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Abstract 9 

Heart failure (HF) is a cardiac dysfunction disease with a high mortality rate that is mostly calculated via registry 10 
data. The objective of this work was to predict in-hospital mortality in patients hospitalized with HF utilizing their 11 
before-hospitalization registry data. The data include 3968 HF records extracted from Persian Registry Of cardio 12 
Vascular diseasE (PROVE)/HF registry. We proposed a method that contains an imbalanced ensemble probabilistic 13 
model which using registry data predicts HF patients who die during hospitalization from those who survive. The 14 
suggested ensemble model uses machine learning models that several ones, namely Decision Tree, Random Forest, 15 
LDA, Logistic Regression, SVM, KNN, and XGBoost were evaluated. We also used feature importance analysis to 16 
find the important ones and reduce the complexity. The results illustrated the proposed method can predict in-17 
hospital mortality of HF patients using XGBoost that outperformed all others. Feature importance ranking obtained 18 
by XGBoost demonstrated that the proposed method can achieve an acceptable performance with the first 18 19 
important features and XGBoost (accuracy: 76.4%±1.6%, sensitivity: 76.8%±6.9%, specificity: 76.4%±1.8%). 20 
Moreover, statistical analysis presented significant predictors of in-hospital mortality (P-value<0.01). 21 
In conclusion the proposed method can effectively predict in-hospital mortality of HF patients using the imbalanced 22 
data. 23 
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Heart failure (HF) is one of the prevalent causes of hospitalization and mortality worldwide. Despite advances in 35 
diagnosis and treatment, HF still has a high mortality rate resulting in a growing burden on health providers [1]. 36 
Evidence indicates that 40% of hospitalized patients with HF die or are hospitalized again within one year [2]. The 37 
increasing mortality of HF has changed it into a life-threatening disease. Therefore, identifying the prevalent 38 
predictors and prediction of mortality has been the main focus of current studies [3]. 39 
Early recognition of risk factors of the disease can improve prognosis and will be used as predictors of mortality to 40 
help in decision-making. Several clinical predictors such as age and depression are associated with increased HF 41 
mortality [2]. There is little research on risk prediction models for elderly patients; however, age is an independent 42 
predictor in HF patients [4]. 43 
Accurately predicting the mortality allows for effective risk classification and provides more appropriate medical 44 
care. Calculating the mortality rate of HF around the world is usually based on registry systems [3]. Miro et al. 45 
predicted mortality of Acute Heart Failure (AHF) patients using the Epidemiology of AHF in Emergency 46 
department registry data [5]. 47 
The usage of machine learning techniques for predicting in-hospital mortality of hospitalized patients has been 48 
considered a helpful solution in recent years [6]. Fonarow et al. proposed a regression tree using ADHERE Registry 49 
data to predict in-hospital mortality probability in patients hospitalized with HF [7]. Konig et al. developed a reliable 50 
algorithm to calculate expected in-hospital mortality in HF cohorts based on routine administrative data by 51 
comparing regression analysis with four machine learning models [8]. Luo et al. constructed a risk stratification 52 
method using an extreme gradient boosting algorithm and available clinical data to predict the in-hospital mortality 53 
of hospitalized HF patients in intensive care units (ICUs) [9]. 54 
Although registry systems provide informative data regarding diseases in society, they are usually divided up into 55 
imbalanced classes that often result in a low sensitivity when ordinary machine learning algorithms are applied. 56 
There are many approaches that address imbalanced classification problems. The most common methods consist of 57 
oversampling and undersampling, which are relatively able to improve the classification performance. The 58 
undersampling and ensembling approach was proved to be advantageous for imbalanced classification [10], 59 
in which some classifiers are trained by the minority class and undersampled majority class. Then, they are 60 
combined into an ensemble model. Therefore, undersampling and ensembling approach could overcome imbalanced 61 
classification problems, but their performance is not still suitable for all imbalanced datasets and they can be 62 
improved on a registry dataset for mortality prediction. 63 
Because of the existence of irrelevant and correlated features to target in actual data, feature importance analysis is 64 
usually employed to address dimensionality challenges and to improve the system generalization [11]. Alizadehsani 65 
et al. ranked all features of coronary artery disease datasets based on their clinical importance to select the best ones 66 
with the machine learning techniques [12]. 67 
In this research we want to predict in-hospital mortality of HF patients using their before-hospitalization imbalanced 68 
registry data. To address this issue, we proposed an imbalanced ensemble probabilistic model to predict in-hospital 69 
mortality of HF patients using imbalanced registry data. We showed that the proposed model with Extreme Gradient 70 
Boosting (XGBoost) can identically classify both minority and majority classes with a higher performance in 71 
comparison with conventional classifiers. 72 
In this research, we investigated the importance of the features to find the influential ones and to reduce the 73 
complexity of the proposed model. The usage of the found important features will reduce the cost and time of the 74 
registration of HF patients to predict in-hospital mortality. Furthermore, we also found significant predictors 75 
resulting from the statistical analysis of the before-hospitalization registry data that are helpful for health providers 76 
to forecast mortality and better manage resources. In addition, we have used a Decision Tree algorithm to extract 77 
special rules from a subset of data. 78 
In the remainder of this paper, we will present material and methods, then obtained results and relevant discussion, 79 
and finally, the conclusion will be stated. 80 

