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Abstract. For 0 < 
 < 180�, a geometric path P = (p1; : : : ; pn) is called angle-monotone
with width 
 from p1 to pn if there exists a closed wedge of angle 
 such that every directed
edge ����!pipi+1 of P lies inside the wedge whose apex is pi. A geometric graph G is called
angle-monotone with width 
 if for any two vertices p and q in G, there exists an angle-
monotone path with width 
 from p to q. In this paper, we show that for any integer k � 1
and any i 2 f2; 3; 4; 5g, the theta-graph �4k+i on a set of points in convex position is angle-
monotone with width 90� + i�

4 , where � = 360�
4k+i . Moreover, we present two sets of points

in the plane, one in convex position and the other in non-convex position, to show that for
every 0 < 
 < 180�, the graph �4 is not angle-monotone with width 
. Furthermore, we
improve the stretch factor of graphs �4;�5;�7;�9;�11; Y4, and Y5, when the points are
in convex position. Finally, we provide a lower bound of 3.66 for Y4 that solves an open
problem.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Let S be a set of points in the plane. For two points
p; q 2 S, the Euclidean distance between p and q is
denoted by jpqj. A geometric graph G = (S;E) is
a weighted graph such that any edge (x; y) of G is a
straight-line segment between x and y and the weight of
(x; y) is jxyj. The length of a path P = (p1; p2; : : : ; pr)
between p1 and pr in G is denoted by jP j, and it is
de�ned as jP j =

Pr�1
i=1 jpipi+1j. For any two points

p; q 2 S, the stretch factor (or dilation) between p and
q in a geometric graph G is the ratio of the length of
a shortest path between p and q in G over jpqj. The
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stretch factor of a geometric graph G is the maximum
stretch factor between all pairs of vertices of G.

Let t > 1 be a real number. A geometric graph
G is called a t-spanner if the stretch factor of G is at
most t. In computational geometry, constructing the
geometric graphs with low stretch factor, small number
of edges (small size) and low weight is an important
problem. We refer the reader to the book [1] and the
papers [2{10] to study t-spanners and their algorithms.

Let � > 0 be a real number. In [11], Dehkordi et
al., introduced �-paths. Let W �

p be a 90� closed wedge
delimited by the rays starting at p with the slopes � �
45� and � + 45�. A path (p1; p2; : : : ; pn) is called a �-
path if for every integer i with 1 � i � n�1, the vector����!pipi+1 lies in the wedge W �

pi . Using the concept of �-
paths, Bonichon et al. [12] introduced angle-monotone
graphs. A geometric graph G = (S;E) is called angle-
monotone if for any two points u; v 2 S, there is a real
number � > 0 such that G contains a �-path between
u and v. Bonichon et al. [12] generalized the concept
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Figure 1. An angle-monotone path between x and y with
width 
 = 145�.

of angle-monotone graphs to angle-monotone graphs
with width 
. Let 0 < 
 < 180�. A geometric path
P = (p1; : : : ; pn) is called angle-monotone with width 

from p1 to pn if for some closed wedge of angle 
, every
vector ����!pipi+1 lies in the wedge whose apex is pi (see
Figure 1).

A geometric graph G is called angle-monotone
with width 
 if for any vertex p of G, there is an angle-
monotone path with width 
 from p to all other vertices
of G. It is remarkable that if a path is angle-monotone
with width 
 from x to y, then the path is also angle-
monotone with width 
 from y to x.

In [11], Dehkordi et al., showed that any Gabriel
triangulation is an angle-monotone graph with width
90�. In [13], Lubiw and Mondal showed that for any set
of points in the plane, there is an angle-monotone graph
with width 90� with a subquadratic size. Furthermore,
they showed that for any angle � with 0 < � < 45�,
and for any set of points in the plane, there is an angle-
monotone graph with width (90� + �) of size O(n� ).
In [14], Bakhshesh and Farshi presented a point set
in the plane that its Delauany triangulation is not
angle-monotone with width less than 140�. In [15],
Bakhshesh and Farshi proved that the minimum value
of an angle 
 that for any set of points in the plane
there is a plane angle-monotone graph with width 
 is
equal to 120�.

