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Keywords Abstract 

Free vibration of stepped nanobeams was investigated using Eringen's nonlocal elasticity theory. Beam 
analysis is based on Bernoulli-Euler theory and nanoscale analysis is based on Eringen's nonlocal 
elasticity theory. The system boundary conditions were determined as simple-simple. The equations of 
motion of the system were obtained using Hamilton's principle. For the solution of the obtained state 
equations, a multi-time scale, which is one of the perturbation methods, was used. The results part of the 
study, it is aimed to observe the nano-size effect and the effects of the step state. For this purpose, the 
natural frequency values of the first three modes of the system were obtained for different non-local 
parameter values, step rates, and step positions. When the results were examined, it was determined that 
the non-local parameter value, step ratio, and natural frequency were inversely proportional to each 
other. In addition, to strengthen the accuracy of the results, the results obtained were compared with the 
results of other studies in the literature conducted under the specified conditions, and a perfect agreement 
was observed. The current beam model, on the other hand, could help design and manufacture ICs such 
as nano-sensors and nano-actuators. 

Stepped nanobeam; 
Vibration; 
Nonlocal elasticity;  
Perturbation method. 

1. Introduction
 In today's technology, it is a fact that the expectations from 
the technology produced increase with the increase and 
expansion of the working disciplines. In an age when many 
new product updates are demanded, such as the sensitivity of 
the environmental conditions in which the product is 
operating and the superior material properties expected from 
the device, it is an inevitable expectation that the device sizes 
will decrease rapidly. 

When we look at materials science, the mechanical 
properties of the material are encountered as the dimensions 
of the produced material become smaller. We can experience 
nano sensors, nano actuators, nanoresonators, and nanofluid 
carriers with new physical properties that we can describe as 
completely different and perfect [1-5].  

Modeling of the continuous mechanics of nanoscale 
structures must be replaced by theories that include 
measurements for non-classical phenomena [6]. Some of the 

theories are as follows. Modified the couple stress theory [7,8], 
micropolar elasticity theory [9], the strain gradient theory 
[10,11], surface elasticity theory [12], nonlocal stress, strain 
gradient, and surface energy together [13], doublet mechanics 
[14], and Eringen’s nonlocal elasticity theory [15]. 

Undoubtedly, nanomechanics is one of the main areas 
of studies at nanoscale. The study area of nano mechanics 
includes force and displacement relationships, vibration and 
frequency analysis, and functional and strain characteristics 
of nanoscale structures. With the emergence of smart 
materials technology, the discovery of carbon nanotubes 
[16,17], in the scientific world, the addition of 
microelectromechanical systems (MEMS) [18–21], and 
nanoelectromechanical systems (NEMS) [22–26] to research 
topics has greatly increased the interest in nanomechanics. 
All studies within the scope of these studies deal with 
mathematical models such as bars, beams, and plates. 
Particularly within the scope of the study, the beam model is 
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frequently used in vibration and frequency analysis. In the 
scientific world, it is possible to come across studies using 
numerous beam models in macro, micro, and nano 
dimensions. This is the same for the nanobeams discussed in 
this study, although less in number. 

Wong et al. in his general study on the mechanics of 
nanobeams, he conducted experimental studies on the 
strength, toughness, and flexibility of nanotubes and rods, 
and focused on determining the mechanical properties of 
various material samples under the atomic force microscope. 
The results of the study showed experimentally that nano-
sized beams have very different mechanical properties 
compared to macro-sized beam [27]. Aydoğdu used 
Eringen's generalized nonlocal beam theory to study the 
bending, buckling, and free vibration of nanobeams. In the 
study, many different beam theories were used, including 
Euler-Bernoulli, Timoshenko, Reddy, and Aydoğdu. Non-
local parameter effect, beam length effect is considered for 
models produced from all different theories. In the 
conclusion, he suggested that the data can be used for static 
and dynamic analysis of nanotubes [28]. Akkoca et al. 
analyzed the linear vibration of mid-supported nanobeam, 
which is frequently encountered in the structure of 
nanoelectromechanical systems. They used Eringen's 
nonlocal elasticity theory to include the nanoscale effect in 
the analysis. The distance of the center support from the 
starting point and the non-local parameter from Eringen's 
theory were the focal points in his studies. As a result of the 
study, they emphasized that with the increase of the non-local 
parameter value, more nano-sized structures are obtained 
and when the middle support is positioned at the midpoint of 
the beam, the maximum high stiffness and linear natural 
frequency value are obtained [29]. Khaniki, in his study, saw 
Eringen's two-stage local and non-local integral model as a 
reliable and well-designed theory form, stating that it would 
be correct to use it in modeling size-dependent effects. In 
light of this information, he investigated the vibration 
behavior of the double-layer nanobeam system in his work. 
The vibration behavior of the double-layer nanobeam is 
formulated for three different situations, in-phase vibration, 
out-of-phase vibration, and stabilization of the underlying 
layer [30]. and many more, nanostructure problems are 
addressed by using size-dependent theories [31–36]. 

