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Abstract. Free vibration of stepped nanobeams was investigated using Eringen's nonlocal elasticity 

theory. Beam analysis is based on Bernoulli-Euler theory and nanoscale analysis is based on 

Eringen's nonlocal elasticity theory. The system boundary conditions were determined as simple-

simple. The equations of motion of the system were obtained using Hamilton's principle. For the 

solution of the obtained state equations, a multi-time scale, which is one of the perturbation 

methods, was used. The results part of the study, it is aimed to observe the nano-size effect and the 

effects of the step state. For this purpose, the natural frequency values of the first three modes of the 

system were obtained for different non-local parameter values, step rates, and step positions. When 

the results were examined, it was determined that the non-local parameter value, step ratio, and 

natural frequency were inversely proportional to each other. In addition, to strengthen the accuracy 

of the results, the results obtained were compared with the results of other studies in the literature 

conducted under the specified conditions, and a perfect agreement was observed. The current beam 

model, on the other hand, could help design and manufacture ICs such as nano-sensors and nano-

actuators. 
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1. Introductions  

 

In today's technology, it is a fact that the 

expectations from the technology produced 

increase with the increase and expansion of 

the working disciplines. In an age when many 

new product updates are demanded, such as 

the sensitivity of the environmental conditions 

in which the product is operating and the 

superior material properties expected from the 

device, it is an inevitable expectation that the 

device sizes will decrease rapidly. 

When we look at materials science, the 

mechanical properties of the material are 

encountered as the dimensions of the 

produced material become smaller. We can 

experience nano sensors, nano actuators, 

nanoresonators, and nanofluid carriers with 

new physical properties that we can describe 

as completely different and perfect. (see [1], 

[2], [3], [4], and [5]). 

 

Modeling of the continuous mechanics of 

nanoscale structures must be replaced by 

theories that include measurements for non-

classical phenomena [6]. Some of the theories 

are as follows. Modified the couple stress 

theory [7,8], micropolar elasticity theory [9], 

the strain gradient theory [10,11], surface 

elasticity theory [12], nonlocal stress, strain 

gradient, and surface energy together [13], 

doublet mechanics [14], and Eringen’s 

nonlocal elasticity theory [15]. 

Undoubtedly, nanomechanics is one of the 

main areas of studies at nanoscale. The study 

area of nano mechanics includes force and 
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displacement relationships, vibration and 

frequency analysis, and functional and strain 

characteristics of nanoscale structures. With 

the emergence of smart materials technology, 

the discovery of carbon nanotubes [16,17], in 

the scientific world, the addition of 

microelectromechanical systems (MEMS) 

[18–21], and nanoelectromechanical systems 

(NEMS) [22–26] to research topics has 

greatly increased the interest in 

nanomechanics. All studies within the scope 

of these studies deal with mathematical 

models such as bars, beams, and plates. 

Particularly within the scope of the study, the 

beam model is frequently used in vibration 

and frequency analysis. In the scientific 

world, it is possible to come across studies 

using numerous beam models in macro, 

micro, and nano dimensions. This is the same 

for the nanobeams discussed in this study, 

although less in number. 

Eric W. Wong et al. In his general study on 

the mechanics of nanobeams, he conducted 

experimental studies on the strength, 

toughness, and flexibility of nanotubes and 

rods, and focused on determining the 

mechanical properties of various material 

samples under the atomic force microscope. 

The results of the study showed 

experimentally that nano-sized beams have 

very different mechanical properties 

compared to macro-sized beam [27]. 

Aydoğdu used Eringen's generalized nonlocal 

beam theory to study the bending, buckling, 

and free vibration of nanobeams. In the study, 

many different beam theories were used, 

including Euler-Bernoulli, Timoshenko, 

Reddy, and Aydoğdu. Non-local parameter 

effect, beam length effect is considered for 

models produced from all different theories. 

In the conclusion, he suggested that the data 

can be used for static and dynamic analysis of 

nanotubes [28]. Bagdatli et al. in their study, 

they analyzed the linear vibration of mid-

supported nanobeam, which is frequently 

encountered in the structure of 

nanoelectromechanical systems. They used 

Eringen's nonlocal elasticity theory to include 

the nanoscale effect in the analysis. The 

distance of the center support from the 

starting point and the non-local parameter 

from Eringen's theory were the focal points in 

his studies. As a result of the study, they 

emphasized that with the increase of the non-

local parameter value, more nano-sized 

structures are obtained and when the middle 

support is positioned at the midpoint of the 

beam, the maximum high stiffness and linear 

natural frequency value are obtained [29]. 

