy versions of a
program called Space to indicate its capability of repairing large-sized programs. Also, we
compare Doctor Code against 7 state-of-the-art APR tools, like Elixir, using the Defects4j
dataset. The experiment results indicate that our technique outperforms the other tools in
terms of the number of �xed bugs and over�tted patches.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Program repairing is an important activity to �x bugs
during software development. In recent years, various
automated techniques have been proposed to locate
software bugs [1]. However, applying these techniques
requires human developers to �x the located bugs.
Manual repair is an inaccurate, frustrating, and costly
process. In addition, in some critical software applica-
tions, the absence of automatic program repair mech-
anisms may lead to irreparable physical and �nancial
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losses [2]. These challenges have strongly motivated
researchers to seek Automated Program Repair (APR)
techniques. Di�erent kinds of APR techniques have
been established in the literature, including patch
generation [3{8] and runtime repair [9,10].

There is a class of APR techniques that utilize
test suites to generate patches [4]. Test suite-based
APR techniques produce a set of candidate patches
and evaluate them with an existing test suite until a
patch is found, which makes failing test cases pass while
keeping the passing ones satis�ed. To produce a set
of candidate patches, APR techniques employ several
repair operators, each of which performs syntactical
modi�cations on the buggy program. Each repair
operator can �x a few types of bugs. Therefore,
to �x more bugs, the number of repair operators
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must be increased. However, employing more repair
operators results in a larger patch search space, which
raises two di�erent problems for a test suite-based
APR technique. First, since its patch search space is
extensive, it has to evaluate more candidate patches
to �nd a patch that satis�es the given test suite, and
thus, repairing each bug takes more time. Second, the
likelihood of producing patches that over�t test suites
(over�tted patches) rises with growth in the patch
search space [11]. The over�tted patches are produced
due to the incompleteness of test suites. Utilizing
these patches results in programs that, despite being
incorrect, satisfy every test case in the existing test
suite [12].

To remedy the above-mentioned problems, the
number of candidate patches needs to be declined. One
possible solution is to �nd the right repair operator that
is capable of producing the correct patch for the bug at
hand. We hypothesize that there is information in the
buggy program and the bug itself that can aid APR
techniques in �nding the right repair operator among a
long list of ones they possess. Finding the right repair
operator to repair a bug is a non-deterministic problem,
and there is no speci�c heuristic to address that.
Therefore, solving it using machine learning-based
approaches may lead to promising results [8,13,14].
Using machine learning, APR techniques can produce
patches for new bugs based on the models constructed
at the training phase from similar bugs and their
corresponding patches. The intuition is that similar
bugs have similar patches. Thus, they can be repaired
using similar repair operators.

In this paper, we present a novel machine
learning-based APR technique called Doctor Code.
The speci�c feature of Doctor Code, in comparison
with the earlier techniques, which use repair operators
in a �xed order and regardless of the bug types,
is that it chooses repair operators by systematically
learning from the features of the most common bugs
in di�erent programs. Utilizing a trained Multinomial
Logistic Regression (MLR) model, Doctor Code pri-
oritizes its repair operators according to the bug at
hand. With this prioritization method, the candidate
patches are more accurately selected, and bugs are
repaired, evaluating fewer candidate patches. In this
way, by producing fewer candidate patches, the speed
of the repair process increases, and the likelihood of
producing over�tted patches reduces [11], leading to
increased repair rates. The main contributions of this
paper are:

� Designing ten repair operators, each of which is
capable of �xing a speci�c type of bug;

� Proposing a method that employs machine learning
to prioritize repair operators.

We implement Doctor Code to repair programs

using C and Java language and evaluate it using the
benchmark programs inside the Siemens suite [15] and
Defects4j [16]. To evaluate the performance of Doctor
Code, we have conducted �ve experiments. In the �rst
experiment, we compared Doctor Code with Mutation
repair [6]. According to the results, our technique can
produce 41 correct patches for the Siemens suite, while
Mutation repair [6] �xes 22. The three techniques SPR
[7], Prophet [8], and SemFix [5] repair programs in the
C language as well. Found by analysis, Doctor Code is
capable of producing patches that do not exist in the
search space of these three techniques.

In addition, we have compared Doctor Code
against 7 state-of-the-art APR tools using the Defects4j
dataset. The experiment results indicate that Doctor
Code outperforms the other tools in terms of the
number of �xed bugs. In the third experiment, to
indicate that Doctor Code is capable of repairing
large-sized programs, we evaluated it on three buggy
versions of the Space program (about 9K LOC) [15].
According to the results, Doctor Code can produce
the correct patches for all three of them. The fourth
experiment evaluates the second contribution, the pri-
oritization capability of the proposed technique. To
do so, we have implemented another APR technique
called Random APR (RAPR) using the same repair
operators Doctor Code employs. Comparing Doctor
Code with RAPR as the baseline indicates that using
machine learning to prioritize repair operators reduces
the repair time and the number of over�tted patches
by 82.68% and 33.33%, respectively. In the last
experiment, to evaluate the e�ectiveness of MLR, we
used Support Vector Machine (SVM), random forrest,
and Arti�cial Neural Networks (ANN) models instead
of MLR in the training phase. The results indicate that
MLR outperforms other models in terms of running
time.

The remainder of this paper is organized as
follows. Section 2 reviews the related work. Section 3
presents the proposed technique of this paper. Section
4 provides the evaluation of the proposed technique,
and Section 5 concludes this work.

2. Related work

In this section, we review famous studies in APR.
Arcuri [17] was the �rst to use genetic programming
to design an APR technique. Marshall and Wallace [3]
and Goues et al. [4] extended this approach and pre-
sented GenProg, a test suite-based APR technique that
repairs buggy programs using genetic programming.
However, as stated in [18], the main issue with genetic
programming is the high amount of data to search
through to identify the right program. This concern
cannot be solved in GenProg and is always there. In
addition, this approach applies only genetic operators
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to high-granularity modi�cations, and additional edits
are not generated by its crossover operator.

Several studies have been conducted to improve
GenProg [3,13,19]. The main challenges of these
methods include their low scalability and generality.
By scalability, we mean how quickly methods �nd �xes
and how many lines of code they can handle. The
generality of a method is related to the variety of
programs and bugs that the methods can address.

The idea behind employing evolutionary algo-
rithms for bug �xing is quite novel and outstanding.
However, according to the study conducted by Qi et
al. [12], most of the patches produced by GenProg
[3] and AE [19] are either incorrect or over�tted, and
those few correct patches produced by these techniques
were the result of removing statements from the buggy
programs. On the other hand, it is worth mentioning
that the empirical study of Qi et al. [12] was one of
the initial steps toward the de�nition of the patch
over�tting problem, and patch over�tting was not
discussed before 2015, which is when these studies have
been published.