In the theory of continuum mechanics, carbon 
nanotubes or nanobeams are considered homogeneous and 
continuous macrostructures. The physical properties of the 
material nanostructure, such as lattice voids in the material 
structure or some linear and surface defects that disrupt the 
continuity of the system, such as steps or cracks, examples 
of which can be seen in Figure 1, are neglected. This 
situation is likely to cause problems at the point of 
transforming the design into practice. Assadi and Nazemi 
zadeh [37] in their study, emphasized that advanced 
micro/nanosystems should be developed and their 
mechanical behavior should be predicted correctly, and it is 
not correct to say that nanobeams are discontinuous as in 
classical beams. Since the properties of the material differ 

 
Figure 1. Samples of stepped nano beam scanned by scanning 
electron microscopy [62]. 

depending on the size of the nano-size, not neglecting the 
physical properties in the examination of the mechanical 
behavior of nanomaterials will allow more accurate analysis 
results in real engineering applications. As a result of these 
defects existing in the nanostructure of the material, fatigue 
life may be shortened during their working life. They can 
reduce the structure's natural frequencies because it becomes 
more flexible. In this context, many studies on beams with 
stepped and cracked surfaces exist. 

Tekin and Özkaya studied the free vibrations of three 
beam systems with n steps and different geometry sections 
at different  points [38]. Lu et al. proposed a  new  approach 
to analyzing the free and forced vibrations of beams with 
multiple section stages using a composite element method. 
At the end of the study, they claimed that the proposed 
method for vibration analysis of the stepped beam showed 
the accuracy [39]. 

Xing-Jian et al. in their research, they investigated the 
vibration properties of stepped laminated composite 
Timoshenko beam. Plots of the natural frequencies and mode 
shapes of the T300/970 laminated stepped beam are given to 
show the effect of step position parameter applications on the 
dynamic behavior of the beam [40]. Adomian 
Decomposition Method (ADM) is also frequently used for 
vibration analysis of stepped beams. Mao used the ADM to 
investigate the free vibrations of a stepped Euler-Bernoulli 
beam consisting of two uniform sections [41]. In another 
study, Mao used the ADM to investigate the free vibrations 
of Euler-Bernoulli beams with multiple cross-section steps 
[42]. In many studies, analysis of cracks formed on various 
structures is encountered [27,43,44].  

When the international literature databases are 
examined by Lu et al. [13] and Lellep et al. [45-47]; It is 
observed that they are one of the rare researchers who have 
focused on stepped nanobeams with their studies in the last 
few years. In their first study on this subject, investigated the 
free vibrations of beams and rods made of nanomaterials. In 
their results, they emphasized that the presence of step and 
crack in the nanobeam is very important and affects the 
frequency modes. Taima et al. investigated the free vibration 
of multi-step nanobeams using the dynamic stiffness matrix 
method. The results show that the dimensionless natural 
frequency parameter is inversely proportional to the non-
local parameters, except for the first mode for unclamped 
boundary conditions [48]. The free lateral vibration of the 
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Euler-Bernoulli nanobeam with multiple discontinuities was 
investigated in their study, claiming that the natural 
frequencies of nanobeams are affected by various 
discontinuities and boundary conditions. The management 
equations are developed using Eringen's nonlocal elasticity 
theory. Discussing the effects of crack severity, the stepwise 
ratio of cross-sectional area, crack, and step location, 
buckyball mass, and small-scale parameter on natural 
frequencies, they argued that their approach was composed 
of a series of examples that could be used as criteria for other 
studies [49]. 