Khaniki, in his study, saw Eringen's two-stage 

local and non-local integral model as a 

reliable and well-designed theory form, 

stating that it would be correct to use it in 

modeling size-dependent effects. In light of 

this information, he investigated the vibration 

behavior of the double-layer nanobeam 

system in his work. The vibration behavior of 

the double-layer nanobeam is formulated for 

three different situations, in-phase vibration, 

out-of-phase vibration, and stabilization of the 

underlying layer [30].  And many more, 

nanostructure problems are addressed by 

using size-dependent theories [31–36]. 

In the theory of continuum mechanics, 

carbon nanotubes or nanobeams are 

considered homogeneous and continuous 

macrostructures. The physical properties of 

the material nanostructure, such as lattice 

voids in the material structure or some linear 

and surface defects that disrupt the continuity 

of the system, such as steps or cracks, 

examples of which can be seen in Figure 1, 

are neglected. This situation is likely to cause 

problems at the point of transforming the 

design into practice. [37] in their study, he 

emphasized that advanced micro/nanosystems 

should be developed and their mechanical 

behavior should be predicted correctly, and it 

is not correct to say that nanobeams are 

discontinuous as in classical beams. Since the 

properties of the material differ depending on 

the size of the nano-size, not neglecting the 

physical properties in the examination of the 

mechanical behavior of nanomaterials will 

allow more accurate analysis results in real 

engineering applications. As a result of these 

defects existing in the nanostructure of the 

material, fatigue life may be shortened during 

their working life. They can reduce the 

structure's natural frequencies because it 

becomes more flexible. In this context, many 
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studies on beams with stepped and cracked surfaces exist.

Figure 1.

Tekin et al. studied the free vibrations of 

three beam systems with n steps and different 

geometry sections at different points [38]. 

Z.R. Lu et al proposed a new approach to 

analyzing the free and forced vibrations of 

beams with multiple section stages using a 

composite element method. At the end of the 

study, they claimed that the proposed method 

for vibration analysis of the stepped beam 

showed the accuracy [39]. 

Xing-Jian et al. In their research, they 

investigated the vibration properties of 

stepped laminated composite Timoshenko 

beam. Plots of the natural frequencies and 

mode shapes of the T300/970 laminated 

stepped beam are given to show the effect of 

step position parameter applications on the 

dynamic behavior of the beam [40]. Adomian 

decomposition method is also frequently used 

for vibration analysis of stepped beams. Qibo 

et al. used the Adomian decomposition 

method (ADM) to investigate the free 

vibrations of a stepped Euler-Bernoulli beam 

consisting of two uniform sections [41]. In 

another study, Qibo used the Adomian 

decomposition method to investigate the free 

vibrations of Euler-Bernoulli beams with 

multiple cross-section steps [42]. In many 

studies, analysis of cracks formed on various 

structures is encountered [27,43,44].  

When the international literature databases 

are examined, Jaan Lellep et al. It is observed 

that they are one of the rare researchers who 

have focused on stepped nanobeams with 

their studies in the last few years. In their first 

study on this subject, [13,45–47] investigated 

the free vibrations of beams and rods made of 

nanomaterials. In their results, they 

emphasized that the presence of step and 

crack in the nanobeam is very important and 

affects the frequency modes. Taima et al. 

investigated the free vibration of multi-step 

nanobeams using the dynamic stiffness matrix 

method. The results show that the 

dimensionless natural frequency parameter is 

inversely proportional to the non-local 

parameters, except for the first mode for 

unclamped boundary conditions[48]. Masih et 

al. The free lateral vibration of the Euler-

Bernoulli nanobeam with multiple 

discontinuities was investigated in their study, 

claiming that the natural frequencies of 

nanobeams are affected by various 

discontinuities and boundary conditions. The 

management equations are developed using 

Eringen's nonlocal elasticity theory. 

Discussing the effects of crack severity, the 

stepwise ratio of cross-sectional area, crack, 

and step location, buckyball mass, and small-

scale parameter on natural frequencies, they 

argued that their approach was composed of a 

series of examples that could be used as 

criteria for other studies [49]. 

The discontinuity caused by steps or cracks 

on the nanobeam hinders the application of 

the classical continuum theory in the studies, 

and it is seen that there are many different 

theories applied to nanobeam. Therefore, the 

theory of continuum mechanics is much 

preferred and can capture effects considered 

important for the nanoscale. [50].  