Kim et al. [20] proposed Pattern-based APR
(PAR). They discovered a list of �xed patterns and
templates by reviewing 60,000 human-written patches.
Utilizing these templates and employing genetic pro-
gramming, PAR repairs Java programs. To the best
of our knowledge, PAR [20] is the �rst technique that
proposes the use of templates to repair bugs, which
is a sound idea. However, based on a critical review
presented by Monperrus [21], PAR repairs most of its
bugs by only using a limited number of the templates
it possesses, and thus, it is capable of �xing a few types
of bugs.

Debroy and Wong [22] proposed Mutation repair,
a test suite-based APR technique, which is the result
of combining various mutation testing operators and
a fault localization technique such as Tarantula [23]
and Ochiai [24]. Mutation repair generates a set of
ranked statements using a fault localization technique.
Then, it employs eight mutation testing operators
to produce candidate patches for each statement in
this set. However, the mutation operators used by
Mutation repair are very simple. As a result, it can only
�x very simple bugs. Also, Mutation repair employs a
limited number of mutation operators for bug �xing
since it does not have a mechanism for choosing the
appropriate one for the bug at hand. Thus, extending
it to repair more bug types cannot be simply done
by adding new mutation operators to the list of its
repair operators, which is not the case for Doctor
Code.

Long and Rinard [7] presented SPR, which re-
pairs bugs in conditional statements by condition
synthesizing. It also �xes other types of bugs, such
as missing memory initialization statements. SPR

generates a set of parametric candidate patches for a
given buggy program using a list of parametric trans-
formation schemas. Then, candidate patch parameters
are synthesized using a test suite that has at least
one failing test case. These schemas are the repair
operators of SPR and are applied to the bug location
in a pre-de�ned order. Later, Long and Rinard [8]
extended SPR and presented Prophet. Prophet utilizes
the repair operators of SPR and ranks candidate
patches using a probabilistic model, trained with a set
of buggy programs and their patches. Experiments
indicate that by reducing the number of over�tted
patches, Prophet produces more correct patches than
SPR. Section 4.2.4 thoroughly reviews the limitations
of these two techniques in comparison with Doctor
Code.

Nguyen et al. [5] proposed SemFix, a constrained-
based APR technique, to repair bugs existing at the
right-hand side of assignment statements and those
occurring in conditional statements of programs. Sem-
Fix utilizes symbolic execution techniques to derive
constraints from existing test cases. Then, employing
component-based program synthesis, SemFix solves
these constraints to generate a concrete patch that
replaces the buggy statement. Section 4.2.4 thoroughly
reviews the limitations of SemFix in comparison with
Doctor Code. Nopol [25], an APR technique inspired
by SemFix, repairs bugs appearing in conditional
statements of Java programs. This technique receives
a buggy program and a test suite (containing at least
one failing test case) as input and employs the angelic
debugging technique and execution traces produced
from running the program with the test suite to
generate a patch for the bug at hand. The limitation
of Nopol is that it can only �x bugs that are repairable
by updating the conditional statement of an if block
or adding a new if statement to the buggy program.
Doctor Code can repair various other bug types as well
as these two types of bugs.

Saha et al. [14] proposed Elixir by focusing on
repairing method-invocation-related bugs in Object-
oriented Java programs. Employing a list of program
transformation schemas and utilizing a patch ranking
mechanism, Elixir produces a set of ranked candidate
patches. Then, candidate patches are evaluated one
at a time against a test suite to �nd a patch that
satis�es the whole test case. Although Elixir is e�ective
at �xing bugs caused by incorrect method invocations
in Object-oriented programs, there are several other
bug types it cannot �x. For instance, Elixir is not
capable of �xing bugs caused by incorrect use of logical
or assignment operators. It also does not attempt to
repair literal-related bugs. In addition, none of the
techniques Elixir, SPR, Prophet, Nopol, and SemFix
can �x bugs that require tightening or loosening of
conditional statements using expressions as complex as
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\(!f1(arr1[�a]; b; c))", where f1 is a boolean function,
arr1 is an integer array, and a, b, and c are integer
variables. Doctor Code does not have these limitations.

DLFix is a tool for APR for �xing Java bugs
[26]. This method is based on Deep Learning and
uses a tree-based RNN (Recurrent Neural Network)
with two layers. The �rst layer encodes the Abstract
Syntax Tree (AST) that surrounds the buggy source
code. Then, the encoded AST is passed to the second
layer as a vector. This layer takes the context vector
and learns how to transform the buggy sub-tree. It
generates multiple patches for a single bug and deploys
a character-level CNN (Convolutional Neural Network)
to rank all the generated patches.

3. Doctor Code

This section presents Doctor Code, the proposed tech-
nique of this paper. Doctor Code is a test suite-
based APR technique that utilizes machine learning
techniques to reduce the number of candidate patches
required to be evaluated before the �rst correct patch
is found. By doing so, many candidate patches that
cannot �x the bug at hand are not evaluated at all.
Thus, the repair time and the number of over�tted
patches decline.

3.1. Overview
The overall structure of Doctor Code is depicted in
Figure 1, and it operates in two phases: training
(Figure 1(a)) and deployment (Figure 1(b)). The
training phase employs a list of buggy programs to train

a prediction model capable of estimating the likelihood
of bug repair employing each repair operator. The
deployment phase patches a given buggy program using
the prediction model.

As illustrated in Figure 1(a), the �rst phase
comprises two stages, which are the feature extraction
stage and the model construction stage. The goal of
the model construction stage is to train the prediction
model, which requires a training set. A training set
is a list of instances, each of which is a pair of a
feature vector and a label. To produce the feature
vectors, we need a list of buggy programs whose bug
locations are known. The goal of the feature extraction
stage is to extract several features from each of these
buggy programs automatically and produce the feature
vectors. These buggy programs and their bug locations
are two of the inputs to the training phase. The
features extracted for each buggy program investigate
the existence of di�erent program components (e.g., as-
signment and relational operators) in the bug location,
along with information regarding the characteristics of
the statements surrounding the bug location, such as
the return type of the buggy function.

To produce the labels of the instances in the
training set, each bug in the given buggy programs is
reviewed manually to realize which repair operator can
�x it. The current version of Doctor Code has ten
repair operators, each of which is assigned a number
between 1 and 10 (see more details in Subsection 3.5.1).

As illustrated in Figure 1(b), the deployment
phase comprises two stages named feature extraction
and patch generation, and its goal is to propose a patch

Figure 1. The overall structure of Doctor Code. (a) The training phase; (b) The deployment phase.
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for a given buggy program. In this phase, �rst, a
list of features is extracted from the buggy program.
Then, using the resulting feature vector and the model
constructed at the training phase, the repair operators
of Doctor Code are prioritized and employed in order of
their priority. Applying each repair operator results in
a set of candidate patches, which are evaluated against
the given test suite. The �rst candidate patch that
satis�es the whole test suite is selected as the result of
this phase.