The discontinuity caused by steps or cracks on the 
nanobeam hinders the application of the classical continuum 
theory in the studies, and it is seen that there are many 
different theories applied to nanobeam. Therefore, the theory 
of continuum mechanics is much preferred and can capture 
effects considered important for the nanoscale [50].  

At this point, nonlocal elasticity theory is one of the 
most successful studies [15]. The small-scale effect in nano-
scale systems offers an important solution in terms of reality 
in the examination of the system [51]. For this reason, in 
studies dealing with nanostructures, Eringen's nonlocal 
continuum mechanics, which also considers the size effect, 
has been applied. Eringen's theory has been utilized in the 
analysis of many nanoscale structures such as nanobeams 
[52], nanoplates [53,54], lattice structures of materials [55], 
carbon nanotubes [56], and nano-switches [57]. 

In this study, the cascade nanobeam is modeled based 
on nonlocal theory.  In the authors' opinion, this work may 
help gain an insight into the cascading nanobeam behavior 
for use in nanodevices or systems. Unlike the other stepped 
nanobeams work, an infrastructure was created for the design 
of much more materials by working without dimensions. The 
perturbation method was preferred for the first time as an 
analytical solution. Thereby presenting the possibility of 
nonlinear analysis considered as the next study. 
2. Nonlocal elasticity theory 

According to the nonlocal elasticity theory, the stress at a 
reference point in the body of the body depends not only on 
the stresses at that point but also on the stresses at all other 
points of the body. This observation is in line with the atomic 
theory of lattice dynamics and experimental observations on 
phonon dispersion. The classical (local) theory of elasticity 
is obtained when the effects of strains at points other than the 
reference point are neglected in the limit [58]. 

Nanobeam’s material defaults to be a non-linear elastic 
material that conforms to a nonlocal elasticity theory. 
According to [15]. concepts, the constitutive equations for 
materials conforming to nonlocal elasticity be expressed as 
[15]: 

𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛(𝑥𝑥∗) = � 𝑎𝑎��𝑥𝑥∗′ − 𝑥𝑥∗�, 𝜏𝜏�𝜎𝜎𝑖𝑖𝑖𝑖𝑐𝑐 �𝑥𝑥∗
′�𝑑𝑑𝑑𝑑.

(𝑉𝑉)
                      (1) 

Eq. (1), 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛 denotes the tension tensor at non-local elasticity, 
𝜎𝜎𝑖𝑖𝑖𝑖𝑐𝑐  the classical (Hooke) tension tensor, and 𝑑𝑑 the volume. 
Here, 𝑎𝑎 is the kernel function, which is assumed to express 

the effect of the stress state in 𝑥𝑥∗′ ∈ 𝑑𝑑 and the stress-strain 
state in  𝑥𝑥∗ ∈ 𝑑𝑑, and 𝜏𝜏 is the physical constant [15]. Different 
forms of kernel function 𝑎𝑎(𝑥𝑥∗) in Eq. (1) describe different 
approximate models of nonlocal elasticity. Suppose 𝑎𝑎(𝑥𝑥∗) is 
a linear differential operator L function. In this case [15]: 

𝐿𝐿𝑎𝑎��𝑥𝑥∗′ − 𝑥𝑥∗�� = 𝛿𝛿��𝑥𝑥∗′ − 𝑥𝑥∗��,                                           (2) 

here 𝛿𝛿 is Dirac's 𝛿𝛿 - function, has shown that the function can 
be obtained by taking a simple two-dimensional kernel 
function [15]. 

𝐿𝐿(𝑎𝑎) = (1 − (𝑒𝑒0𝑎𝑎)2𝛻𝛻2)𝑎𝑎(𝑥𝑥∗),                                               (3) 

here 𝛻𝛻 is the Laplace operator, 𝑒𝑒0 the physical constant. 𝑎𝑎 the 
repetitive interatomic distance parameter (lattice size) in the 
lattice structure of nanomaterials. Eringen named the 𝑒𝑒0𝑎𝑎 
expression as a small-scale parameter and suggested that its 
value should be taken in 𝑒𝑒0𝑎𝑎 < 2 nanometer scales [15]. 
According to Eqs. (1) - (3) the constitutive equation of 
nonlocal elasticity can be determined as follows [15]: 

(1 − 𝑒𝑒0𝑎𝑎𝛻𝛻2)𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑐𝑐 .                                                              (4) 