 81 

 82 

 83 

2. Material and methods 84 
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2.1 Data description 85 

The data of this work were included records of patients hospitalized with decompensated or acute HF from March 86 
2015 until October 2018 using data extracted from the Persian Registry Of cardio Vascular diseasE (PROVE). This 87 
is the first registry program for cardiovascular diseases that was launched as a pilot study in Isfahan (Iran) in 2014. 88 
PROVE registry was for patients with stroke, acute coronary syndrome, atrial fibrillation, ST elevation myocardial 89 
infarction, HF, percutaneous coronary intervention, congenital heart disease, familial hypercholesterolemia, and 90 
chronic ischemic cardiovascular disease [13-14]. In this study, informed consent forms were obtained from all 91 
patients [14]. 92 
PROVE/HF is part of the PROVE registry that registers hospitalized HF patients. The collected data consisted of 93 
demographic data, underlying diseases, comorbidities, signs and symptoms, physical examination results, diagnoses, 94 
paraclinical tests, treatments, and medications. All the gathered data were related to before and during 95 
hospitalization as well as the discharge time of the patients. The PROVE/HF registry was followed at 3, 6, and 12 96 
months after the first admission as needed. 97 
The PROVE/HF registry data included 3968 records belonging to 2918 patients (male: 60.52%, age: 68.97 ± 13.26 98 
years, female: 39.48%, age: 73.27 ± 11.66 years); some patients had more than one admission at different times. 99 
Totally, 606 features related to before and during hospitalization, discharge time, and three consecutive follow-ups 100 
were registered for each patient. 101 
Given the aim of this study, before-hospitalization features were only used to predict in-hospital mortality of HF 102 
patients. 103 

2.2 Preprocessing of data 104 

After data acquisition, preprocessing plays a vital role in data mining that transforms raw data into appropriate 105 
forms for subsequent uses. Figure 1 depicted all preprocessing steps of raw PROVE/HF registry data. As 106 
mentioned before, only before-hospitalization features were used in this study to predict in-hospital mortality of 107 
patients. Therefore, these features should firstly be extracted from the registry. There are many unnecessary features 108 
that should be removed such as dates of procedures. In addition, we removed some features that were the same for 109 
all patients and had no variance. The data features are two types; the first type is categorical which describes 110 
categories or groups such as the “cigar status” of the patient. The second type is numerical which takes numerical 111 
values and represents a measurement such as the “weight” of the patient. Since some categorical features have a lot 112 
of missing values, we removed those features that had missing values more than an arbitrary threshold depending 113 
upon the importance of the features. Since we wanted to assess the effect of more categorical features on the 114 
prediction results, we removed only the features with more than 80% missing values [15]. We have filled the 115 
remaining categorical features after consultation with cardiologists and specialists. There were some drugs in the 116 
data belonged to the same type, and we merged them as a feature. We also removed some numerical features with 117 
many missing values that did not exist in patients’ medical records. Finally, each sample was labeled according to 118 
the mortality status of the patient. If a patient dies during hospitalization, his records are labeled as ‘1’, otherwise as 119 
‘0’. 120 

 121 

After all preprocessing steps, the HF registry data comprise 3252 samples (class ‘0’ = 3070, class ‘1’ = 182) and 42 122 
features (categorical = 36, numerical = 6). The features between patients who died in the hospital and those who 123 
survived were compared using the X

2
 test and t-test for categorical and numerical features, respectively. A P-value 124 

less than 0.01 was statistically considered significant. Table 1 shows all remaining features after preprocessing that 125 
includes 8 different groups: Demographic, Aetiology, Medical History, Vital Sign, Physical Examination, 126 
Procedures, Medications and Biomarker. Numerical features are presented as mean±SD (Standard Deviation), and 127 
categorical features are shown as n (%) (Number (Percentage)). Most of the categorical features have two states. For 128 
instance, 453 patients of the class ‘0’ had COPD, out of 3070 patients (14.8%), and others did not. Figures 2 and 3 129 
show bar plot of the categorical features and error bar of the numerical features, respectively. 130 

 131 

 132 
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2.3 Method 133 

In this section, we describe the proposed method to predict in-hospital mortality of HF patients using their before-134 
hospitalization features of the preprocessed data. The structure of the proposed method is shown in Figure 4. 135 

 136 

As reflected in Figure 4, the obtained features should be normalized after preprocessing the raw data. Since there are 137 
two types of categorical and numerical features in our data, we used two different methods for each one. Categorical 138 
and numerical features are normalized using the Min-Max scaling and standard scaling methods, respectively [16]: 139 

 140 

Min-Max scaling: min

n

max min

X X
X

X X




                                                           (1) 141 

Standard scaling: mean

n

X X
X

SD


                                                              (2) 142 

This work aimed to predict in-hospital mortality of HF patients with a low in-hospital mortality rate of 5.6%. 143 
Therefore, we encounter an imbalanced classification problem with two classes in which survived patients during 144 
hospitalization are the majority class. Class imbalance problems are frequently happened in the field of medical data 145 
processing [17]. Class imbalance causes most algorithms to assign all samples of both classes into the majority one 146 
to achieve a high accuracy [18]. We proposed an imbalanced ensemble probabilistic classifier model to distinguish 147 
HF patients who die during hospitalization from those who survive using the imbalanced data. Figure 5 illustrates 148 
the structure of the imbalanced ensemble probabilistic model. 149 

 150 

The proposed method uses the “undersampling and ensembling” strategy to undersample the majority class samples, 151 
together with the minority class samples, to train some classifiers [10]. In this method, the majority class samples are 152 
undersampled the same size as the minority class ones. The undersampled data of the majority class are not put back 153 
again. Whenever the number of majority class samples is not enough to undersample, the needed number of samples 154 
is randomly selected from the majority class sample subsets. Hence, the structure of the imbalanced ensemble 155 
probabilistic model is created using each undersampled subset of the majority class in conjunction with all samples 156 

of the minority class. The total number of created training subsets is 1
j

m

n
N

n

 
  