In the rest of this section, we explain Doctor Code
in detail. To this end, Section 3.2 provides a buggy
program, Section 3.3 explains the feature extraction
stage, Section 3.4 presents the details of the model
construction stage, and Section 3.5 explains the patch
generation stage.

3.2. Running example
Figure 2 illustrates a buggy code and its corresponding
test suite, which we employ as a running example to
explain the di�erent stages of the proposed technique.
Although this program is in the C language, the
proposed technique is not speci�c to C and can repair
programs in di�erent procedural languages.

The program in Figure 2(a) comprises three

functions with the names main, min, and range, and
also a variable named d de�ned and initialized in the
global scope. This program has a bug in line 29. The
developer has written the condition of the if statement
in line 29 as \(c � b)", while the correct form is \(c � a
&& c � b)". In this paper, we refer to bug-containing
functions as the buggy function. Figure 2(b) shows the
test suite of this program, including two test cases.

3.3. Feature extraction
Both the training and deployment phases of Doctor
Code have the feature extraction stage in which a list of
features is extracted from buggy programs to produce
their feature vectors. The training phase employs these
feature vectors to train the prediction model, and the
deployment phase uses them to estimate the likelihood
of bugs being repaired by each repair operator.

One of the most challenging activities in propos-
ing Doctor Code was to de�ne an appropriate set of
features to be extracted from the source code of a
buggy program. To do so, we reviewed the features
proposed by other similar techniques [8,13,14]. Then,
we de�ned a list of features to be extracted from the
source code of buggy programs. After performing some
experiments using this list, we selected 18 features from

Figure 2. Example of a buggy program and its corresponding test suite. (a) Buggy program; (b) Test suite.
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Table 1. List of features extracted from buggy programs.

Description

ID Buggy statements (10 features)

BS1 The buggy statement has numerical literals (e.g., 1, 2.1,...)

BS2 The buggy statement has character literals (e.g., `a')

BS3 The buggy statement is a function call

BS4 The buggy statement is a simple assignment (assigning a literal to a variable)

BS5 The buggy statement has a boolean expression

BS6 The buggy statement is a branch predicate (e.g., guard of an if statement)

BS7 The buggy statement has relation operators (e.g., >, <, ==, ...)

BS8 The buggy statement has logical operators (&&, jj)
BS9 The buggy statement has assignment operators (e.g., =, + =, � =, ...)

BS10 The buggy statement has an array of objects containing variables in their index expression

Surrounding statements (8 features)

SS1 The buggy function returns an integer object

SS2 The buggy function returns a double object

SS3 The buggy function returns a character object

SS4 Buggy functions return a string object

SS5 The buggy function is void

SS6 The buggy function does not have arguments

SS7 The buggy statement is inside the global scope

SS8 The buggy statement is inside the main function

Figure 3. Feature vector produced for the bug in Figure
2(a), based on the features introduced in Table 1.

it (illustrated in Table 1). Figure 3 shows an example
of a feature vector that is produced for the program
in Figure 2(a). Features of the �rst set are extracted
from buggy statements, and features of the second
set are extracted from statements surrounding buggy
statements.

3.4. Model construction
The goal of the model construction stage is to train
a classi�er and, by doing so, construct a prediction
model. Since we have multiple repair operators to
choose from, a multi-class classi�er is required, and to
train a machine learning-based classi�er, a training set
is needed. Figure 4 illustrates an example of a training
set. As can be seen in this �gure, each row in the
training set, also called an instance, is a tuple that

Figure 4. Example of a training set.

comprises a feature vector as its �rst element and a
number as its second element. The second element in
an instance is the number of repair operators that can
�x the buggy program from which the feature vector in
the instance is extracted. These numbers are used as
labels while training the prediction model.

We employ the MLR technique [27], which is a
multiclass classi�er technique, as our prediction model.
Providing a set of independent variables, MLR predicts
the probabilities of each possible outcome (class) of
a categorically distributed dependent variable. For
example, in the proposed technique, the 18 features
in Table 1 are the independent variables, and the
repair operator numbers are considered the categori-
cally distributed dependent variable. If the proposed
technique possesses K repair operators, the dependent
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variable may have K di�erent outcomes. Therefore,
the trained MLR predicts K di�erent probabilities
for the feature vector of a buggy program. Doctor
Code employs these probabilities to prioritize its repair
operators. Since MLR is capable of producing such
probabilities, we have chosen it as the prediction model
of our technique.

In our experiments, we use the Weka toolkit [28]
for the training process and model construction. By
using the Java classes of Weka and a training set
similar to the one in Figure 4, we train an MLR-
based prediction model to be used for patch produc-
tion.

3.5. Patch generation
The goal of the patch generation stage is to apply
repair operators to a buggy program in an appropriate
order until a patch is found that satis�es the given
test suite. We reviewed di�erent APR-related studies
and also examined an extensive set of bugs along
with the patches proposed for them, and then we
designed a list of ten repair operators. In the following,
we �rst present the repair operators of Doctor Code
(see Subsection 3.5.1), and then, we describe the
algorithm of the patch generation stage (see Subsec-
tion 3.5.2).

3.5.1. Repair operators
The patch generation stage employs the ten repair
operators illustrated in Table 2 to apply various mod-
i�cations to buggy programs. Relying on the plastic
surgery hypothesis [29], Doctor Code employs program
elements of the given buggy program to synthesize a

rich set of expressions called the Expression Set (ES).
Members of ES are used by those repair operators
that require synthesized expressions to �x bugs (i.e.,
predicate patching repair operators). To produce ES,
�rst, an operand set is formed for the bug at hand,
which includes:

1. Variables in the scope of the bug location;

2. Literals 0, 1, and �1;

3. Numeric and character literals that exist in the
buggy function and the global scope.

For example, fa; b; c;min; d; 0; 1;�1; 12g is the
operand set produced for the bug in Figure 2(a).
Afterward, using members of the operand set, ES is
produced, which involves:

1. Six logical expressions synthesized for each pair of
the operand set members, using the six relational
operators in the set ff <, �, >, �, ==, ! = gg;

2. Operands of logical operators, existing in condi-
tional predicates of control ow statements, within
the buggy function, and also the negation of these
operands;

3. Conditional predicates of control ow statements
existing in the buggy function and the negation of
these predicates.

For example, Eq. (1) shows the ES synthesized
for the bug in Figure 2(a) based on the operand set
mentioned above.