For homogeneous isotropic Euler Bernoulli beam [15], 

𝜎𝜎(𝑥𝑥∗) − (𝑒𝑒0𝑎𝑎)2
𝜕𝜕2𝜎𝜎(𝑥𝑥∗)
𝜕𝜕𝑥𝑥2

= 𝐸𝐸𝐸𝐸(𝑥𝑥∗).                                     (5) 

3. Materials and methods 

Hamilton's principle was used to obtain the equations of 
motion of the stepped nanobeam. First, the Lagrangian of the 
system £ = 𝑇𝑇 − 𝑑𝑑 was found. According to Hamilton's 
principle, the variation of the time integral of the difference 
between the kinetic 𝑇𝑇 and potential 𝑑𝑑 energies of a system 
should be zero. Here, the difference between kinetic and 
potential energies is defined as “Lagrangian (£)”. 
 

𝑇𝑇 =
1
2
� ρA1

𝑥𝑥𝑠𝑠

0
�
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2
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dx∗,    6(a) 
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here, 𝜌𝜌 represents the density of the stepped nanobeam, 𝐴𝐴1 
represents the cross-sectional areas of the stepped nanobeam. 
𝐸𝐸 is the modulus of elasticity of the stepped nanobeam, 𝐼𝐼1 
the moment of inertia. 𝐿𝐿 is defined as the length scale 
parameter of the stepped nanobeam, 𝑥𝑥𝑠𝑠  is step place, and 𝑁𝑁 
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the axial force. ()∗ represents dimensional parameters. The 
equations of motion and boundary conditions before and 
after the step of the stepped nano beam were found as 
follows, using Hamilton's: 

𝐸𝐸𝐼𝐼1
𝜕𝜕4𝑤𝑤1∗

𝜕𝜕𝑥𝑥∗4
+ 𝜌𝜌𝐴𝐴1 �
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�
2
�
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�
2𝑥𝑥𝑠𝑠
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�
2𝐿𝐿
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� ,                 (7) 
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For Simple-Simple Support, 

𝛿𝛿𝑤𝑤1∗(0) = 0,
𝜕𝜕�𝛿𝛿𝑤𝑤1∗(𝑥𝑥𝑠𝑠)�

𝜕𝜕𝑥𝑥∗
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𝜕𝜕𝑥𝑥∗2

= 0, −𝐸𝐸𝐼𝐼1
𝜕𝜕2𝑤𝑤1∗(𝑥𝑥𝑠𝑠)
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Dimensionless parameters are associated with dimensional 
values marked with an asterisk and equations are 
nondimensionalized 
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,                                                                          (10) 

where 𝛼𝛼 is the dimensionless parameter that indicates 
the ratio of the radio of the steps at Eq. (10). 𝛾𝛾 the 
dimensionless non-local parameter. 𝜂𝜂 the dimensionless 
parameter expressing the step location. 𝑅𝑅 the parameter 
expressing the radius of inertia of the circular cross-
section stepped beam. 

4. Perturbation analysis 

In this section, the approximate solution is obtained by the 
perturbation method. The multi-scale method, which is one 
of the perturbation methods, is applied to the solution. The 
following expansion can be suggested for the displacement 
functions [59]: 
𝑦𝑦1(𝑥𝑥, 𝑡𝑡: 𝐸𝐸) = 𝐸𝐸0𝑦𝑦10(𝑥𝑥,𝑇𝑇0,𝑇𝑇1) + 𝐸𝐸𝑦𝑦11(𝑥𝑥,𝑇𝑇0,𝑇𝑇1),              (11) 

𝑦𝑦2(𝑥𝑥, 𝑡𝑡: 𝐸𝐸) = 𝐸𝐸0𝑦𝑦20(𝑥𝑥,𝑇𝑇0,𝑇𝑇1) + 𝐸𝐸𝑦𝑦21(𝑥𝑥,𝑇𝑇0,𝑇𝑇1),              (12) 

where 𝐸𝐸 is the small parameter used in calculations. 𝑇𝑇0 =
𝐸𝐸0 𝑡𝑡 is a fast time scale, 𝑇𝑇1 = 𝐸𝐸𝑡𝑡 is a slow time scale. 
According to the time derivative expressions are written in 
terms of new time variables, 