One of the most popular graphs in computational
geometry is theta-graphs which was introduced by
Clarkson [16] and independently by Keil [17]. In-
formally, for every point set S in the plane and an
integer m � 2, the theta-graph �m is constructed
by partitioning the plane into m cones at each point
p 2 S, and joining the closest point to p at each cone
(in the next section, closest will be de�ned). Bonichon
et al. [12] proved that for any set of points in the plane,

Figure 2. Partition the plane into m = 18 cones with
apex at p.

half-�6-graph, a plane subgraph of �6, whose edges are
obtained by selecting every other cone i.e. alternate
cones- is angle-monotone with width 120�. In [11]
Dehkordi et al. prove that for every set of n points
in the plane that are in convex position, there exists
an angle-monotone graph (angle-monotone graph with
width 90�) with O(n log n) edges. To the best of our
knowledge, it is unknown if the theta-graphs except �6
are angle-monotone with a constant width.

In this paper, we show that for any set of points
in convex position, and any integer k � 1 and any i 2
f2; 3; 4; 5g, the theta-graph �4k+i is angle-monotone
with width 90� + i�

4 , where � = 360�
4k+i . Moreover, we

present two sets of points in the plane, one in convex
position and the other in non-convex position, to show
that for every 0 < 
 < 180�, the graph �4 is not angle-
monotone with width 
.

2. Preliminaries

Let m � 3 be an integer, and let � = 2�
m be a real

number. For any integer i with 0 � i < m and a point
p in the plane, let Rpi be the ray emanating from p
making the angle � � i = 2�i=m with the positive x-
axis (the angles are considered in counter-clockwise).
Let Cpi be the cone which is constructed by the rays
Rpi and Rpi+1. Note that we assume that Rpm = Rp0.
For a point r and a cone Cpi , we say Cpi contains r (or,
r 2 Cpi ) if r lies strictly between Rpi and Rpi+1, or lies
on Rpi+1. If r lies on Rpi , then r 62 Cpi . For a point set
S, the theta-graph �m is constructed as follows. For
each point p 2 S, we partition the plane into m cones
Cp0 ; C

p
1 ; : : : ; C

p
m�1 (see Figure 2). Then, for each cone

Cpi containing at least one point of S other than p, let
ri 2 Cpi be a point such that jpr0ij is minimum where r0i
is the perpendicular projection of ri onto the bisector
of Cpi . Then, we add the edge (p; ri) to the graph. We
assume that a pair (a; b) is a directed edge. We call the
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Algorithm 1. �-Walk (a; b) (see [1]).

point r the closest point to p in Cpi . For a point q 2 Cpi ,
the canonical triangle Tpq is the isosceles triangle which
is constructed by the rays of Cpi and the line through
q perpendicular to the bisector of Cpi . For more details
on theta-graphs, see [1].

Let S be a set of n � 3 points in the plane in
a convex position. In the following, when we use the
notation G, we mean one of the graphs �4k+2, �4k+3,
�4k+4, and �4k+5. Throughout the paper, we assume
that p and q are two distinct points in S and suppose,
without loss of generality, that q 2 Cp0 . Let WO be the
wedge with apex at the origin O that is the union of
all cones COt with

�m�1
4

� � t � �m�2
2

�
. Let W 0O be

the re
ection ofWO with respect to the point O. Now,
let UO be a wedge with apex at the origin O such that
UO =W 0O [ CO0 (see Figure 3).

3. Angle-monotonicity of theta-graphs

In this section, we show that for any integer k � 1
and any i 2 f2; 3; 4; 5g, the theta-graph �4k+i is angle-
monotone with width 90� + i�

4 . To this end, we show
that there is an angle-monotone path between p and q
in G with width 90� + i�

4 . Let P = (p = v0; v1; : : : ; vl)
be the directed path in G such that vi+1 2 Cvi0 is the
closest point to vi, and vl is the last vertex of the path
P that lies in Tpq. Let �P be the directed path, which
is obtained by reversing the direction of all edges of
P . If vl = q, then obviously P is an angle-monotone
path from p to q with width �. Then, we are done.
Now, in what follows, we assume that vl 6= q. Suppose,
without loss of generality, that q is below P [Cvl0 (see
Figure 4). Let Q = (q = a0; a1; : : : ; ag = vl) be the
path constructed by the algorithm �-Walk(q; vl) (see
Algorithm 1). The path Q is a path between q and vl
in G such that for any ai there exists a cone Caij such
that vl 2 Caij and (ai; ai+1) is an edge of G.