 

, where 𝑛𝑗 and 𝑛𝑚 indicate the 157 

number of majority and minority class samples in the training set, respectively. Each training subset is used to train a 158 
classifier, and each classifier has its own hyperparameters. Most machine learning models have parameters known 159 
as hyperparameters [19] that need to be fixed before training [20]. As Figure 5 shows (Clf tuners), this work tunes 160 
the hyperparameters of each classifier based on the corresponding training subset and then trains them using the best 161 
found hyperparameters and the training subset. To find the best hyperparameters, we used the basic grid search 162 
technique in which all possible permutations of the hyperparameters of a model are applied to build the models. The 163 
best model is selected after the evaluation of the performance of each one. To evaluate the built model, the grid 164 
search technique uses the 5-fold cross-validation method, which is a resampling method used for evaluating 165 
machine learning models [21]. In addition, we designated ‘Accuracy’ as an evaluation strategy of the performance 166 
of the cross-validated model on the test set. Figure 6 summarizes the grid search to find the best hyperparameters of 167 
the models. 168 

 169 

Following training each classifier with the best found hyperparameters and the training subset, the trained classifier 170 
predicts the probability of test set samples. Afterward, the mean probability of the output of all classifiers is 171 
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computed for each test set sample. Then, a decision threshold of 0.5 is considered to calculate the predicted label for 172 
each test set sample, where probability values less than 0.5 are assigned to class ‘0’, otherwise to class ‘1’. 173 
To assess the performance of the model, some metrics are figured out as follows: 174 

   
 

           

TN TP
Accuracy

TN TP FN FP




  
                                                              (3) 175 
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Sensitivity
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


                                                                      (4) 176 
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Matthews Correlation Coefficient MCC
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 

 




 
              (7) 179 

Where True Negative (TN) and True Positive (TP) respectively show the numbers of negative and positive samples 180 
that are correctly diagnosed. Moreover, False Negative (FN) and False Positive (FP) respectively represent the 181 
numbers of negative and positive samples that are not correctly diagnosed. In addition, we used two other valuable 182 
metrics, which include ROC_auc that calculates the area under the receiver operating characteristic (ROC) curve, 183 
and PR_auc that calculates the area under the precision-recall curve from predicted labels [22]. 184 
According to our proposed model in Figure 4, we used the 5-fold cross-validation method with 10 times repetition to 185 
evaluate our model. The final results are computed using the average of all different metrics for model evaluation. 186 
The most crucial advantage of the 5-fold cross-validation method is its lower variance than the single hold-out set 187 
method. Therefore, its sensitivity to any partitioning bias on the dataset is less than the single hold-out set method. 188 
Besides, 5-fold cross-validation is a more robust method than the single hold-out method that randomly splits data 189 
into training and testing sets [23]. 190 
In practice, machine learning models have different performances for various datasets because their characteristics 191 
are different. Therefore, in this study we evaluated and compared several models to select the one that has the best 192 
performance for our purpose. In particular, the seven different evaluated classification models are Decision Tree, 193 
Random Forest, Linear Discriminant Analysis (LDA), Logistic Regression, Support Vector Machine (SVM), k-194 
nearest neighbor (KNN), and XGBoost [6, 8, 15]. 195 
The model was fitted with the best found hyperparameters using the described method above. The technical 196 
hyperparameters of the considered models to find the best ones using the basic grid search technique are listed in 197 
Table 2. Additionally, we accomplished hierarchical clustering analysis over models based on the FN and FP values. 198 

 199 

2.4 Feature importance analysis 200 

In this study, we used feature importance analysis to reduce the number of features and complexity of the proposed 201 
model. Feature importance includes techniques that designate a score to each input feature based on how they are 202 
effective at the classification performance of a target variable [24]. There are many types of importance scores such 203 
as statistical correlation coefficient scores, decision trees, and permutation scores. Decision tree algorithms suggest 204 
importance scores based on the decrease in the criterion of the split points, like Entropy or Gini. This approach can 205 
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be applied for ensembles of trees such as the Random Forest and XGBoost algorithms. The models Decision Tree, 206 
Random Forest, and XGBoost allowed the importance of features to be derived during the training of the models. 207 
Linear machine learning algorithms such as logistic regression calculate coefficient statistics of each feature and 208 
target variable in order to apply in a weighted sum to make a prediction. These coefficients can be utilized directly 209 
as a feature importance score. The models LDA, SVM, and KNN use permutation importance scores where in the 210 
feature importance is difficult to extract, and they do not support native importance scores. Briefly, the model is 211 
trained on the data, then it is applied to classify the data while the values of a feature have been scrambled. This is 212 
repeated for every feature, and the whole process is repeated several times. The result would be a mean importance 213 
score for every feature. The accuracy of the model is considered as a basis for the importance score. Obviously, the 214 
effect of scrambling the feature values is small for unimportant features but is considerable for important ones that 215 
will reduce the model’s accuracy. 216 