𝜕𝜕/𝜕𝜕𝑡𝑡 = 𝐷𝐷0 + 𝐸𝐸𝐷𝐷1, 

𝜕𝜕2/𝜕𝜕𝑡𝑡2 = 𝐷𝐷02 + 2𝐸𝐸𝐷𝐷0𝐷𝐷1, 

where     𝐷𝐷𝑛𝑛 = 𝜕𝜕/𝜕𝜕𝑇𝑇.                                                            (13) 

After expansion, the first and second terms of the expansion 
are separated as follows: 

Order (𝜺𝜺𝟎𝟎) 

𝑦𝑦10𝑖𝑖𝑖𝑖 + 𝐷𝐷02𝑦𝑦10 − 𝛾𝛾2𝐷𝐷02𝑦𝑦10″ = 0.                                              (14) 

 

𝑦𝑦20𝑖𝑖𝑖𝑖 +
1
𝛼𝛼2

𝐷𝐷02𝑦𝑦20 −
𝛾𝛾2

𝛼𝛼2
𝐷𝐷02𝑦𝑦20″ = 0.                                       (15) 

Order (𝜺𝜺) 

𝑦𝑦11
iv + 𝐷𝐷02𝑦𝑦11 + 2𝐷𝐷0𝐷𝐷1𝑦𝑦10 − 2𝛾𝛾2𝐷𝐷0𝐷𝐷1𝑦𝑦10

″ − 𝛾𝛾2𝐷𝐷02𝑦𝑦11
″  

       = 𝛤𝛤1 �� (𝑦𝑦′
10
2 )𝑑𝑑𝑥𝑥 + 𝛼𝛼2 � (𝑦𝑦′2

20)𝑑𝑑𝑥𝑥
1

𝜂𝜂

𝜂𝜂

0
� 𝑦𝑦10

″  

       −𝛤𝛤1𝛾𝛾2 �� �𝑦𝑦′2
10�𝑑𝑑𝑥𝑥 + 𝛼𝛼2 � �𝑦𝑦′2

20�𝑑𝑑𝑥𝑥
1

𝜂𝜂

𝜂𝜂

0
� 𝑦𝑦10

iv  

      +F cos Ωt − 2𝜇𝜇𝐷𝐷0𝑦𝑦10,                                                     (16)       

𝑦𝑦21
iv +

1
𝛼𝛼2

𝐷𝐷02𝑦𝑦21 +
2
𝛼𝛼2

𝐷𝐷0𝐷𝐷1𝑦𝑦20 − 2
𝛾𝛾2

𝛼𝛼2
𝐷𝐷0𝐷𝐷1𝑦𝑦20

″  

      −
𝛾𝛾2

𝛼𝛼2
𝐷𝐷02𝑦𝑦21

″ = 𝛤𝛤2 �� (𝑦𝑦′2
10)𝑑𝑑𝑥𝑥 + 𝛼𝛼2 � (𝑦𝑦′2

20)𝑑𝑑𝑥𝑥
1

𝜂𝜂

𝜂𝜂

0
� 𝑦𝑦20

″  

      −𝛤𝛤2𝛾𝛾2 �� (𝑦𝑦′2
10)𝑑𝑑𝑥𝑥 + 𝛼𝛼2 � (𝑦𝑦 ′2

20)𝑑𝑑𝑥𝑥
1

𝜂𝜂

𝜂𝜂

0
� 𝑦𝑦20

iv  

      +F cos Ωt − 2𝜇𝜇𝐷𝐷0𝑦𝑦20,                                                     (17) 

where   

𝛤𝛤1 = 1

2�𝜂𝜂+(1−𝜂𝜂)
𝛼𝛼2

�
  and   𝛤𝛤2 = 1

2𝛼𝛼4�𝜂𝜂+(1−𝜂𝜂)
𝛼𝛼2

�
. 