3.1. The graphs �4k+2 and �4k+4
We �rst prove the following lemma.

Lemma 1. If G = �4k+2, then every edge (ai; ai+1)
of the path Q lies in the wedge Wai .

Proof. Let `1 be the horizontal line passing through
vl, and `2 be the line passing through vl, forming an
angle � with the positive x-axis. Let c1 and c2 be the

Figure 3. The wedges WO and UO for the di�erent values
of m.
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Figure 4. The point q and P [ Cvl0 .

Figure 5. Illustrating the proof of Lemma 1.

intersection of `1 and `2 with the sides of the triangle
Tpq which are incident to p (see Figure 5). Based on
the construction of the path P , the vertex vl�1 lies in
the quadrilateral pc1vlc2. Let j be an integer such that
q 2 Cvlj . Since we assume that q is below P [ Cvl0 ,
we have 3k + 2 � j � 4k + 1. Since q 2 Cvlj , we have
vl 2 Cqj�(2k+1). Consider the triangle Tqvl . Let x and y
be the two other vertices of Tqvl as depicted in Figure 5.
Let d1 6= vl be the intersection of `1 and Tqvl , and let
d2 6= vl be the intersection of `2 and Tqvl . It is notable
that it is possible that the segment xy completely lies
on the line `2. In this case, we assume that d2 = y.
Now, if any vertex u of the path Q lies in the triangle
4vlyd2, since vl�1 lies in the quadrilateral pc1vlc2, the
triangle quvl�1 contains the vertex vl that contradicts
the convexity of the points. Hence, no vertices of Q
lie in the 4vlyd2. For similar reasons, no vertices of
Q lie in the triangle 4qvlp. Since Cvl0 \ Tpq does not
contain any point of S, the path Q completely lies in
the triangle 4qd1vl. Then, for any edge (ai; ai+1) of
Q, there is an integer t with j � (2k + 1) � t � 2k
such that ai+1 2 Cait . Since 3k + 2 � j � 4k + 1,
clearly (ai; ai+1) lies in the wedge Wai . Now, we have
the following lemma:

Lemma 2. If G = �4k+2, then every edge (x; y) of
the path P [ �Q lies in the wedge Ux.

Proof. By Lemma 1, every edge (a; b) of Q lies in the
wedge Wa. Therefore, every edge (b; a) of �Q lies in the
wedge W 0b. On the other hand, every edge (vi; vi+1) of
P lies in the cone Cvi0 . Since UO = W 0O [ CO0 , every
edge (x; y) of the path P [ �Q lies in the wedge Ux.

Theorem 1. For any set S of points in the plane
that are in convex position and for any integer k � 1,
the graph G = �4k+2 is angle-monotone with width
90� + �

2 .

Proof. Consider the points p and q. By Lemma 2,
every edge (x; y) of the path P [ �Q lies in the wedge
Ux. Therefore, the path P [ �Q is an angle-monotone
path from p to q in G with width k�+ �. Note that for
G = �4k+2, the angle of the wedge Ux is k� + �. Since
� = 360�

4k+2 , we have k� + � = 90� � �
2 + � = 90� + �

2 .
Hence, P [ �Q is an angle-monotone path with width
90� + �

2 . This completes the proof. �
Similar to the proof of Theorem 1, for G = �4k+4

with k � 1, we can prove that the path P [ �Q is an
angle-monotone path from p to q with width (k+1)�+
� = 90�+ �. Note that for G = �4k+4, the angle of the
wedge Ux is (k+ 1)�+ �. Hence, we have the following
theorem.

Theorem 2. For any set S of points in the plane
that are in convex position and for any integer k � 1,
the graph G = �4k+4 is angle-monotone with width
90� + �.

In [12], Bonichon et al. showed that any angle-
monotone graph with width 
 < 180� is a t-spanner
with t = 1= cos 
2 . Hence, we have the following result.

Corollary 1. For any set of points in the plane that
are in convex position and for any integer k � 1, the
graphs �4k+2 and �4k+4 have the stretch factor at most
1=cos

��
4 + �

4

�
and 1=cos

��
4 + �

2

�
, respectively.