At this point, Eringen's [15] nonlocal 

elasticity theory is one of the most successful 

studies. The small-scale effect in nano-scale 

systems offers an important solution in terms 

of reality in the examination of the system 

[51]. For this reason, in studies dealing with 

nanostructures, Eringen's nonlocal continuum 

mechanics, which also considers the size 

effect, has been applied. Eringen's theory has 

been utilized in the analysis of many 

nanoscale structures such as nanobeams[52], 

nanoplates [53,54], lattice structures of 

materials [55], carbon nanotubes [56], and 

nano-switches [57]. 

In this study, the cascade nanobeam is 

modeled based on nonlocal theory.  In the 

authors' opinion, this work may help gain an 

insight into the cascading nanobeam behavior 

for use in nanodevices or systems. Unlike the 

other stepped nanobeams work, an 

infrastructure was created for the design of 

much more materials by working without 

dimensions. The perturbation method was 

preferred for the first time as an analytical 

solution. Thereby presenting the possibility of 
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nonlinear analysis considered as the next 

study. 

 

2. Nonlocal Elasticity Theory 

 

According to the nonlocal elasticity theory, 

the stress at a reference point in the body of 

the body depends not only on the stresses at 

that point but also on the stresses at all other 

points of the body. This observation is in line 

with the atomic theory of lattice dynamics and 

experimental observations on phonon 

dispersion. The classical (local) theory of 

elasticity is obtained when the effects of 

strains at points other than the reference point 

are neglected in the limit [58]. 

Nanobeam’s material defaults to be a non-

linear elastic material that conforms to a 

nonlocal elasticity theory. According to [15]. 

concepts, the constitutive equations for 

materials conforming to nonlocal elasticity be 

expressed as [15]: 

 

* * * *

( )

( ) ( , ) ( )n c

ij ij

V

x a x x x dV       (1) 

 

Eq. (1), 
n

ij denotes the tension tensor at 

non-local elasticity, 
c

ij  the classical (Hooke) 

tension tensor, and V the volume. Here, a  is 

the kernel function, which is assumed to 

express the effect of the stress state in 
*x V 

and the stress-strain state in *x V , and   is 

the physical constant [15]. Different forms of 

kernel function 
*( )a x  in eq. (1) describe 

different approximate models of nonlocal 

elasticity. Suppose 
*( )a x  is a linear 

differential operator L function. In this 

case[15], 

 

   * * * *La x x x x      
   

           (2) 

 

Here  is Dirac's  - function, has shown 

that the function can be obtained by taking a 

simple two-dimensional kernel function [15]. 

 

 
2 2 *

0( ) (1 ) ( )L a e a a x              (3) 

 

Here   is the laplace operator. Eq. (3), 0e  

is a physical constant. a  is the repetitive 

interatomic distance parameter (lattice size) in 

the lattice structure of nanomaterials. Eringen 

named the 0e a  expression as a small-scale 

parameter and suggested that its value should 

be taken in 0 2e a   nanometer scales [15]. 

According to Eqs. (1) - (3) the constitutive 

equation of nonlocal elasticity can be 

determined as follows [15], 

 

 2

01 n c

ij ije a                 (4) 

 

For homogeneous isotropic Euler Bernoulli 

beam [15], 

2 *
* 2 *

0 2

( )
( ) ( ) ( )

x
x e a E x

x


 


 


           (5) 

 

3. Materials and Methods 

 

Hamilton's principle was used to obtain the 

equations of motion of the stepped nanobeam. 

First, the Lagrangian of the system £ T V 
was found. According to Hamilton's principle, 

the variation of the time integral of the 

difference between the kinetic T and potential 

V energies of a system should be zero. Here, 

the difference between kinetic and potential 

energies is defined as “Lagrangian (£)”. 

 
2 2

* *
* *1 2

1 2* *

0

1 1
ρA dx ρA dx

2 2

s

s

x L

x

w w
T

t t

    
    

    
     (6a) 
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x
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    

 
 

 

 
  

 









   

(6b) 

Here,   represents the density of the 

stepped nanobeam, 1A  and represents the 

cross-sectional areas of the stepped 

nanobeam. E  is the modulus of elasticity of 

the stepped nanobeam, 1I and is the moment of 

inertia. L  is defined as the length scale 

parameter of the stepped nanobeam, sx is step 

place, and N  is the axial force. 
*( )

represents dimensional parameters. The 

equations of motion and boundary conditions 

before and after the step of the stepped nano 

beam were found as follows, using 

Hamilton's: 