The equations in the Order (𝐸𝐸0) give the linear equation of 
motion and the linear frequency equation of the system. The 
equations in Order (𝐸𝐸) show the effects coming from the 
nonlinear part. The boundary conditions can be represented 
as: 

𝑦𝑦10(0) = 0,                  𝑦𝑦20(1) = 0, 

𝑦𝑦11(𝜂𝜂) = 𝛼𝛼𝑦𝑦21(𝜂𝜂),     𝑦𝑦11′ (𝜂𝜂) = 𝛼𝛼𝑦𝑦21′ (𝜂𝜂), 

𝑦𝑦11″ (0) = 0,                  𝑦𝑦21″ (1) = 0, 

𝑦𝑦11″ (𝜂𝜂) = 𝛼𝛼5𝑦𝑦21″ (𝜂𝜂),   𝑦𝑦11‴ (𝜂𝜂) = 𝛼𝛼5𝑦𝑦21‴ (𝜂𝜂).                        (18) 
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5. Linear problem 

The first perturbation order (𝐸𝐸0) is given in Eqs. (14) and 
(15); The solution can be represented as: 

𝑦𝑦10(𝑥𝑥,𝑇𝑇0,𝑇𝑇1) = 

      (𝑇𝑇1)𝑒𝑒𝑖𝑖𝑖𝑖𝑇𝑇0𝑌𝑌1(𝑥𝑥) + �̄�𝐴1(𝑇𝑇1)𝑒𝑒−𝑖𝑖𝑖𝑖𝑇𝑇0�̄�𝑌1(𝑥𝑥),                         (19) 

𝑦𝑦20(𝑥𝑥,𝑇𝑇0,𝑇𝑇1) = 

      (𝑇𝑇1)𝑒𝑒𝑖𝑖𝑖𝑖𝑇𝑇0𝑌𝑌2(𝑥𝑥) + �̄�𝐴2(𝑇𝑇1)𝑒𝑒−𝑖𝑖𝑖𝑖𝑇𝑇0�̄�𝑌2(𝑥𝑥).                         (20) 

If Eqs. (19) and (20) are applied to Eqs. (14) and (15): 

𝑌𝑌1𝑖𝑖𝑖𝑖(𝑥𝑥) −𝜔𝜔2𝑌𝑌1(𝑥𝑥) + 𝛾𝛾2𝜔𝜔2𝑌𝑌1′′(𝑥𝑥) = 0,                             (21) 

𝑌𝑌2𝑖𝑖𝑖𝑖(𝑥𝑥) −
1
𝛼𝛼2

𝜔𝜔2𝑌𝑌2(𝑥𝑥) +
1
𝛼𝛼2

𝛾𝛾2𝜔𝜔2𝑌𝑌2′′(𝑥𝑥) = 0.                 (22) 

Eqs. (23) and (24) can be used to solve Eqs. (21) and (22): 

𝑌𝑌1(𝑥𝑥) = 𝑐𝑐11𝑒𝑒𝑖𝑖𝑟𝑟11𝑥𝑥 + 𝑐𝑐12𝑒𝑒𝑖𝑖𝑟𝑟12𝑥𝑥 + 𝑐𝑐13𝑒𝑒𝑖𝑖𝑟𝑟13𝑥𝑥 + 𝑐𝑐14𝑒𝑒𝑖𝑖𝑟𝑟14𝑥𝑥 

             = 𝑐𝑐11 �𝑒𝑒𝑖𝑖𝑟𝑟11𝑥𝑥 +
𝑐𝑐12
𝑐𝑐11

𝑒𝑒𝑖𝑖𝑟𝑟12𝑥𝑥 +
𝑐𝑐13
𝑐𝑐11

𝑒𝑒𝑖𝑖𝑟𝑟13𝑥𝑥 

                                      + 
𝑐𝑐14
𝑐𝑐11

𝑒𝑒𝑖𝑖𝑟𝑟14𝑥𝑥� ,                                     (23) 

𝑌𝑌2(𝑥𝑥) = 𝑐𝑐21𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟21𝑥𝑥 + 𝑐𝑐22𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟22𝑥𝑥 + 𝑐𝑐23𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟23𝑥𝑥 + 𝑐𝑐24𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟24𝑥𝑥 

             = 𝑐𝑐21 �𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟21𝑥𝑥 +
𝑐𝑐22
𝑐𝑐21

𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟22𝑥𝑥 +
𝑐𝑐23
𝑐𝑐21

𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟23𝑥𝑥 

                                        +
𝑐𝑐24
𝑐𝑐21

𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟24𝑥𝑥� ,                                  (24) 

where, 𝑘𝑘 = 1
√𝛼𝛼

. the scattering equations are obtained as 
follows: 