2.5 Rule Extraction 217 

Finally, in this work we extracted some significant rules using the Decision Tree. Due to the imbalanced data, the 218 
majority class samples are undersampled the same as the minority class ones. The Decision Tree model is fitted on 219 
the constructed data that both classes have the same size, and then all possible rules are extracted. In order to extract 220 
the confident rules, we chose the rules with the accuracy of 100% that are supported by at least ten samples. 221 
All of the experiments of the current study are accomplished using sklearn [25] machine learning library in Python 222 
(version 3.7.0) and SPSS Statistics for Windows, version 15 (SPSS Inc., Chicago, III., USA). 223 

3. Results 224 

At first, we illustrate the results of the statistical analysis using the X
2
 test for categorical features and t-test for 225 

numerical features in patients who died in hospital (class ‘1’) and ones who did not (class ‘0’). Table 1 declares all 226 
used features with their P-value which less than 0.01 is considered statistically significant. Numerical features are 227 
presented as mean±SD, and categorical features are shown as numbers and percentages. All features with P-228 
value<0.01 in Table 1 are statistically significant and can be considered as predictors of in-hospital mortality for HF 229 
patients. 230 
After the statistical analysis of the features, we present the obtained results of the proposed method to predict the in-231 
hospital mortality of HF patients using preprocessed imbalanced registry data. As mentioned before, we used the 5-232 
fold cross-validation method with 10 times repetition to evaluate our model while each set includes the same 233 
percentage of each target class as the complete dataset. Then, each set is given to the imbalanced ensemble 234 
probabilistic model as the input for training and testing. According to the number of training samples, the total 235 
number of created training subsets equals 17, where each training subset contains 292 samples, equally of both 236 
classes. Table 3 shows the performance of the proposed model on the test sets for all classifier models used to 237 
predict the in-hospital mortality of HF patients. 238 

 239 

As Table 3 demonstrates, using the KNN as a classifier in the structure of the imbalanced ensemble probabilistic 240 
model of the proposed method gives the best accuracy and specificity (83.7% and 85.5%, respectively). In this case, 241 
however, the corresponding sensitivity has the lowest value (50%). The XGBoost achieves the best sensitivity, F1 242 
score, ROC_auc, PR_auc and MCC of 77.3%, 27.1%, 84.7%, 34.6% and 28.2%, respectively. According to Table 3, 243 
XGBoost has the highest number of top metrics and, therefore, it outperforms all other classifiers. The average ROC 244 
and Precision-Recall (PR) curves with the 5-fold data resampling and 10 times repetition are depicted in Figure 7. 245 
Most classifiers have AUC values above 80%, but the value of KNN is lower (78%). We also used the AUC value 246 
as the criterion of the PR curve. The lowest and the highest values of AUC of PR curves are for KNN and XGBoost, 247 
respectively (22%, 35%). 248 

 249 

In this study, the hierarchical clustering analysis was applied to cluster the seven classifiers using the FN and FP 250 
values from a random sampling. Figure 8 shows the hierarchical clustering analysis that represents similar classifiers 251 
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culminate in similar results; for instance, tree based classifiers Decision Tree, Random Forest, and XGBoost are 252 
clustered closely. 253 

 254 

As previously mentioned, we used feature importance analysis to reduce the number of features and complexity of 255 
the proposed model in the current study. We applied three different types of importance scores, including tree based 256 
scores for the Decision Tree, Random Forest, and XGBoost models (Figure 9), statistical correlation coefficient 257 
scores for Logistic Regression model (Figure 10), and permutation scores for LDA, SVM, and KNN models (Figure 258 
11). 259 

 260 

As can be seen, each classifier model creates its feature importance scores based on the corresponding method. In 261 
order to reduce the dimension of the features and complexity of the proposed model, we should use a specific model 262 
to compute its feature importance scores. According to Table 3, XGBoost outperforms all other models; therefore, it 263 
can be used to find the important features. Then, we apply different numbers of sorted important features to the 264 
proposed model with the XGBoost and figure out the ROC_auc metric. The result is presented in Figure 12. 265 

 266 

As Figure 12 shows, at first, the ROC_auc increases with the number of the important features. But after 18 features, 267 
the ROC_auc does not have significant changes. Therefore, we can consider that at least the first 18 important 268 
features are required to achieve acceptable model performance. The list of the first 18 important features can be 269 
found from the feature importance diagram of XGBoost in Figure 9. Table 4 shows the result of using the first 18 270 
important features as the input of the proposed model for all classifiers used to predict the in-hospital mortality of 271 
HF patients. 272 

 273 

According to Table 4, XGBoost achieves the best ROC_auc, PR_auc, and MCC of 84.9%, 34.6%, and 27.7%, 274 
respectively. Therefore, XGBoost has the highest number of top metrics and outperforms all other classifier models 275 
with the first 18 important features. A comparison of the results of the proposed model with the XGBoost in both 276 
cases (using all of the features (Table 3) or the first 18 important features (Table 4)) indicates that the model can 277 
slightly perform better with the all features, but the improvement is not significant. Therefore, in order to reduce the 278 
complexity of the model, we can only use the first 18 important features that are extracted by XGBoost. 279 
Finally, we describe the significant extracted rules. Based on the Decision Tree, seven rules, which are illustrated as 280 
IF (Antecedent) and Then (Consequent) in Table 5, were generated with the accuracy of 100% and at least ten 281 
samples. The presence of high BUN, low heart rate, low Hb, and NIV usage was associated with HF patients who 282 
died during hospitalization. On the other hand, the normal range of BUN, Hb, SBP, and not using NIV was 283 
associated with those that did not die during hospitalization. However, more investigation with larger data sets and 284 
more features is still required. 285 