 

 

 

 

 

 

 

 

 

 

 
2 2

4 2 * 4 2 4
2 2* *1 1 1 1 1 2 1 1

1 1 0 04 *2 *2 2 2 42

0
2

1

A

2 /

s

s

x L* * * * * *

* * * * * *

x

s s

w w w EA w w w w
EI e a dx dx e a

x t t x x x x xr
x L x

r


              

            
                    

   
   

 
(7) 

 

 

 

 

 
2 2

4 2 * 2 2 4
2 2* *2 2 2 1 1 2 2 2

2 2 0 04 *2 *2 2 2 42

0
2

1

A

2 /

s

s

x L* * * * * *

* * * * * *

x

s s

w w w EA w w w w
EI e a dx dx e a

x t t x x x x xr
x L x

r


              

            
                    

   
   

 
(8)

 

For Simple-Simple Support, 
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* *

s s
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w

x x

w L w x w x
EI EI

x x x

w x w x
w L EI EI

x x


 



 
 

 

  
   

  

 
  

 

 (9) 

 

Dimensionless parameters are associated with 

dimensional values marked with an asterisk 

and equations are nondimensionalized 

 

**
1,2 * 0

1,2

1,2

2 1

2

1 1

, , , ,

1
, ,s

w e ax
x w t t

L R L

xr EI

r L L A

 

  


   

  

          

(10) 

 
 is a dimensionless parameter that 

indicates the ratio of the radio of the steps at 

eq. (10).   is a dimensionless non-local 

parameter.   is a dimensionless parameter 

expressing the step location. R is the 

parameter expressing the radius of inertia of 

the circular cross-section stepped beam. 

 

4. Perturbation Analysis 
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In this section, the approximate solution is 

obtained by the perturbation method. The 

multi-scale method, which is one of the 

perturbation methods, is applied to the 

solution. The following expansion can be 

suggested for the displacement functions [59]. 

 
0

1 10 0 1 11 0 1( , : ) ( , , ) ( , , )y x t y x T T y x T T      (11) 

 
0

2 20 0 1 21 0 1( , : ) ( , , ) ( , , )y x t y x T T y x T T    (12) 

 

  is a small parameter used in 

calculations. 
0

0T t  is a fast time scale, 

1T t  is a slow time scale. According to the 

time derivative expressions are written in 

terms of new time variables, 

 

0 1

2 2 2

0 0 1

/

/ 2

t D D

t D D D





   

   
 

where, /nD T                        (13) 

 

After expansion, the first and second terms of 

the expansion are separated as follows: 

 

Order ( 0 ) 

 
2 2 2

10 0 10 0 10 0ivy D y D y                    (14) 

 
2

2 2

20 0 20 0 202 2

1
0ivy D y D y



 
            (15) 

 

 

 

Order ( ) 

 
iv 2 2 2 2

11 0 11 0 1 10 0 1 10 0 11

1

2 2 2
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0

1

2 2 2 2 iv
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0 10

y y 2 y 2 y y

( ) (y ) y

(y ) (y ) y

F cos Ωt 2 y

D D D D D D

y dx dx

dx dx

D









 



 



    

 
     

  

 
   

  

 

 

 

(16) 
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1 2
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D

dx dx
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D
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







  







 



  



 
     

  

 
   

  

 

 

 

               

(17) 

 

Where,   

1

2

1

(1 )
2






 
 

 
 

, and   
2

4

2

1

(1 )
2


 



 
 

 
 

        

 

The equations in the 0 Order give the 

linear equation of motion and the linear 

frequency equation of the system. The 

equations in   Order show the effects coming 

from the nonlinear part. The boundary 

conditions can be represented as 

 

       

       

10 20

11 21 11 21

11 21

5 5

11 21 11 21

(0) 0, (1) 0

,

(0) 0, (1) 0

,

y y

y y y y

y y

y y y y

     

     

 

  

  

    

 (18) 

 

5. Linear Problem 

 

The first perturbation order 0  is given in 

Eqs. (14) and (15); The solution can be 

represented as 

 

0 0

10 0 1

1 1 1 1 1 1

( , , )

( ) ( ) ( ) ( )
i T i T

y x T T

A T e Y x A T e Y x
 




         (19) 

 

0 0

20 0 1

2 1 2 2 1 2

( , , )

( ) ( ) ( ) ( )
i T i T

y x T T

A T e Y x A T e Y x
 




         

(20) 

 

If eqs. (19) and (20) are applied to eqs. 