3.2. The graphs �4k+3 and �4k+5
We �rst assume that G = �4k+3. Here, we present
an algorithm that �nds an angle-monotone path P
between p and q in G with a constant width. The
algorithm is as follows. It �rst �nds the path P = (p =
v0; : : : ; vl) which was introduced earlier. If vl = q, then
clearly P = P is an angle-monotone path with width
�, and we are done. Now, in the following, we assume
that vl 6= q. Let a be the topmost vertex of the triangle
Tpq and let b 6= p be the other vertex of Tpq. Let m
be the midpoint of ab. The algorithm considers the
following cases:

{ Case 1: q lies on the segment am. Now, let
Q = (q = a0; : : : ; vl) be the path constructed by
the algorithm �-Walk(q; vl). Then, the algorithm
outputs the path P = P [ �Q.

{ Case 2: q lies on the segment bm. Let P 0 = (q =
u0; : : : ; us) be the path in G such that ui+1 2 Cui2k+1
and ui+1 is the closest point to ui, and us is the last
vertex of the path P 0 that lies in Tqp. Let b0 be the
topmost vertex of the triangle Tqp and let a0 be the
bottommost vertex of Tqp. Let m0 be the midpoint
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Algorithm 2. Angle-monotone path between �4k+3(p; q).

Figure 6. Illustrating the proofs of Lemmas 3 and 6.

of a0b0. Since q 2 Cp0 , it is easy to see that p lies on
the segment a0m0. Now, there are two cases:

� I: P and P 0 have a common vertex w. The
algorithm outputs the path R, formed by the
portion of P from v0 to w followed by the portion
of P 0 from w to q;

� II: P and P 0 do not have any common vertex.
Now, consider two following cases: (a): there is
a vertex g 6= q of the path P 0 below the path P
and (b): all vertices of P 0 are above the path P .
For the case (a), let uh be the last vertex of P 0
below the path P and let Q0 be the constructed
path by the algorithm �-Walk(p; uh). Then,
the algorithm outputs path P = P 0 [ �Q0. For
the case (b), �rst the path Q = �-Walk(q; vl)
is constructed. Then, the algorithm outputs the
path P = P [ �Q.

For more details, see Algorithm 2.
In the following, we show that the path P re-

turned by Algorithm 2 is an angle-monotone path
between p and q with width 90� + 3�

4 . We �rst prove
the following lemma.

Lemma 3. If q lies on the segment am, then every
edge (ai; ai+1) of the path Q = (q = a0; : : : ; vl) lies in
the wedge Wai .

Proof. Let j be an integer such that vl 2 Cqj . Since
we assumed that q is below P [ Cvl0 , we have k + 1 �
j � 2k + 1. Consider the triangle Tqvl . Let x and y
be the two other vertices of Tqvl as depicted in Figure
6(a). It is notable that the line passing through p and m
is parallel to the line passing through q and y. Then,
since q lies on the segment am, the point p is below
the line passing through q and y. Hence, because of
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the convexity of the points, no points of Q lie in the
triangle 4qvly. Consider the lines `1 and `2, and the
points d1 and d2 as de�ned in the proof of Lemma 1. By
reasons similar to the proof of Lemma 1, we can prove
that the path Q completely lies in the triangle 4qd1vl.
Then, for any edge (ai; ai+1) of Q, there is an integer t
with j � t � 2k+ 1 such that ai+1 2 Cait . Clearly, this
shows that (ai; ai+1) lies in the wedge Wai . �

Now, we prove the following lemma:

Lemma 4. If q lies on the segment bm, then every
edge (ri; ri+1) of the path R lies in the wedge Uri .
Proof According to Algorithm 2, the path R is
constructed when the paths P = (v1; : : : ; vl) and P 0 =
(u1; : : : ; us) have a common vertex. It is clear that for
every edge (vi; vi+1) of the path P , we have vi+1 2 Cvi0 ,
therefore (vi; vi+1) lies in the wedge Uvi . On the
other hand, for every edge (ui; ui+1) of P 0, we have
ui+1 2 Cui2k+1. Therefore, ui 2 Cui+1

4k+2 or ui 2 Cui+1
0 .