Table 2. Repair operators of Doctor Code.

Description

ID Literal patching

1 Replacing a literal 1 with 1, 0, �1, l+1, and l{1

2 Replacing a literal with every literal within the buggy function and the global scope

3 Incrementing/decrementing the index expression of arrays

Predicate patching

4 Removing logical operands

5 Appending a logical expression to a buggy statement, along with &&

6 Appending a logical expression to a buggy statement, along with jj
7 Appending a guard precondition (i.e., if statement)

Operator patching

8 Changing a relational operator with every member of the same class

9 Changing a logical operator with every member of the same class

10 Changing an assignment operator with every member of the same class
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Figure 5. Literal patching repair operators. (a) Repair operator 1; (b) Repair operator 2; and (c) Repair operator 3.

ES = fa > b; a < b; a � b; a � b; a 6= b; a == b;

a > c; a < c; a � c; a � c; a 6= c; a == c;

:::;

b > c; b < c; b � c; b � c; b 6= c; b == c;

:::;

c > min; c < min; c � min; c � min;

c 6= min; c == min;

:::;

d > 0; d < 0; d � 0; d � 0; d 6= 0; d == 0;

:::;

b � a; b�c; !(b�a); !(b � c); (b�a && b�c);
!(b � a && b � c)g: (1)

As illustrated in Table 2, we categorize the repair
operators of Doctor Code into three groups of literal
patching, predicate patching, and operator patching.
These repair operators receive a buggy program along
with its bug location as input and return a sequence of
patched programs.
- Literal patching (repair operators 1{3). We

have designed three repair operators that attempt

to �x bugs by performing literal modi�cations.
Programmers sometimes make mistakes in de�ning
variable boundaries. For example, loop variables are
often initialized with a value that is one unit greater
(or less) than what it should be. Fixing these bugs
is the goal of the �rst repair operator (Figure 5(a)).
However, not every literal-related bug can be �xed
using the literal candidate set produced by the �rst
repair operator. For example, consider a buggy
program that is only �xed when the expression
\(a > 50)" is changed into \(a > 500)". The
second repair operator attempts to �x these bugs
(Figure 5(b)). The third repair operator increments
or decrements the index expression of each array in
the bug location, and with every change, it generates
a new patched program (Figure 5(c)).

- Predicate patching (repair operators 4{7).
Having examined several existing bugs and their
patches, we realized that predicates are very prone
to bugs. Empirical analysis studies on program
repair also indicate that the majority of bugs are
related to if statements [30]. Therefore, we designed
four repair operators (repair operators 4{7) to repair
predicates and if-related bugs. The fourth repair
operator, depicted in Figure 6(a), generates patches
by removing logical operands in the bug location,
one at a time.

The �fth and sixth repair operators employ ES
to �x bugs occurring in predicates (Figure 6(b) and
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Figure 6. Predicate patching repair operators. (a) Repair operator 4; (b) Repair operator 5; (c) Repair operator 6; and
(d) Repair operator 7.

6(c)). Finally, the seventh repair operator, shown in
Figure 6(d), produces several patched programs by
adding a guard precondition to the program.

- Operator patching (repair operators 8{10).
We have three repair operators regarding the correc-
tion of bugs induced by selecting a wrong program-
ming language operator (e.g., relational operators).
Figure 7(a), (b), and (c) show the pseudo-codes
of the eighth, ninth, and tenth repair operators,
respectively.

By analyzing these ten repair operators, it might
seem that some of these repair operators are overlap-
ping in nature and could be merged. For example, both
the �rst and the second repair operators try to �x bugs
by replacing a literal with a di�erent one. Although it
is possible to merge these overlapping repair operators,
we decided not to do so. The �rst reason behind
this decision is that the whole idea behind Doctor
Code is to reduce patch spaces wisely to decrease the
possibility of over�tted patches being produced. Thus,
having �ner-grained repair operators is more desirable
as they provide smaller design spaces. The second
reason is that Doctor Code possesses a mechanism for
prioritizing repair operators, and thus, it can employ
a long list of repair operators and manage them using
this prioritizing mechanism. Also, the patch spaces

provided by these pairs of similar repair operators
rarely contain similar patches, and thus, they target
di�erent bug types.

3.5.2. Algorithm description
Figure 8 presents the pseudo-code of the patch gen-
eration stage. Figure 9(a) shows an example of
ropProbs, which indicates that repair operator �ve is
the best choice for bug repair as it has the highest
probability. Figure 9(b) illustrates ropSeq obtained by
sorting ropProbs in Figure 9(a).

4. Evaluation

In this section, we evaluate Doctor Code. Section 4.1
explains the experiment setup. Section 4.2 provides the
results of the experiments and analytically compares
Doctor Code with SemFix [5], SPR [7], Prophet [8],
and automatic machine learning methods.

4.1. Experiment setup
We selected benchmark programs in C++ and Java
languages for our experiments, so two versions of
Doctor Code were implemented, one for C++ and one
for Java. In addition, we have implemented Doctor
Code according to Figure 1 and conducted experiments
on a virtual machine with two cores of Intel Core i5
CPU at 1.6 GHz, 2 GB memory, and a 64-bit version
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Figure 7. Operator patching repair operators. (a) Repair operator 8; (b) Repair operator 9; and (c) Repair operator 10.

Figure 8. Patch generation stage.
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Figure 9. Example of likelihoods estimated for the repair operators and the sequence of repair operator numbers obtained
by sorting the computed likelihoods. (a) Likelihoods (ropProbs); (b) Repair operator sequence (ropSeq).

Table 3. Buggy programs from the Siemens suite.

Program LOC No. of buggy
versions

Replace 564 18
Schedule 412 3
Schedule2 374 1
Tcas 173 12
Totinfo 565 10
Pronttokens2 570 6
Space 9564 3

of Ubuntu 14.04 LTS. We set the time threshold of the
patch generation stage to 10 hours.

4.1.1. Subject buggy programs
To rigorously evaluate Doctor Code, we applied two sets
of benchmark programs:

1. Siemens suite: We selected the Siemens suite [15]
for our experiments because it has most of the
bug patterns observed in our examination, and it
is frequently used in other APR-related studies
[5,6,30] and software testing papers [31,32]. Most of
the patches made by earlier test suite-based APR
techniques repair bugs that require single-point
modi�cations. Therefore, in this paper, we do not
intend to repair bugs that are �xed by modifying
more than one point in programs. Thus, among
the 132 buggy versions of the Siemens suite, we
have selected 53 ones that have this characteristic.
Table 3 illustrates the selected buggy programs that
were used in our experiments;

2. Defects4J: To compare our method with existing
automatic repair methods for Java programs, we
selected Defects4J. Defects4J is a popular dataset
that includes 395 Java buggy programs [16] against
which existing machine-learned repair tools such
as Elixir have been evaluated. Similar to Elixir,
Doctor Code is evaluated using four subjects from
Defects4J, and all the bugs that require multi-hunk
�xes are discarded. Therefore, only 82 bugs that
required a single-hunk �x were selected. Table 4
displays the details of this dataset.