(14) and (15), 

 
2 2 2

1 1 1( ) ( ) ( ) 0ivY x Y x Y x               (21) 
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2 2 2

2 2 22 2

1 1
( ) ( ) ( ) 0ivY x Y x Y x  

 
       

(22) 

 

Eqs. (23) and (24) can be used to solve Eqs. 

(21) and (22) 

 

 
1311 12 14

1311 12 14

1 11 12 13 14

1312 14
11

11 11 11

( )
ir xir x ir x ir x

ir xir x ir x ir x

Y x c e c e c e c e

cc c
c e e e e

c c c

   

 
    

 

(23) 

 
2321 22 24

2321 22 24

2 21 22 23 24

2322 24
21

21 21 21

( )
ikr xikr x ikr x ikr x

ikr xikr x ikr x ikr x

Y x c e c e c e c e

cc c
c e e e e

c c c

   

 
    

 

 (24) 

 

Where, 
1

k


  

 

the scattering equations are obtained as 

follows. 

 
4 2 2 2 2

1 1 0n nr r          1 , 2 , 3 , 4n         

(25) 

 
2

4 4 2 2 2 2 2

2 22 2

1
0n nr k k r k


 

 
            (26) 

 

nr  roots can be obtained numerically after 

all the constant data are entered numerically. 

At this stage, to see the effects of the 

boundary conditions in the linear problem, a 

coefficient matrix is created by substituting 

the boundary conditions in equations (25) and 

(26). The values that make the determinant of 

this matrix zero are the natural frequencies of 

the system. 

 

6. Results And Discussions 

 

First, it was aimed to strengthen the 

accuracy of the results obtained from the 

study. Accordingly, the results were 

compared with similar studies in the literature 

(Table 1). When the table is examined, when 

the non-local parameter value is 0  , the 

system is considered as a classical beam. In 

other cases, 0.1 0.2 0.3 0.4 0.5      , the 

nanoscale effect is observed. In both cases, 

the results showed excellent agreement with 

the literature studies. 

 

Figure 2. 

The first three mode values of the stepped 

nanobeam with various step ratios versus 

nonlocal parameters are shown in Fig. 2. 

When the figure is examined, it is seen that 

the natural frequency values decrease as the 

non-local parameter value increases. The 

graphic is drawn by selecting the step location 

0.4  . For this reason, it is seen that as the 

step ratio   increases, the frequency values 

of the beam increase, that is, its stiffness 

increases. 

 

Table 1. 

To prove the correctness of the solutions to 

the study's linear problem, the values are 

compared with the values of [48], and [60]. A 

stepped beam with a simple-simple boundary 

condition, 1   was chosen and the first 

three fundamental frequency values of the 

beam are compared with other nanobeam 

values for different small-scale parameters in 

Table 1 and show good agreement with the 

other two studies. From these comparisons, it 

is also probable to observe that the frequency 

values increase as the small-scale parameter 

increases. It is seen that this opinion is in 

parallel with the views of other many studies 

working at the nanoscale [28], [50], and [61]. 
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Table 2. 

In Table 2, the first three mode frequency 

values corresponding to different values for 

the stepped nanobeam are given. When the 

natural frequency values are examined, it is 

seen that the increase in the non-local 

parameter value causes the natural frequency 

values to decrease. Based on this situation, it 

can be concluded that there is a decrease in 

the stiffness of the material as the non-local 

parameter value increases. In addition, it is 

possible to examine the effect of the step 

location on the natural frequency in the table 

2. It is seen that the values increase as the step 

location moves away from the starting point. 

This is because the step ratio 1   is 

selected. The stiffness of the stepped beam 

increases as the step location moves away 

from the starting note. This causes the natural 

frequency to increase. This shows that the 

presence of stages in the beams is an 

important factor for the system. 

Figure3.

In Figure 3, the changes in the fundamental 

frequency values of the stepped beam according 

to the step location are plotted for different non-

local parameter values 0.1 0.3 0.5    . While 

obtaining the values, the step ratio was chosen 

0.8  . The following results can be obtained 

from the graph.  It is seen that the natural 

frequency values increase as the step location 

moves away from the starting point. This is true 

for any non-local parameter value. This is due to 

the step ratio being less than 1  . The stiffness 

of the stepped beam increases as the step 

location moves away from the starting point. In 

addition, it is seen that the natural frequency 

decreases with the increase of the non-local 

parameter value. This situation leads to the 

conclusion that the non-local parameter (small-

scale parameter) weakens the rigidity of the 

object.