Hence, the edge (ui+1; ui) lies in the wedge Uui+1 . This
completes the proof. �

Let YO be a wedge with YO =
�S4k+2

i=3k+2 C
O
i

�[�
CO2k+1

�0(�CO2k+1
�0 is the re
ection of CO2k+1 with re-

spect to the origin O). It is clear that the angle of YO
is equal to (k+ 1)�+ �=2. Now, we prove the following
lemma:

Lemma 5. If q lies on the segment bm and the paths
P and P 0 do not have any common vertex, and there
is a vertex g 6= q of the path P 0 below the path P ,
then every edge (ci; ci+1) of the constructed path P by
Algorithm 2 lies in the wedge Yci .
Proof. Let uh be the last vertex of P 0 below P .
According Algorithm 2, P = P 0 [ �Q0 that Q0 is the
constructed path by �-Walk(p; uh). It is clear that for
every edge (ui; ui+1) of P 0, we have ui+1 2 Cui2k+1, and
therefore ui 2 �Cui+1

2k+1
�0. Hence, (ui+1; ui) lies in the

wedge Yui+1 . Let Q0 = (p = a01; a02; : : : ; a0z = uh). We
claim that every edge (a0i; a0i+1) lies in the wedge Ya0i .
Since p lies on the segment a0m0, the claim is proved by
the arguments similar to the proof of Lemma 3. These
show that if (ci; ci+1) be an edge of the path P, it lies
in the wedge Yci . �
Now, we have the following lemma:

Lemma 6. If q lies on the segment bm and the paths
P and P 0 do not have any common vertex, and there
is no vertex g 6= q of the path P 0 below the path P ,
then every edge (ri; ri+1) of the constructed path P by

Algorithm 2 lies in the wedge Uri .
Proof. Let uj be a vertex of P 0 above the path P .
Let vi be the last vertex of P to the left of uj (see
Figure 6(b)). Since p is to the left of uj , the vertex vi
always exists. Since there is no vertex g 6= q of the
path P 0 below the path P , we have uj�1 = q. Now,
consider the triangle Tvivi+1 . Since P and P 0 have no
common vertex, clearly uj 62 Tvivi+1 . Hence, if vi 6=
p, then the triangle 4pujvi+1 contains the vertex vi,
which contradicts the convexity of the points. Then,
vi = p. On the other hand, since vl 6= q, we must have
vi+1 62 Tquj , and therefore vl 2 Cqt with k + 1 � t <
2k + 1. Now, by the arguments similar to the proof of
Lemma 3, we can prove that every edge (ai; ai+1) of
the path Q lies in the wedge Wai . Hence, it is clear
that every edge (ri; ri+1) of the path P = P [ �Q lies in
the wedge Uri . �

Based on Lemmas 3, 4, 5, and 6, any path
constructed by Algorithm 2 is angle-monotone with
width (k + 1)� + �

2 . Since � = 360�
4k+3 , we have

(k + 1)� + �
2 = 90� + 3�

4 . Then, the following theorem
holds.

Theorem 3. For any set S of points in the plane
that are in convex position and for any integer k � 1,
�4k+3 is angle-monotone with width 90� + 3�

4 .
By the arguments similar to the proof of Theo-

rem 3, for G = �4k+5 with k � 1, we can prove that
the path P is an angle-monotone path from p to q
with width (k + 1)� + �

2 . Since � = 360�
4k+1 , we have

(k + 1)� + �
2 = 90� + 5�

4 . Then, the following theorem
holds.

Theorem 4. For any set S of points in the plane
that are in convex position and for any integer k � 1,
�4k+5 is angle-monotone with width 90� + 5�

4 .
We close this section with the following result.

Corollary 2. For any set of points in the plane
that are in convex position, the graphs �4k+3 and
�4k+5 with k � 1 have the stretch factor at most
1=cos

��
4 + 3�

8

�
and 1=cos

��
4 + 5�

8

�
, respectively.

4. Theta-graph �4

In the following, we present two point sets, one in a
convex position and the other in a non-convex position,
to show that the graph �4 of the point set is not angle-
monotone for any width 
 > 0. Let p0, p2, p3, and p5 be
the vertices of a rectangle with length 2 and width 1+�,
where � > 0 is a small real number (see Figure 7(a)).
Let p1 and p4 be the midpoints of the segments p0p2
and p3p5, respectively.
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Figure 7. The point sets P and V .