As outlined in Section 3.3, Doctor Code extracts
features only from buggy functions and global scopes

Table 4. Buggy programs from Defects4J.

Program LOC No. of buggy
versions

Commons math 85 k 106
Commons lang 22 k 65
Joda-Time 28 k 27
JFreeChart 96 k 26

of programs. Also, regarding Section 3.5.1, the repair
operators of Doctor Code produce patches only using
the elements inside buggy functions and global scopes.
As a result, the size of buggy programs does not have
a signi�cant impact on Doctor Code. In fact, our
technique is only a�ected by the size of the buggy
function and the global scope of the given source code.
However, to verify that our technique is capable of
�xing large-sized programs, we also tested it using three
buggy versions of Space [15] from the Siemens suite as
well as JFreeChart from Defects4J.

4.1.2. Model construction
We followed the standard three-fold cross-validation
methodology to train our prediction model. To this
end, the 135 buggy versions, shown in Tables 3 and 4,
were �rst divided into three mutually exclusive groups
of buggy programs. Then, in three di�erent trials,
two groups were used to train the model, while the
remaining one was employed for the evaluation.

4.1.3. Patch correctness
In this paper, a patch is considered correct if (1) the
patched program satis�es the whole test suite and
(2) applying it results in a code that is semantically
equivalent to the correct version of the corresponding
buggy program.

4.2. Experimental results
In this section, we report the results of applying Doctor
Code on the subject buggy programs, presented in
Section 4.1, to address the following questions:

� RQ1: How many correct and over�tted patches have
been produced by Doctor Code?

� RQ2: What is the contribution of machine learning
to reducing both the number of over�tted patches
and repair time?



94 Sh. Moosavi et al./Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 83{102

� RQ3: Is the MLR model the best prediction model
to prioritize repair operators?

� RQ4: How e�ective is Doctor Code compared to
automatic repair tools?

4.2.1. Number of patches (RQ1)
According to Tables 5 and 6, Doctor Code produced 41
correct patches for the Siemens suite, while Mutation
repair [6] only produced 22. Doctor Code also success-
fully repaired all three buggy versions of Space, which
reveals its capability to repair large-sized programs.
These 44 correct patches were each produced in an
average of 76.52 seconds. In addition, Doctor Code
produced 36 correct patches for Defects4J, while Elixir,
ACS, NOPOL, and jGenProg only produced 26, 18, 5,
and 5 correct patches, respectively [26].

According to the third column of the tables,
Doctor Code produced over�tted patches for 8 and 11
buggy versions of Siemens and Defects4j, receptively.
After examining these over�tted patches and analyzing
the repair operators, we realized that the patch search
space of Doctor Code contains correct patches for these
bugs, too. However, Doctor Code stopped before
�nding them since it found an over�tted patch for each
of them, and due to insu�cient coverage of the test
suites, considered them as correct patches.

Considering the results, the proposed technique
did not �x one of the Replace buggy versions within
the speci�ed time limit. However, after examination,
it turned out that there is a correct patch for this bug
in the search space of the repair operators. Therefore,
if the test suite has enough coverage and Doctor Code

is given enough time, it can repair this bug, too.
Table 7 illustrates the correct patches produced

by Doctor Code for the Siemens suite. According to
the results, most Doctor Code patches are identical to
their corresponding correct versions.

4.2.2. Contribution of machine learning (RQ2)
The e�ectiveness of multi-class classi�cation algorithms
(e.g., MLR) is often evaluated using one of the two
methods of micro-averaging or macro-averaging, in-
cluding criteria such as Recall, F-score, and Precision
[33]. However, these criteria are not suitable for
assessing the e�ectiveness of the prediction model
utilized by our technique. We elaborate on this issue
by providing an example.

Figure 10 shows three repair operator sequences
that the prediction model may generate at the patch
generation stage while repairing the bug in Figure 2(a).
The numbers in these sequences represent the repair
operators in Table 2. Because this bug can be �xed
using repair operator 5, and this operator has the
highest priority in the �rst sequence in Figure 10,
the prediction model is considered su�ciently e�ective
if it generates the �rst sequence while repairing this
bug. In the second sequence of Figure 10, repair

Figure 10. Examples of repair operator sequences
produced at the patch generation stage.

Table 5. Information on patches produced by Doctor Code from Siemens.

Program #Correct patches #Over�tted patches #Timeout

Replace 14 3 1
Schedule 2 1 0
Schedule2 1 0 0
Tcas 12 0 0
Totinfo 7 3 0
Pronttokens2 5 1 0
Space 3 0 0

Total 44 8 1

Table 6. Information on patches produced by Doctor Code from Defects4j.

Program #Correct patches #Over�tted patches #Timeout

Math 16 4 0
Lang 10 3 1
Time 2 2 1
Chart 7 1 0

Total 35 11 2
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Table 7. Correct patches produced by Doctor Code.

Name Buggy code Correct code Doctor Code patch

1 Printtokens2 V4 if (ch == 59) id = 0 if (ch == 59) id = 2 if (ch == 59) id = 2

2 Printtokens2 V5 return (True) return (FALSE); return (0)

3 Printtokens2 V7 if (ch == `nn' jj ch == ` ') if (ch == `nn') if (ch == `nn')

4 Printtokens2 V8 if (ch == ` ' jj ch == `nn' jj
ch== 59 jj ch ==`nt')

if (ch == ` ' jj
ch == `nn' jj ch == 59)

if (ch == ` ' jj ch ==
`nn' jj ch == 59)

5 Printtokens2 V9 if (ch == `nn' jj ch ==`nt') if (ch == `nn') if (ch == `nn')

6 Replace V1 if (src[�i] == ESCAPE) if (src[�i� 1] == ESCAPE) if (src[�i� 1] == ESCAPE)

7 Replace V3 if (m >= 0) if (m >= 0) && (lastm ! = m)) if (m >= 0 && (lastm ! = m)

8 Replace V9 else if (isalnum(src[�i� 1]))
&& (isalnum(src[�i+ 1])))

else if (isalnum(src[�i� 1]))
&& (isalnum(src[�i+ 1]))

&& (src[�i� 1] <= src[�i+ 1]))

else if (isalnum(src[�i� 1]))
&& (isalnum(src[�i+ 1])) &&
(src[�i+ 1] >= src[�i� 1]))