 

Figure 4.

In Figure 4, the changes in the fundamental 

frequency values of the stepped beam 

according to the step ratio are drawn for 

different step locations. While obtaining the 

values, the non-local parameter value was 

chosen 0.2  . The following results can be 

obtained from the graph. First, if the step ratio 

is 1  , all-natural frequency values are 

equal since the step location becomes 

unimportant. Then, as the step ratio moves 

away from one, different natural frequency 

values are seen according to the step location. 

This situation becomes more evident as the 

step ratio moves away from the value of 

1  . For example, the case where the step 

location 0.2  can be examined. As the step 

ratio approaches 0.5 3   , there are 

serious increases in the natural frequency 

value. This is due to the increase in stiffness 

because of the growth of the thick part of the 

stepped beam. In the case where the step 

location is taken 0.8  , it is observed that 

there is an inverse situation to 0.2  . In 

other words, as the step ratio approaches 

0.5 3   , the natural frequency value 

decreases. This is the result of the decrease in 

the stiffness of the beam because of the 

decrease in the thick part of the stepped beam. 

 

7. Conclusions 

In the present study, the linear vibration 

behavior of the stepped nanobeam is 

investigated. The results are presented in 

graphs and tables. As expected, the reduction 

of the natural frequency of mode shapes is 

observed with the increase of the nonlocal 

parameter. It is seen that the step position and 

ratios contribute significantly to the natural 

frequency. It has been shown that determining 

the desired frequency range or distancing at 

specific frequencies can be carried out easily 

by changing the positions of the step. There 

are very few cascade nanobeam studies in the 

literature, and they have all been written in 

the last few years. Therefore, it is evaluated 

that this study will be a new light for this area. 
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Figures and Tables Captions 

 

Figure 1. Samples of Stepped Nano Beam Scanned by Scanning Electron Microscopy [62] 

 

Figure 2. First three dimensionless frequencies of stepped nanobeam with various step ratios versus nonlocal parameter 

 

Table 1 Comparison of the first three fundamental frequencies according to different non-local parameters 

 

Table 2 The first three frequencies are for different step locations and nonlocal parameters 

 

Figure 3. First dimensionless frequencies of stepped nanobeam with various the nonlocal parameter for versus step 

locations 

 

Figure 4. First dimensionless frequencies of stepped nanobeam with various step locations versus step ratios 
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Figure 2. 

 

 

Table 1  
1                  1   

  
1  2  3  

 Present [60] [48] Present [60] [48] Present [60] 
(Taima et 

al, 2021) 

0 9.8696 9.8696 9.8696 39.4784 39.4784 39.4787 88.8264 88.8264 88.8280 

0.1 9.4158 9.4159 9.4159 33.4277 33.4277 33.4279 64.6414 64.6414 64.6420 

0.2 8.3569 8.3569 8.3569 24.5823 24.5823 24.5824 41.6284 41.6284 41.6287 

0.3 7.1824 7.1824 - 18.5015 18.5016 - 29.6180 29.6180 - 

0.4 6.1455 6.1456 - 14.5951 14.5951 - 22.7743 22.7743 - 

0.5 5.3003 5.3003 - 11.9744 11.9744 - 18.4389 18.4389 - 

 

 
Table 2  

      1  2  3  

0.5 0.2 

0 3.499 14.401 34.034 

0.1 3.418 13.198 28.280 

0.2 3.205 10.850 20.373 

0.3 2.924 8.743 15.183 

0.4 2.632 7.160 11.922 

0.5 2.359 6.002 9.757 

0.5 0.4 

0 3.723 18.683 47.711 

0.1 3.642 16.860 37.832 

0.2 3.425 13.520 25.982 

0.3 3.138 10.709 18.922 

0.4 2.835 8.682 14.681 

0.5 2.550 7.234 11.929 

0.5 0.6 

0 4.778 27.241 50.684 

0.1 4.581 23.924 40.291 

0.2 4.288 18.349 27.770 

0.3 3.907 14.053 20.238 

0.4 3.514 11.134 15.690 

0.5 3.150 9.128 12.738 

0.5 0.8 

0 7.591 27.192 70.363 

0.1 7.330 24.065 53.581 

0.2 6.686 18.712 35.346 
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0.3 5.917 14.485 25.180 

0.4 5.187 11.558 19.296 

0.5 4.556 9.523 15.568 

 

 

 
Figure 3. 

 

 
Figure 4. 
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