Now, let P = fp0; p1; : : : ; p5g. Consider the theta-
graph �4 on P . It is not hard to see that the edge set
E of �4 is:

E =f(p0; p1); (p1; p2); (p2; p3); (p3; p4);

(p4; p5); (p5; p0)g:
Now, since p0p2 and p3p5 are parallel, it is obvious that
for any 0 < 
 < 180�, any path between p1 and p4 is
not angle-monotone with width 
.

Let P 0 = fp00; p01; : : : ; p05g be a copy of point set P
such that the points of P 0 placed below the points of
P as depicted in Figure 7(b). Let V = P [ P 0. It is
easy to see that the edge set F of the theta-graph �4
on the point set V is:

F =E [ f(p00; p01); (p01; p02); (p02; p03); (p03; p04);

(p04; p05); (p05; p00)g[f(p00; p5); (p01; p4); (p02; p3)g:
It is obvious that for any 0 < 
 < 180�, any path
between p1 and p4 is not angle-monotone with width

. Now, we have the following theorem.

Theorem 5. For any angle 0 < 
 < 180�, the graph
�4 is not necessarily angle-monotone with width 
.

5. Remarks

In Corollaries 1 and 2, we examined the stretch factor
of the graphs, �4k+2, �4k+3, �4k+4, and �4k+5 for
the points in convex position. In [18], Bose et al.
show that the stretch factor of the graphs �4k+2,
�4k+3, �4k+4 and �4k+5 are at most: 1 + 2 sin(�=2),

Figure 8. The lower bound for the width of �4k+2.

cos(�=4)=(cos(�=2)-sin(3�=4)), 1+2 sin(�=2)/(cos(�=2)-
sin(�=2)), and cos(�=4)=(cos(�=2)-sin(3�=4)), respec-
tively.

By comparing the results of Corollaries 1 and 2
with the results of [18], we �nd that the results of the
corollaries do not improve the stretch factors known
in [18].

In the following, we indicate whether the bounds
on the width presented in Theorems 1, 2, 3 and 4 are
tight or not. Consider the graph �4k+2. Figure 8
shows that the upper bound on the width presented
in Theorems 1 is tight. We place a vertex c close to
the lower corner of Tab that is su�ciently far from the
vertex b. We also place a vertex d close to the upper
corner of Tba that is su�ciently far from the vertex a.
Now, the graph �4k+2 of four points a; b; c, and d is
as shown in Figure 8. We can easily see that each of
the paths acb and adb are angle-monotone with width
90� + �

2 � �, for some real number � > 0 that only
depends on the distance between c(d) and the lower
corner (upper corner) of Tab (Tba). If � approaches
zero, then the width approaches 90� + �

2 .
For Theorems 2, 3, and 4, we do not know whether

the bounds for the width are tight or not.
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6. Conclusion

In this paper, we showed that for any set of points
in the plane that are in convex position and for any
integer k � 1 and any i 2 f2; 3; 4; 5g, the theta-graph
�4k+i is angle-monotone with width 90� + i�

4 , where
� = 360�

4k+i . Moreover, we presented two sets of points
in the plane, one in a convex position and the other in
a non-convex position, to show that for every 0 < 
 <
180�, the graph �4 is not angle-monotone with width 
.
Furthermore, we showed that the upper bound on the
width presented in Theorem 1 is tight. It is notable
that our technique in Section 3.2 does not work for
�5 because, by the proposed technique, the resulting
path P is angle-monotone with width 90� + 5�

4 . Since
for �5, we have � = 2�

5 � 72�. Then, 90� + 5�
4 =

180�. We conjecture that for any set of points in a
convex position, �5 is angle-monotone with a constant
width. We tried to prove our conjecture, but we did not
succeed. Finally, we present the following conjecture.

Conjecture 1. For any set of points in the plane
that are not convex position, for any integer k � 1
and any i 2 f2; 3; 4; 5g, the theta-graph �4k+i is angle-
monotone with width 90� + i�

4 , where � = 360�
4k+i .
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