 286 

4. Discussion 287 

The present research applied the data of the first Iranian national registry of cardiovascular diseases and, besides the 288 
statistical analysis of the significant features, proposed a model to predict the in-hospital mortality of HF patients. 289 
As mentioned before, some of the features were statistically significant (P-value<0.01). The results of the statistical 290 
analysis are in line with previous related studies reporting the predictors of mortality rate and morbidity in HF 291 
patients. According to Table 1, anemia and kidney disease have a significant relationship to in-hospital mortality 292 
which is consistent with the previous findings in other countries [26]. The effect of anemia on HF mortality has been 293 
clarified in several studies that have recommended treatment of anemia as a preventive factor to reduce HF mortality 294 
[27]. According to Table 1, the average systolic and diastolic blood pressures (SBP and DBP) of patients who died 295 
during hospitalization are lower than those who did not die. This issue induces hypotension (low blood pressure) in 296 
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patients with severe HF. The higher mortality rate of HF patients with hypotension is consistent with our result. It is 297 
completely a logical finding because the low blood pressure in HF disease is related to cardiogenic shock that shows 298 
the pump failure of the heart and a lower left ventricular ejection fraction (LVEF) [26]. On the other hand, if the 299 
blood pressure is low, the heart will struggle to deliver enough oxygenated blood to the cells; therefore, the body 300 
will increase the heart rate (HR) to push more oxygen-rich blood to the cells [28]. Our finding of the HR of severe 301 
HF patients justifies this result again. In spite of advances in technology, physical examination remains essential in 302 
the management of HF patients. Edema, JVP, crackle, and CPO are all statistically significant physical examinations 303 
of the current study which can be considered as predictors of in-hospital mortality. Patients with any type of 304 
procedure in their medical history are mostly at a severe stage of the disease. In these patients, the higher mortality 305 
rate is a sensible result demonstrated by a statistically significant relationship to PCI, hemodialysis, and NIV 306 
therapy. The investigation of the predictive role of medications presents that losartan as an Angiotensin receptor 307 
blocker (ARB) and ASA as an antiplatelet were more often used in the patients who did not die during 308 
hospitalization while Hydrochlorothiazide as a diuretic was utterly vice versa. Therefore, losartan and ASA can be 309 
considered as preventive factors for mortality. There is also disagreement on the role of diuretics medications on the 310 
mortality of HF patients in the results of various researches. Some studies suggested higher mortality rates of HF 311 
patients by diuretic use, which is in line with the outcome of the current research [29], while others offered 312 
protective [30]. The effect of diuretics on the mortality of HF patients has to be further studied. The crucial role of 313 
biomarkers is growingly recognized in HF management, diagnosis, and screening of severe patients [31]. An 314 
increased level of serum creatinine during HF hospitalization is associated with worse outcome [32]. This issue is in 315 
line with our result about the higher creatinine levels in patients who died in hospital. A persistently high level of 316 
BUN is also associated with an increased risk of cardiovascular readmission and death [10] which is close to our 317 
result according to Table 1. Another important primary biomarker is cardiac troponin which its level can be elevated 318 
in HF patients [33]. This issue is demonstrated in our findings in Table 1 which patients who died in hospital have 319 
more positive troponin than others. In the current data, the in-hospital mortality rate of HF patients is 5.6% which is 320 
in the range of several published registries (4%-7%) [34-35]. To reduce the mortality of HF patients, on the one 321 
hand, healthcare staff and physicians should pay more attention to the predictors and treatment of underlying disease 322 
(such as anemia and hypotension). On the other hand, patients should adhere to medications (especially ARB and 323 
ASA). 324 
Besides the statistical analysis of the features, we proposed a new model to predict in-hospital mortality of the HF 325 
patients using the imbalanced registry data. Most algorithms frequently obtain poor performance with imbalanced 326 
datasets because they tend to get high accuracy and assign the most samples to the majority class, which causes low 327 
sensitivity. 328 
There are many approaches that address imbalanced classification problems. Oversampling and undersampling are 329 
the most commonly used approaches. These methods improve the overall performance of the classification. 330 
However, Oversampling may increase the likelihood of occurring overfitting, especially for higher rates of 331 
oversampling. Furthermore, it will increase the computational effort and decrease the classifier performance. In 332 
undersampling, huge number of data are discarded. This can be very problematic as the elimination of such data 333 
may make the decision boundary between majority and minority classes harder to learn, resulting in a high variance 334 
and performance loss. 335 
The undersampling and ensembling approach was displayed to be more effective than others for the imbalanced 336 
classification [10] that trains several classifiers using the minority and the undersampled majority class samples and 337 
then combines the output of classifiers into an ensemble structure. Ensemble methods will reduce the variance of the 338 
results by aggregating the prediction performance of the classifiers [18]. Inspired by this approach, we proposed a 339 
new ensemble model to predict the in-hospital mortality of HF patients using imbalanced registry data. 340 
In the suggested model, the class probability of each test set sample is calculated after training the classifier. Then, 341 
the mean class probability of all classifiers is computed for labeling the sample. In the proposed model, we compute 342 
the class probability of each test set sample instead of predicting the class label for each classifier directly. This 343 
method will provide a more accurate class probability for each test set sample and, therefore, will reduce the FP and 344 
FN that will cause to increase in the performance of the classification. 345 
In the proposed model, different classifiers are used and each one has its own performance. According to Table 3 346 
and Table 4, although KNN has the highest accuracy and specificity among all used classifiers, its main drawback is 347 
the great difference between sensitivity and specificity that shows it cannot equally classify both minority and 348 
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majority classes. According to Table 3 XGBoost has the highest sensitivity with all features but according to Table 4 349 
Random Forest has the highest sensitivity with only the first 18 important features. These tables demonstrate that F1 350 
score of all classifiers are close to each other but XGBoost has the highest F1 score when all features are used and 351 
Logistic Regression has the highest one when only the first 18 important features are used. According to Table 3 and 352 
Table 4, Random Forest and XGBoost have the best ROC_auc, PR_auc, and MCC among all classifiers and their 353 
values are so close to each other. However, XGBoost is preferred because its values are a bit better than Random 354 
Forest. In XGBoost the variance of ROC_auc and MCC are lower and the mean of PR_auc is higher than the values 355 
of Random Forest. Also, sensitivity and specificity of XGBoost are so close to each other that means it can classify 356 
both classes identically. According to Table 3 and Table 4, XGBoost has the highest number of top metrics and, 357 
therefore, it outperforms all other classifiers. 358 
The number of the training samples is a fundamental determinant of classification accuracy, and they are correlated 359 
to each other [36]. In the current study, we assessed the effect of the training sample size on the classification 360 
performance for all applied classifier models. 361 
To evaluate the effect of the training size on the model performance, we examined the proposed model for different 362 
numbers of training sets that are applied in the structure of the imbalanced ensemble probabilistic model (Figure 5). 363 
As Figure 13, Figure 14, and Figure 15 demonstrate, the more training sets, the better performance the proposed 364 
model can achieve for all classifier models. A larger training sample size improves the learning process, and 365 
classifiers can stratify the new samples with more accuracy. Therefore, if we have more data, we will obtain higher 366 
classifications performance. In addition, these figures restate that KNN has the lowest sensitivity for different 367 
numbers of training sets despite it has the best accuracy and specificity, therefore, KNN is not a proper classifier for 368 
our purpose. According to Figure 13, Figure 14, and Figure 15 SD of sensitivity is more than SD of accuracy and 369 
specificity, which it is because our data are highly imbalanced and the number of patients who died in hospital (class 370 
‘1’) is much less than survived ones (class ‘0’). 371 