𝑟𝑟1𝑛𝑛4 − 𝛾𝛾2𝜔𝜔2𝑟𝑟1𝑛𝑛2 − 𝜔𝜔2 = 0,    𝑛𝑛 = 1,2,3,4,                           (25) 

𝑟𝑟2𝑛𝑛4 𝑘𝑘4 −
𝛾𝛾2

𝛼𝛼2
𝑘𝑘2𝜔𝜔2𝑟𝑟2𝑛𝑛2 −

1
𝛼𝛼2

𝑘𝑘2𝜔𝜔2 = 0.                                (26) 

𝑟𝑟𝑛𝑛 roots can be obtained numerically after all the constant 
data are entered numerically. At this stage, to see the 
effects of the boundary conditions in the linear problem, 
a coefficient matrix is created by substituting the 
boundary conditions in Eqs. (25) and (26). The values that 
make the determinant of this matrix zero are the natural 
frequencies of the system. 

6. Results and discussions 

First, it was aimed to strengthen the accuracy of the results 
obtained from the study. Accordingly, the results were 
compared with similar studies in the literature (Table 1). 
When the table is examined, when the non-local 
parameter value is 𝛾𝛾 = 0, the system is considered as a 
classical beam. In other cases, 𝛾𝛾 = 0.1 − 0.2 − 0.3 −
0.4 − 0.5, the nanoscale effect is observed. In both cases, 
the results showed excellent agreement with the literature 
studies. 

The first three mode values of the stepped nanobeam 
with various step ratios versus nonlocal parameters are 

 

Figure 2. First three dimensionless frequencies of 
stepped nanobeam with various step ratios versus 
nonlocal parameter. 

shown in Figure 2. When the figure is examined, it is seen 
that the natural frequency values decrease as the non-local 
parameter value increases. The graphic is drawn by 
selecting the step location 𝜂𝜂 = 0.4. For this reason, it is 
seen that as the step ratio 𝛼𝛼 increases, the frequency 
values of the beam increase, that is, its stiffness increases. 

To prove the correctness of the solutions to the 
study's linear problem, the values are compared with the 
values of Refs. [48,60]. A    stepped   beam    with    a   
simple-simple boundary condition, 𝛼𝛼 = 1 was chosen and 
the first three fundamental frequency values of the beam 
are compared with other nanobeam values for different 
small-scale parameters in Table 1 and show good 
agreement with the other two studies. From these 
comparisons, it is also probable to observe that the 
frequency values increase as the small-scale parameter 
increases. It is seen that this opinion is in parallel with the 
views of other many studies working at the nanoscale 
[28,50,61]. 

In Table 2, the first three mode frequency values 
corresponding to different values for the stepped 
nanobeam are given. When the natural frequency values 
are examined, it is seen that the increase in the non-local 
parameter value causes the natural frequency values to 
decrease. Based on this situation, it can be concluded that 
there is a decrease in the stiffness of the material as the 
non-local parameter value increases. In addition, it is 
possible to examine the effect of the step location on the 
natural frequency in Table 2. It is seen that the values 
increase as the step location moves away from the starting 
point. This is because the step ratio 𝛼𝛼 < 1 is selected. The 
stiffness of the stepped beam increases as the step location 
moves away from the starting note. This causes the natural 
frequency to increase. This shows that the presence of 
stages in the beams is an important factor for the system. 

In Figure 3, the changes in the fundamental 
frequency values of the stepped beam according to the 
step location are plotted for different non-local parameter 
values 𝛾𝛾 = 0.1 − 0.3 − 0.5. While obtaining the values, 
the step ratio was chosen 𝛼𝛼 = 0.8. The following results 
can be obtained from the graph.  It is seen that the natural 
frequency values increase as the step location moves away 
from the starting point. This is true for any non-local 
parameter value. This is due to the step ratio being less 
than 𝛼𝛼 < 1. The stiffness of the stepped beam increases as
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Table 1. Comparison of the first three fundamental frequencies according to different non-local parameters. 