9 Replace V13 if (m == �1) i = i+ 1;
else i = i+ 2;

i = i+ 1 if (m == �1) i = i+ 1;
else i = i+ 1;

10 Replace V14 if (lin[�i] ! = NEWLINE)
if (lin[�i] != NEWLINE)

&& (!locate(lin[�i],
pat, j+1))

if ((lin[�i]
! = 10) &&

(!locate(lin[�i], pat, j+1)))

11 Replace V15 result = i+ 1; result = i; result = i+ 0;

12 Replace V16 return (c == BOL jj c == EOL
jj c == CLOSURE jj c == ANY);

return (c == BOL jj
c == EOL jj c == CLOSURE);

return (c == BOL jj
c == EOL jj c == CLOSURE);

13 Replace V17 result = NEWLINE; result = ESCAPE; result = 64;

14 Replace V18 if (!locate(lin[�i], pat, j+1) if ((lin[�i] !=NEWLINE)
&& (!locate(lin[�i], pat, j+1)))

if ((lin[�i] ! = 10)
&& (!locate(lin[�i], pat, j+1)))

15 Replace V20 result = ENDSTR; result = ESCAPE; result = 64;

16 Replace V23 if (s[�i] == ENDSTR) if (s[�i+ 1] == ENDSTR) if (s[�i+ 1] == ENDSTR)

17 Replace V28

return (c == BOL jj
c == EOL jj

c == CLOSURE jj
c == COL);

return (c == BOL jj
c == EOL jj

c == CLOSURE);

return (c == BOL jj
c == EOL

jj c == CLOSURE);
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Table 7. Correct patches produced by Doctor Code (continued).

Name Buggy code Correct code Doctor code patch

18 Replace V29

return (c == BOL jj
c == EOL jj

c == CLOSURE jj
c == NCCL);

return (c == BOL jj
c == EOL jj c == CLOSURE);

return (c == BOL jj
c == EOL jj c == CLOSURE);

19 Replace V31 if ((lin[�i] >= NEWLINE)
&& (!locate (lin[�i], pat, j+1))

if ((lin[�i] != NEWLINE)
&& (!locate (lin[�i], pat, j+1)))

if ((lin[�i] ! = 10) &&
(!locate (lin[�i], pat, j+1)))

20Schedule2 V7 if (ratio < 0.0 jj ratio >= 1.0) if (ratio < 0.0 jj ratio > 1.0) if (ratio < 0.0 jj ratio >= 1.0)

21Schedule2 V3 n = (int)(count�ratio+1, 1); n = (int)(count�ratio+1); n = (int)(count�ratio+1);

22Schedule2 V9 if (argc < (MAXPRIO)) if (argc < (MAXPRIO+1)) if (argc < (3) jj ((3) == argc))

23 Space V20 can = angle step; can + = angle step; can + = angle step;

24 Space V21 cph = phase step; cph + = phase step; cph + = phase step;

25 Space V33 gnode ptr�>PHEA = angle; gnode ptr�>PHEA + = angle; gnode ptr�>PHEA + = angle;

26 Tcas V1

result = !(Own Below Threat())
jj ((Own Below Threat())
&& (!(Down Separation

> ALIM())))

result = !(Own Below Threat())
jj ((Own Below Threat())
&& (!(Down Separation

>= ALIM())))

result = !(Own Below Threat())
jj ((Own Below Threat())
&& (!(Down Separation

>= ALIM())))

27 Tcas V3
intent not known =

TwoOfThreeReportsValid
jj Other RAC == NO INTENT;

intent not known =
TwoOfThreeReportsValid &&
Other RAC == NO INTENT;

intent not known =
TwoOfThreeReportsValid &&
Other RAC == NO INTENT;

28 Tcas V4
result = Own Above Threat() &&
(Cur Vertical Sep >= MINSEP)
jj (Up Separation>=ALIM());

result = Own Above Threat()
&& (Cur Vertical Sep >=

MINSEP) && (Up
Separation>=ALIM());

result = Own Above Threat() &&
(Cur Vertical Sep >= MINSEP)
&& (Up Separation>=ALIM());

29 Tcas V6 return (Own Tracked Alt
<= Other Tracked Alt);

return (Own Tracked Alt
< Other Tracked Alt);

return (Own Tracked Alt <
Other Tracked Alt);

30 Tcas V9
Upward preferred =

Inhibit Biased Climb()
>= Down Separation;

Upward preferred =
Inhibit Biased Climb() >

Down Separation;

Upward preferred =
Inhibit Biased Climb()
> Down Separation;

31 Tcas V12

enabled = High Con�dence
jj (Own Tracked Alt Rate

<= OLEV) &&
(Cur Vertical Sep
> MAXALTDIFF);

enabled = High Con�dence
&& (Own Tracked Alt Rate <= OLEV)

&& (Cur Vertical Sep
> MAXALTDIFF);

enabled = High Con�dence
&& (Own Tracked Alt Rate

<= OLEV) &&
(Cur Vertical Sep >

MAXALTDIFF);
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Table 7. Correct patches produced by Doctor Code (continued).

Name Buggy code Correct code Doctor code patch

32 Tcas V16 Positive RA Alt Thresh[0]
= 400+1;

Positive RA Alt Thresh[0]
= 400;

Positive RA Alt Thresh[0]
= 399+1;

33 Tcas V17 Positive RA Alt Thresh[1]
= 500+1;

Positive RA Alt Thresh[1]
= 500;

Positive RA Alt Thresh[1]
= 499+1;

34 Tcas V20
Upward preferred =

Inhibit Biased Climb()
>= Down Separation;

Upward preferred =
Inhibit Biased Climb() >

Down Separation;

Upward preferred =
Inhibit Biased Climb()
> Down Separation;

35 Tcas V25
result = !(Own Above Threat())
jj ((Own Above Threat())

&& (Up Separation > ALIM()));

result = !(Own Above Threat())
jj ((Own Above Threat())

&& (Up Separation >= ALIM()));

result = !(Own Above Threat())
jj ((Own Above Threat())

&& (Up Separation >= ALIM()));