 372 

Feature importance provides insight into the model and data and it is the basis for feature selection which can 373 
improve the performance of a predictive model. In short, feature Importance score is used to perform feature 374 
selection. Supervised feature selection methods include filter methods, wrapper methods and embedded methods 375 
that each one includes different techniques. The filter methods choose the best subset of feature space immediately 376 
before feeding it to a learning algorithm. The remaining two approaches, embedded and wrapper, create the optimal 377 
subset of features in conjunction with the learning algorithm. Contrary to the other methods, the embedded methods 378 
put together the advantages of both the wrapper and filter methods. Dissanayake et al. have conducted an 379 
experimental evaluation of the performance of models created for heart disease prediction using various feature 380 
selection techniques such as ANOVA, Chi-square, mutual information, Relief algorithm, forward and backward 381 
feature selection and so on [37]. Finally, the feature subset achieved by the backward technique that belongs to 382 
wrapper methods led to the highest classification accuracy. In this study, we used the feature importance analysis to 383 
reduce the number of features and complexity of the proposed model. We applied the classifier models to extract the 384 
feature importance scores, and the result of each classifier completely differed over the order of the features. 385 
Because the XGBoost had the best performance, we chose its feature importance scores, and only the first 18 386 
important features had a significant effect on the XGBoost performance. According to the feature importance 387 
analysis, for the most models, some features, including NIV, Hb, Heart Rate, Bun, SBP, DBP, Creatinine, and 388 
Troponin have high importance scores and can affect the model performance considerably. On the other hand, there 389 
are some features such as CRT-D, Primary Heart Ischemic, Cold Peripheral Organs (CPO), Captopril, and ICD 390 
which showed less importance scores and would not affect the performance significantly. NIV was shown with the 391 
highest importance score in all seven models; therefore, it is a notable predictor of in-hospital mortality for HF 392 
patients. NIV can help to decrease respiratory effort and will improve gas exchange and cardiac output [38]. Hence, 393 
the HF patients who are at severe stage could use NIV to provide relief to HF symptoms, and for this reason in our 394 
data the percentage of dead patients who used NIV is more than others. We aim to add more data to decrease the 395 
effect of imbalanced data in the future. In addition, using of the registry data to predict mortality of HF patients 396 
during 3, 6 and 12 months after discharge can be investigated in future studies. It would be also interesting to 397 
develop the proposed model for the imbalanced multiclass classification problems. 398 

5. Conclusion 399 



10 
 

In this work, we proposed a method to predict in-hospital mortality of HF patients using PROVE/HF imbalanced 400 
registry data of hospitalized patients with HF. The method contains an imbalanced ensemble probabilistic model that 401 
using an undersampling and ensembling approach can distinguish HF patients who die during hospitalization from 402 
those who do not. The suggested model uses machine learning models, and among the various models evaluated, 403 
XGBoost could outperform all others with higher performance. Feature importance analysis using XGBoost showed 404 
the proposed method could achieve acceptable performance with fewer but important features (accuracy: 76.4% ± 405 
1.6%) which can reduce the system complexity considerably. In addition, the statistical analysis of the features 406 
suggests predictors that can be used by health providers to determine the required medical resources to reduce the 407 
in-hospital mortality of HF patients. 408 
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 502 

Figure Captions 503 

 Figure 1. Preprocessing of heart failure (HF) registry data (Fs: Features, Cat: Categorical, Num: 504 
Numerical). 505 