𝜶𝜶 = 𝟏𝟏          𝜼𝜼 = 𝟏𝟏 
𝜸𝜸 𝝎𝝎𝟏𝟏 𝝎𝝎𝟐𝟐 𝝎𝝎𝟑𝟑 

Present [60] [48] Present [60] [48] Present [60] (Taima et al. 
[48], 2021) 

0 9.8696 9.8696 9.8696 39.4784 39.4784 39.4787 88.8264 88.8264 88.8280 
0.1 9.4158 9.4159 9.4159 33.4277 33.4277 33.4279 64.6414 64.6414 64.6420 
0.2 8.3569 8.3569 8.3569 24.5823 24.5823 24.5824 41.6284 41.6284 41.6287 
0.3 7.1824 7.1824 - 18.5015 18.5016 - 29.6180 29.6180 - 
0.4 6.1455 6.1456 - 14.5951 14.5951 - 22.7743 22.7743 - 
0.5 5.3003 5.3003 - 11.9744 11.9744 - 18.4389 18.4389 - 

Table 2. The first three frequencies are for different step locations and nonlocal parameters. 
𝜶𝜶 𝜼𝜼 𝜸𝜸 𝝎𝝎𝟏𝟏 𝝎𝝎𝟐𝟐 𝝎𝝎𝟑𝟑 

0.5 0.2 

0 3.499 14.401 34.034 
0.1 3.418 13.198 28.280 
0.2 3.205 10.850 20.373 
0.3 2.924 8.743 15.183 
0.4 2.632 7.160 11.922 
0.5 2.359 6.002 9.757 

0.5 0.4 

0 3.723 18.683 47.711 
0.1 3.642 16.860 37.832 
0.2 3.425 13.520 25.982 
0.3 3.138 10.709 18.922 
0.4 2.835 8.682 14.681 
0.5 2.550 7.234 11.929 

0.5 0.6 

0 4.778 27.241 50.684 
0.1 4.581 23.924 40.291 
0.2 4.288 18.349 27.770 
0.3 3.907 14.053 20.238 
0.4 3.514 11.134 15.690 
0.5 3.150 9.128 12.738 

0.5 0.8 

0 7.591 27.192 70.363 
0.1 7.330 24.065 53.581 
0.2 6.686 18.712 35.346 
0.3 5.917 14.485 25.180 
0.4 5.187 11.558 19.296 
0.5 4.556 9.523 15.568 

Figure 3. First dimensionless frequencies of stepped nanobeam with 
various the nonlocal parameter for versus step locations. 

the step location moves away from the starting point. In 
addition, it is seen that the natural  frequency decreases 
with the increase of the non-local parameter value. This 
situation leads to the conclusion that the non-local 
parameter (small-scale parameter) weakens the rigidity of 
the object. 

Figure 4. First dimensionless frequencies of stepped nanobeam with 
various step locations versus step ratios. 

In Figure 4, the changes in the fundamental 
frequency values of the stepped beam according to the 
step ratio are drawn for different step locations. While 
obtaining the values, the non-local parameter value was 
chosen 𝛾𝛾 = 0.2. The following results can be obtained 
from the graph. First, if the step ratio is 𝛼𝛼 = 1, all-natural 
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frequency values are equal since the step location 
becomes unimportant. Then, as the step ratio moves away 
from one, different natural frequency values are seen 
according to the step location. This situation becomes 
more evident as the step ratio moves away from the value 
of 𝛼𝛼 = 1. For example, the case where the step  location 
𝜂𝜂 = 0.2  can  be  examined. As  the  step  ratio approaches 
𝛼𝛼 = 0.5 → 3, there are serious increases in the natural 
frequency value. This is due to the increase in stiffness 
because of the growth of the thick part of the stepped 
beam. In the case where the step location is taken 𝜂𝜂 = 0.8, 
it is observed that there is an inverse situation to  𝜂𝜂 = 0.2. 
In other words, as the step ratio approaches 𝛼𝛼 = 0.5 → 3, 
the natural frequency value decreases. This is the result of 
the decrease in the stiffness of the beam because of the 
decrease in the thick part of the stepped beam. 

7. Conclusions
In the present study, the linear vibration behavior of the 
stepped nanobeam is investigated. The results are presented 
in graphs and tables. As expected, the reduction of the natural 
frequency of mode shapes is observed with the increase of 
the nonlocal parameter. It is seen that the step position and 
ratios contribute significantly to the natural frequency. It has 
been shown that determining the desired frequency range or 
distancing at specific frequencies can be carried out easily by 
changing the positions of the step. There are very few 
cascade nanobeam studies in the literature, and they have all 
been written in the last few years. Therefore, it is evaluated 
that this study will be a new light for this area.  
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