36 Tcas V36 alt sep = 1; alt sep = 2; alt sep = 2;

37 Tcas V38 int Positive RA Alt Thresh[3]; int Positive RA Alt Thresh[4]; int Positive RA Alt Thresh[4];

38 Totinfo V5 totinfo = info; totinfo += info; totinfo += info;

39 Totinfo V9 totdf = infodf; totdf += infodf; totdf += infodf;

40 Totinfo V11 sum = del �= x / ++ap; sum += del �= x / ++ap; sum += del �= x / ++ap;

41 Totinfo V14 if (r �c >= MAXTBL) if (r �c > MAXTBL) if (r �c > 1000)

42 Totinfo V16 if (info >= 0.1) if (info >= 0.0) if (info >= 0.1 jj (`nx00' <= info))

43 Totinfo V20 if (rdf <= 0) if (rdf <= 0 jj (cdf <= 0)) if (rdf <= 0 jj (0>=cdf))

44 Totinfo V23 for (n = 0; n <=ITMAX; ++n) for (n = 1; n <=ITMAX; ++n) for (n = 1; n <=ITMAX; ++n)

operator 5 is prioritized as the second. So, if the second
sequence is generated, the patches of repair operator
7 are produced, and these patches all fail, and then
repair operator 5 is used. If this is the case, the
prediction model is considered less e�ective compared
to the scenario where the �rst sequence of Figure 10 is
used. However, the second sequence is better than the
third sequence, where repair operator 5 is prioritized as
the third. Conventional criteria for evaluating multi-
class classi�ers do not distinguish between the second
and the third sequences of Figure 10, and both are
considered inappropriate (true negative). Therefore,
they are not suitable for evaluating the prediction
model of Doctor Code.

Therefore, to evaluate the prediction model, we
examined the sequences of repair operators produced

in the experiments. According to this examination,
in 82.32% of the sequences, the correct repair opera-
tor was prioritized among the �rst three; in 74.62%
of them, the correct one was prioritized among the
�rst two; in 62.25% of the sequences, the correct
repair operator was prioritized as the �rst item of
the sequences. To further investigate the contribution
of machine learning in prioritizing repair operators,
we also implemented another APR technique called
RAPR, in which repair operator sequences are pro-
duced randomly without employing the prediction
model. Table 6 shows the results of running RAPR on
the buggy programs of the Siemens suite introduced in
Section 4.1. According to Tables 5 and 8, Doctor Code
produced four fewer over�tted patches in comparison
with RAPR. Additionally, RAPR timed out for two
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Table 8. Information on patches produced by RAPR.

Program #Correct patches #Over�tted patches #Timeout
Replace 13 4 1
Schedule 2 1 0
Schedule2 0 0 1
Tcas 10 2 0
Totinfo 7 3 0
Pronttokens2 5 1 0
Space 2 1 0
Total 39 12 2

Table 9. The percentage of the sequences where the correct repair operator is in the top three priority items, is in the top
two priority items, and has the highest priority.

Prediction models In the top three
priority items

In the top two
priority items

Has the
highest priority

MultilayerPerceptron 81,13% 73.58% 58.49%
Random Forest 79.2% 71.69% 62.26%
MLR 81,13% 75.47% 62.26%
SVM 79.2% 73.58% 60.37%

Table 10. The produced sequences by the prediction models to Replace-v13.

Multilayer perceptron Random forest MLR SVM
1 10 2 5 9 6 3 8 7 4 1 10 5 2 8 6 7 4 9 3 1 10 9 5 2 4 6 3 7 8 1 10 5 2 8 6 9 4 7 3

Table 11. General comparison between models.

Criteria Multilayer perceptron Random forest MLR SVM

Number of failing patches 3.68 2.73 2.47 2.57
The time to repair (in seconds) 84.57 81.42 76.52 83.74

bugs, while Doctor Code stopped once. Furthermore,
RAPR produced each correct patch in an average of
56.5 minutes, while Doctor Code produced them in 9.68
minutes on average. Considering the results mentioned
above, we can conclude that using machine learning
to prioritize repair operators declines the number of
over�tted patches and the time required to produce
correct patches by (12 � 8)=12 = 33:33% and (56:5 �
9:68)/56:5 = 82:68%, respectively.

4.2.3. The e�ectiveness of prediction models (RQ3)
We performed another experiment on the Siemens
suit to evaluate the e�ectiveness of MLR. In this
experiment, we used SVM, Random Forrest, and ANN
models instead of MLR in the training phase. Table 9
shows the percentage of the sequences where the correct
repair operator is in the top three priority items, is in
the top two priority items, and has the highest priority.
According to this examination, the models act almost
identically to prioritize the correct repair operator
among the �rst three items of the sequences. For
example, the sequences of repair operators produced by

each model for version 13 of the Replace buggy program
are shown in Table 10. According to Table 10, the
models assign the same priority to the �rst and second
items while di�erent for the lower priorities.

To investigate the subject further, we ran Doctor
Code three more times by the new sequences of repair
operators to compare the mentioned models in terms
of running time. Running time and the number of
failing patches to produce a correct patch, on average,
are illustrated in Table 11. Although MLR performed
better than the other models in terms of running time,
Doctor Code showed almost the same performance for
all four prediction models.

4.2.4. Comparison of Doctor Code with automatic
machine learning methods (RQ4)

In this section, Doctor Code is compared to automatic
program repair tools for C and Java programs, respec-
tively.

Comparison with APR repair tools for C programs
SemFix. SemFix [5] has been successful at �xing the
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Table 12. The number of generated correct/incorrect patches by the tools.

Programs HD-repair ACS Nopol
SimFix

(implemented
by Java)

jGenProg ELIXIR DLFix Doctor
code

Commons math 1/21 12/16 1/21 14/26 5/18 12/19 12/28 16/4

Commons lang 3/7 3/4 3/7 9/13 0/0 8/12 5/12 10/3

Joda-Time 0/1 1/1 0/1 1/1 0/2 2/3 1/2 2/2

JFreeChart 0/2 2/2 1/6 4/8 0/7 4/7 5/12 7/1

Total 4/31 18/23 5/35 27/48 5/27 26/41 23/54 37/44

Percentage of

over�tted patches

to total patches

87% 21% 85% 77% 81% 36% 57% 18%

Table 13. Comparison between SemFix and Doctor Code in terms of time.

Number of test inputs Running time (in seconds)

Programs Doctor Code SemFix Doctor Code SemFix

Tcas 1607 50 23 50

Schedule 2649 50 107 70

Replace 5541 50 126 70

Schedule2 2709 50 73 95

bugs in the Siemens suite. However, the correctness of
the patches it produced has not been evaluated. Since
the number of symbolic constraints of SemFix increases
with a growth in the number of test cases (which slows
down the repair process), it has experimented with a
maximum of 50 test cases. On the other hand, the
buggy versions of the Siemens suite have more than
1000 test cases. Limiting the number of test cases
results in the production of over�tted patches [12].
Therefore, it is likely that some of the patches produced
by SemFix might be over�tted patches. Doctor Code
has no limitation on the number of test cases, and it is
capable of evaluating candidate patches with thousands
of test cases.