 Figure 2. Categorical Features. 506 
 Figure 3. Numerical Features, SD: Standard Deviation. 507 
 Figure 4. The overall structure of the proposed method, SD: Standard Deviation. 508 
 Figure 5. The structure of the imbalanced ensemble probabilistic model (Clf: Classifier). 509 
 Figure 6. The grid search for the hyperparameter tuning with 5-fold cross-validation. 510 
 Figure 7. ROC curve (Left) and Precision-Recall curve (Right) of the proposed model. 511 
 Figure 8. Hierarchical clustering analysis of the classifier models. 512 
 Figure 9.  Feature importance bar chart of the Decision Tree, Random Forest, and XGBoost models. 513 
 Figure 10. Feature importance bar chart of the Logistic Regression model. 514 
 Figure 11. Feature importance bar chart of the SVM, KNN, and LDA models. 515 
 Figure 12. ROC_auc metric of the proposed model with XGBoost for different numbers of the 516 

important features. 517 
 Figure 13. Accuracy of the proposed model and the number of the training subsets for different 518 

classifiers. Dashed lines: Linear Regression, Vertical lines: Standard Deviation. 519 
 Figure 14. Sensitivity of the proposed model and the number of the training subsets for different 520 

classifiers. Dashed lines: Linear Regression, Vertical lines: Standard Deviation. 521 
 Figure 15. Specificity of the proposed model and the number of the training subsets for different 522 

classifiers. Dashed lines: Linear Regression, Vertical lines: Standard Deviation. 523 
 524 
Table Captions 525 

 Table 1. Features of the preprocessed HF registry data including categorical (n (%)) and numerical 526 
(mean ± SD) features in 8 different groups. P-value<0.01 is considered significant statistically. Index: 527 
Myocardial Infarction (MI) of a patient, COPD: Chronic Obstructive Pulmonary Disease, SBP: 528 
Systolic Blood Pressure, DBP: Diastolic Blood Pressure, JVP: Jugular Venous Pulse, CPO: Cold 529 
Peripheral Organs, CABG: Coronary Artery Bypass Grafting, PCI:  Percutaneous Coronary 530 
Intervention, CRT-D: Cardiac Resynchronization Therapy-Defibrillator, ICD: Implantable 531 
Cardioverter Defibrillator, NIV: Non-Invasive Ventilation, Hb: Hemoglobin, BUN: Blood Urea 532 
Nitrogen. 533 

 Table 2. Technical hyperparameters of the classification models to find the best ones using the basic 534 
grid search technique. 535 

 Table 3. The performance of the proposed model on the test sets for various classifiers used to predict 536 
the in-hospital mortality of HF patients, mean±SD (%) (SD: Standard Deviation). 537 

 Table 4. The performance of the proposed model on the test sets with the first 18 important features for 538 
various classifiers used to predict the in-hospital mortality of HF patients, mean±SD (%)(SD: Standard 539 
Deviation). 540 

 Table 5. Significant extracted rules with the accuracy of 100% and at least ten samples using the 541 
Decision Tree. 542 
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List of Tables 626 

Table 1.  627 

# 
Group 

Features 
Type Features 

Class ‘0’, 

n=3070 

Class ‘1’, 

n=182 
P-value 

1 Demographic Categorical Index 650(21.1) 47(25.8) 0.516 

2 

Aetiology 

Categorical Primary Hypertension 2072(67.5) 116(63.7) 0.294 

3 Categorical Primary Heart Ischemic 2623(85.4) 148(81.3) 0.128 

4 Categorical Primary Valvular Heart 1234(40.2) 88(48.4) 0.03 

5 

Medical 

History 

Categorical Hypertension 2063(67.2) 117(64.3) 0.417 

6 Categorical Arrhythmia 574(18.7) 39(21.4) 0.36 

7 Categorical Diabetes 1454(47.4) 85(46.7) 0.863 

8 Categorical COPD 453(14.8) 29(15.9) 0.664 

9 Categorical Thyroid 224(7.3) 22(12.1) 0.018 

10 Categorical Stroke 137(4.5) 14(7.7) 0.044 

11 Categorical Anemia 332(10.8) 51(28) <0.001 

12 Categorical Kidney Disease 789(25.7) 73(40.1) <0.001 

13 

Vital Sign 

Numerical SBP 131.99±26.95 115.81±25.65 <0.001 
14 Numerical DBP 80.77±15.86 74.26±15.7 <0.001 
15 Numerical Heart Rate 88.43±20.9 92.73±25.92 0.008 

16 

Physical 

Examination 

Categorical Edema 1464(47.7) 106(58.2) 0.006 

17 Categorical Jvp 594(19.3) 51(28.0) 0.004 

18 Categorical Crackle 1992(64.9) 140(76.9) 0.001 

19 Categorical CPO 62(2.0) 12(6.6) <0.001 

20 

Procedures 

Categorical CABG 404(13.2) 27(14.8) 0.517 

21 Categorical PCI 770(25.1) 29(15.9) 0.005 

22 Categorical CRT-D 47(1.5) 4(2.2) 0.482 

23 Categorical ICD 183(6.0) 11(6.0) 0.963 

24 Categorical Hemodialysis 85(2.8) 21(11.5) <0.001 

25 Categorical NIV 73(2.4) 65(35.7) <0.001 

26 

Medications 

Categorical Captopril 424(13.8) 23(12.6) 0.655 

27 Categorical Losartan 1348(43.9) 56(30.8) 0.001 

28 Categorical Metoral 1349(43.9) 69(37.9) 0.111 

29 Categorical Hydrochlorothiazide 150(4.9) 19(10.4) 0.001 

30 Categorical Furosemide 1399(45.6) 92(50.5) 0.190 

31 Categorical Spironolactone 779(25.4) 47(25.8) 0.892 

32 Categorical Digitalis 832(27.1) 51(28.0) 0.786 

33 Categorical Atorvastatin 1336(43.5) 64(35.2) 0.027 

34 Categorical Nitrocountine 1357(44.2) 72(39.6) 0.220 

35 Categorical Warfarin 590(19.2) 35(19.2) 0.997 

36 Categorical ASA 1759(57.3) 79(43.4) <0.001 

37 Categorical Plavix 453(14.8) 26(14.3) 0.862 

38 

Biomarker 

Numerical Hb 11.70±4.39 11.11±4.61 0.081 

39 Numerical Creatinine 1.476±1.26 1.963±1.36 <0.001 

40 Numerical Bun 25.85±19.08 40.1±29.02 <0.001 

41 Categorical Troponin 

0=Not done 514(16.7) 41(22.5) 

<0.001 1=Positive 333(10.8) 54(29.7) 

2=Negative 2223(72.4) 87(47.8) 

42 Demographic Categorical Sex 
Male 1914(62.3) 106( 58.2) 

0.268 
Female 1156(37.7) 76(41.8) 

 628 
 629 
 630 
 631 
 632 
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Table 2.  633 

Models Hyperparameters 

Decision Tree 
Criterion (To measure the split quality), 

Min_samples_split (Minimum number of samples to split an internal node) 

Random Forest 
Min_samples_split, 

Max_features (The number of features for the best split) 

LDA Solver (Algorithm to use in optimization problem) 

Logistic Regression 
Solver, 

C (Regularization) 

SVM Kernel, C (Regularization) 

KNN 

k (Number of neighbors), 

weights (Weight function), 

metric (Distance metric) 

XGBoost 

n_estimators (Number of boosting stage), 

learning_rate, 

subsample (The fraction of samples to fit the individuals learners), 

max_depth (The maximum depth of individuals learners) 

 634 

Table 3. 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 
 644 

Table 4. 645 

 Accuracy Sensitivity Specificity F1 score ROC_auc PR_auc MCC 

Decision Tree 76.5±1.8 74.9±7.9 76.5±2 26.3±2.4 84±3.5 33.1±6.6 26.9±3.8 

Random Forest 75.9±1.9 77.6±7.1 75.8±2.1 26.5±2.1 84.9±3.1 34.3±6.5 27.7±3.3 

LDA 80.2±1.6 65.8±8.1 81.1±1.9 27.1±2.4 83.3±3.3 31.6±6.5 26.2±3.6 

Logistic Regression 78.7±1.5 71.6±7.2 79.2±1.8 27.4±2.1 83.8±3.3 30.7±6 27.5±3.3 

SVM 77.4±1.7 74.2±7.3 77.6±2 26.9±1.9 83.9±3 28.8±5.7 27.4±3.1 

KNN 82.9±1.4 57.3±7.3 84.4±1.5 27.3±3 80.7±3.2 24.7±5.4 25±4 

XGBOOST 76.4±1.6 76.8±6.9 76.4±1.8 26.7±1.9 84.9±2.8 34.6±7.5 27.7±3.1 

 646 
 647 
 648 

 Accuracy Sensitivity Specificity F1 score ROC_auc PR_auc MCC 

Decision Tree 76±2.2 75.3±6.4 76±2.5 26±2.2 83.4±2.6 31.3±6 26.7±3.2 

Random Forest 75.2±1.9 76.8±6 75.1±2 25.8±2 84.2±2.6 32.1±6 26.7±3 

LDA 77.7±1.4 66.9±8.1 78.3±1.5 25.1±2.5 81.4±3.3 29.5±6 24.3±3.9 

Logistic Regression 77±1.4 71.2±8.2 77.3±1.6 25.7±2.4 82.8±3.1 27.7±6 25.6±3.9 

SVM 75.5±1.7 72.8±7.5 75.7±2 25±2.1 82.5±2.9 27.7±6 25.1±3.4 

KNN 83.7±1.6 52.3±8.2 85.5±1.9 26.4±3.4 77.9±3.1 22.5±5 23.4±4.4 

XGBoost 76.7±1.9 77.3±6.9 76.6±2.2 27.1±2.1 84.7±2.9 34.6±6.7 28.2±3.1 
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Table 5. 649 

 Antecedent Consequent 

1 (NIV=No), (Bun<25), (Troponin>1.5), (Creatinine<=1.45), (SBP>110.32), (Hb<=15.39) class 0 

2 (NIV=Yes), (DBP>40.44), (10.49< Hb<=18.44), (Bun<84) class 1 

3 (NIV=No), (Bun>25), (SBP<=119.81), (3.69<Hb<17), (Troponin<=1.5) class 1 

4 (NIV=No), (Troponin<=1.5), (SBP>132.31), (Bun<=13.12), (Heart Rate<=165.61) class 0 

5 (NIV=Yes), (DBP>40.44), (Bun<84), (Hb<10.5), (Troponin<=1.5) class 1 

6 (NIV=No), (SBP<=99.83), (Heart Rate>52.6), (Bun<=20.52), (Hb<=15.74) class 1 

7 (NIV=No), (SBP<=119.8), (Hb<17), (Troponin>1.5), (heart rate<=122.6), (Bun>30.2), (DBP>64.4) class 1 

 650 
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