Moreover, the authors of [33] did a study to revisit
the over�tting problem with a focus on semantics-based
APR techniques, including SemFix. They performed
the study on IntroClass and Codeaws benchmarks.
This study calculates the number of patches produced
for each subject program that fail at least one held-
out test for the IntroClass and Codeaws datasets.
On IntroClass and Codeaws, 87% (86 of the 99) and
68% (38 of the 56) of patches generated by SemFix
were over�tted to the training tests, respectively. The
results are shown in Table 12, indicating that 43% of
patches are over�tted. This suggests that, although
semantics-based repair methods, including SemFix,
have been shown to produce high-quality repairs on

several subjects, over�tting to the training tests is still
a concern for these approaches.

To perform a comparison between the tools in
terms of running time, we re-implemented Doctor Code
under the same conditions as the SemFix experiments
(a Core 2 Quad 2.83 GHz CPU, 3 GB memory com-
puter with Ubuntu 10.04 OS). It is not fair to compare
these tools in terms of the running time because the
number of test inputs for SemFix was at most 50, but
the number of test inputs for Doctor Code was more
than 50 (the number of test inputs is shown in Table
13). In the repair process, for each test input, the
program under test is evaluated. In this way, for a large
number of test inputs, the speed of the repair process
decreases. The running time of the tools is shown
in Table 13. Although the number of test inputs for
Doctor Code was higher than SemFix, it outperformed
SemFix for two cases (Tcas and Schedule2). Generally,
despite a large number of test inputs for Doctor Code,
its running time is similar to SemFix.

In addition, SemFix is only capable of repairing
bugs that exist on the right-hand side of an assignment
operator or bugs that occur in branch predicates. Doc-
tor Code does not have this limitation. Furthermore,
SemFix produces patches using symbolic execution.
It is known that symbolic execution is problematic
when the size and complexity of programs increase [25],
which is not the case with Doctor Code. On the other
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hand, since our technique relies on the plastic surgery
hypothesis [29], it only repairs buggy programs whose
patches can be produced using the existing program
elements within corresponding buggy programs, which
is not a limitation for SemFix.

SPR and Prophet. SPR [7] and Prophet [8]
use six transformation schemas, three of which are to
�x if-related bugs. These schemas are not capable of
�xing bugs such as Replace V14 (row 10) in Table 5,
where the conditional statement needs to be tightened
with !locate(lin[�i]; pat; j + 1). Considering the same
limitation, they cannot �x bugs such as Totinfo V20
(row 43), in which the conditional statement has to
loosen utilizing (cdf � 0). Also, these schemas are
designed to �x bugs that occur in the predicate of if
statements. Thus, they are not applicable to bugs
such as Tcas V25 (row 35), where the predicate is a
boolean expression but not the conditional statement
of an if statement. There are other types of bugs,
such as Replace V23 (row 16) and Totinfo V5 (row
38), that might be �xed by SPR and Prophet using
a schema called Copy and Replace, which copies an
existing statement in the code before another statement
and replaces a value in this statement with a di�erent
one. However, this schema can �x these two bugs only
if it can �nd the right statements to be copied.

The repair operators of Doctor Code do not have
any of the above limitations.

To compare Doctor Code with Prophet in terms of
both the number of over�tting patches and repair time,
although Prophets' benchmarks are di�erent from our
benchmarks, we used Prophet's generalized results for
comparison with Doctor Code. Within the 12-hour
time limit, Prophet found plausible patches for 39 of
the 69 defects. The authors of [10] found correct
patches for 18 of these 39 defects. In addition, they
mentioned that for the 15 defects, the �rst validated
patch is correct. Therefore, based on its benchmarks,
about 40% of plausible patches were correct, and about
60% of them were over�tted. Also, the authors of [8]
reported that Prophet required an average of 108.9 and
138.5 minutes to �nd and validate the �rst plausible
patch and the �rst correct patch, respectively. As
mentioned above, Doctor Code requires 90 minutes to
�nd and validate all plausible patches, 90% of which
are correct.

- Comparison with APR tools for Java programs
Some of the famous tools that are evaluated

using Defects4j are presented in Table 13. The
columns show the number of correct and incor-
rect patches produced by each tool. The fol-
lowing machine-learned tools are analyzed in this
table.

The main di�erence between our method and
other state-of-the-art machine learning tools (such

as Elixir, Prophet, and GenProg) is the selected
repair operators and their prioritization model.
Due to these di�erences, Doctor Code signi�cantly
improves program repair compared to competing
tools.

We have evaluated Doctor Code's ability to
generate correct patches against seven automated
approaches on the Defects4j dataset. According to
the results in Table 13, Doctor Code outperforms its
competitors in terms of the number of �xed bugs:
37 (Doctor Code) versus 4 (HD-Repair), 18 (ACS),
5 (Nopol), 27 (SimFix), 5 (jGenProg), 26 (Elixir)
and 23 (DLFix). Doctor Code also outperforms
the other tools in terms of the ratio of over�tted
patches to total patches: 18% (Doctor Code) versus
87% (HD-Repair), 21% (ACS), 85% (Nopol), 77%
(SimFix), 81% (jGenProg), 36% (Elixir) and 57%
(DLFix).

5. Conclusions

This paper presented Doctor Code, a new test suite-
based Automated Program Repair (APR) technique
that prioritizes repair operators by extracting features
from buggy programs and using machine learning.
Doctor Code operates in two phases: training and
deployment. In the training phase, an Multinominal
Logistic Regression (MLR) model is trained, which
is then employed in the deployment phase. Using
this model and feature vectors extracted from buggy
programs, Doctor Code prioritizes its repair operators
and produces candidate patches by applying them to
buggy programs in the deployment phase.

Also, we have demonstrated that Doctor Code
can produce patches that do not exist in the search
space of Semi�x, SPR, Prophet, Elixir, and DLFix. To
investigate the impact of machine learning on prior-
itizing repair operators, we also implemented another
APR technique called Random APR (RAPR), in which
the repair operators of Doctor Code are applied to the
buggy program in random order. Comparing RAPR
and Doctor Code indicates that using machine learning
to prioritize repair operators declines the repair time
and the number of over�tted patches by 82:68% and
33:33%, respectively. Doctor Code utilizes an MLR
model to prioritize repair operators. We investigated
the impact of using other classi�cation models on this
task. The experimental results indicate that although
MLR performed better than the other models in terms
of running time, Doctor Code has almost the same
performance for all four prediction models.

Since Doctor Code is e�ective at prioritizing
repair operators, In future work, we plan to enrich
its repair operator repository by adding several newly
designed repair operators and even those utilized by
other APR techniques. Also, we plan to design repair



Sh. Moosavi et al./Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 83{102 101

operators that �x bugs occurring at multiple points
within programs. Our future work also includes eval-
uating Doctor Code on real-world bugs and combining
its repair operator prioritization capability with other
APR techniques, such as [6,7] that employ repair
operators in a prede�ned order.
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